首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genomic islands (GIs) are regions in the genome which are believed to have been acquired via horizontal gene transfer events and are thus likely to be compositionally distinct from the rest of the genome. Majority of the genes located in a GI encode a particular function. Depending on the genes they encode, GIs can be classified into various categories, such as ‘metabolic islands’, ‘symbiotic islands’, ‘resistance islands’, ‘pathogenicity islands’, etc. The computational process for GI detection is known and many algorithms for the same are available. We present a new method termed as Improved N-mer based Detection of Genomic Islands Using Sequence-clustering (INDeGenIUS) for the identification of GIs. This method was applied to 400 completely sequenced species belonging to proteobacteria. Based on the genes encoded in the identified GIs, the GIs were grouped into 6 categories: metabolic islands, symbiotic islands, resistance islands, secretion islands, pathogenicity islands and motility islands. Several new islands of interest which had previously been missed out by earlier algorithms were picked up as GIs by INDeGenIUS. The present algorithm has potential application in the identification of functionally relevant GIs in the large number of genomes that are being sequenced. Investigation of the predicted GIs in pathogens may lead to identification of potential drug/vaccine candidates.  相似文献   

2.
Cholesterol is an essential component of eukaryotic membranes and plays a crucial role in membrane organization, dynamics and function. The G-protein coupled receptors (GPCRs) are the largest class of molecules involved in signal transduction across membranes and constitute ~1–2% of the human genome. GPCRs have emerged as major targets for the development of novel drug candidates in all clinical areas due to their involvement in the generation of multitude of cellular responses. Membrane cholesterol has been reported to have a modulatory role in the function of a number of GPCRs. This effect could either be due to specific molecular interaction between cholesterol and GPCR, or due to alterations in the membrane physical properties induced by cholesterol. Alternatively, membrane cholesterol could modulate receptor function by occupying the ‘nonannular’ sites around the receptor. In this review, we have highlighted the nature of cholesterol dependence of GPCR function taking a few known examples.  相似文献   

3.
 A linkage map of the pea (Pisum sativum L.) genome is presented which is based on F2 plants produced by crossing the marrowfat cultivar ‘Primo’ and the blue-pea breeding line ‘OSU442-15’. This linkage map consists of 209 markers and covers 1330 cM (Kosambi units) and includes RFLP, RAPD and AFLP markers. By mapping a number of anchor loci, the ‘Primo’בOSU442-15’ map has been related to other pea linkage maps. A feature of the map is the incorporation of 29 loci representing genes of known function, obtained from other laboratories. The map also contains RFLP loci detected using sequence-characterized cDNA clones developed in our laboratory. The putative identities of 38 of these cDNA clones were assigned by examining public-sequence databases for protein or nucleotide-sequence similarities. The conversion of sequence-characterized pea cDNAs into PCR-amplifiable and polymorphic sequence-tagged sites (STSs) was investigated using 18 pairs of primers designed for single-copy sequences. Eleven polymorphic STSs were developed. Received: 18 June 1997 / Accepted: 11 August 1997  相似文献   

4.
Exact Tandem Repeats Analyzer 1.0 (E-TRA) combines sequence motif searches with keywords such as ‘organs’, ‘tissues’, ‘cell lines’ and ‘development stages’ for finding simple exact tandem repeats as well as non-simple repeats. E-TRA has several advanced repeat search parameters/options compared to other repeat finder programs as it not only accepts GenBank, FASTA and expressed sequence tags (EST) sequence files, but also does analysis of multiple files with multiple sequences. The minimum and maximum tandem repeat motif lengths that E-TRA finds vary from one to one thousand. Advanced user defined parameters/options let the researchers use different minimum motif repeats search criteria for varying motif lengths simultaneously. One of the most interesting features of genomes is the presence of relatively short tandem repeats (TRs). These repeated DNA sequences are found in both prokaryotes and eukaryotes, distributed almost at random throughout the genome. Some of the tandem repeats play important roles in the regulation of gene expression whereas others do not have any known biological function as yet. Nevertheless, they have proven to be very beneficial in DNA profiling and genetic linkage analysis studies. To demonstrate the use of E-TRA, we used 5,465,605 human EST sequences derived from 18,814,550 GenBank EST sequences. Our results indicated that 12.44% (679,800) of the human EST sequences contained simple and non-simple repeat string patterns varying from one to 126 nucleotides in length. The results also revealed that human organs, tissues, cell lines and different developmental stages differed in number of repeats as well as repeat composition, indicating that the distribution of expressed tandem repeats among tissues or organs are not random, thus differing from the un-transcribed repeats found in genomes.  相似文献   

5.
Kumar D 《Genomic Medicine》2007,1(3-4):95-104
The concept of ‘evidence-based medicine’ dates back to mid-19th century or even earlier. It remains pivotal in planning, funding and in delivering the health care. Clinicians, public health practitioners, health commissioners/purchasers, health planners, politicians and public seek formal ‘evidence’ in approving any form of health care provision. Essentially ‘evidence-based medicine’ aims at the conscientious, explicit and judicious use of the current best evidence in making decisions about the care of individual patients. It is in fact the ‘personalised medicine’ in practice. Since the completion of the human genome project and the rapid accumulation of huge amount of data, scientists and physicians alike are excited on the prospect of ‘personalised health care’ based on individual’s genotype and phenotype. The first decade of the new millennium now witnesses the transition from ‘evidence-based medicine’ to the ‘genomic medicine’. The practice of medicine, including health promotion and prevention of disease, stands now at a wide-open road as the scientific and medical community embraces itself with the rapidly expanding and revolutionising field of genomic medicine. This article reviews the rapid transformation of modern medicine from the ‘evidence-based medicine’ to ‘genomic medicine’.  相似文献   

6.
Paddy fields are a significant source of methane and contribute up to 20% of total methane emissions from wetland ecosystems. These inundated, anoxic soils featuring abundant nitrogen compounds and methane are an ideal niche for nitrate-dependent anaerobic methanotrophs. After 2 years of enrichment with a continuous supply of methane and nitrate as the sole electron donor and acceptor, a stable enrichment dominated by ‘Candidatus Methanoperedens nitroreducens’ archaea and ‘Candidatus Methylomirabilis oxyfera’ NC10 phylum bacteria was achieved. In this community, the methanotrophic archaea supplied the NC10 phylum bacteria with the necessary nitrite through nitrate reduction coupled to methane oxidation. The results of qPCR quantification of 16S ribosomal RNA (rRNA) gene copies, analysis of metagenomic 16S rRNA reads, and fluorescence in situ hybridization (FISH) correlated well and showed that after 2 years, ‘Candidatus Methanoperedens nitroreducens’ had the highest abundance of (2.2 ± 0.4 × 108) 16S rRNA copies per milliliter and constituted approximately 22% of the total microbial community. Phylogenetic analysis showed that the 16S rRNA genes of the dominant microorganisms clustered with previously described ‘Candidatus Methanoperedens nitroreducens ANME2D’ (96% identity) and ‘Candidatus Methylomirabilis oxyfera’ (99% identity) strains. The pooled metagenomic sequences resulted in a high-quality draft genome assembly of ‘Candidatus Methanoperedens nitroreducens Vercelli’ that contained all key functional genes for the reverse methanogenesis pathway and nitrate reduction. The diagnostic mcrA gene was 96% similar to ‘Candidatus Methanoperedens nitroreducens ANME2D’ (WP_048089615.1) at the protein level. The ‘Candidatus Methylomirabilis oxyfera’ draft genome contained the marker genes pmoCAB, mdh, and nirS and putative NO dismutase genes. Whole-reactor anaerobic activity measurements with methane and nitrate revealed an average methane oxidation rate of 0.012 mmol/h/L, with cell-specific methane oxidation rates up to 0.57 fmol/cell/day for ‘Candidatus Methanoperedens nitroreducens’. In summary, this study describes the first enrichment and draft genome of methanotrophic archaea from paddy field soil, where these organisms can contribute significantly to the mitigation of methane emissions.  相似文献   

7.
Albumins and globulins of wheat endosperm represent 20% of total kernel protein. They are soluble proteins, mainly enzymes and proteins involved in cell functions. Two-dimensional gel immobiline electrophoresis (2DE) (pH 4-7) × SDS-Page revealed around 2,250 spots. Ninety percent of the spots were common between the very distantly related cultivars ‘Opata 85’ and ‘Synthetic W7984’, the two parents of the International Triticeae Mapping Initiative (ITMI) progeny. ‘Opata’ had 130 specific spots while ‘Synthetic’ had 96. 2DE and image analysis of the soluble proteins present in 112 recombinant inbred lines of the F9-mapped ITMI progeny enabled 120 unbiased segregating spots to be mapped on 21 wheat (Triticum aestivum L. em. Thell) chromosomes. After trypsic digestion, mapped spots were subjected to MALDI-Tof or tandem mass spectrometry for protein identification by database mining. Among the ‘Opata’ and ‘Synthetic’ spots identified, many enzymes have already been mapped in the barley and rice genomes. Multigene families of Heat Shock Proteins, beta-amylases, UDP-glucose pyrophosphorylases, peroxydases and thioredoxins were successfully identified. Although other proteins remain to be identified, some differences were found in the number of segregating proteins involved in response to stress: 11 proteins found in the modern selected cultivar ‘Opata 85’ as compared to 4 in the new hexaploid `Synthetic W7984’. In addition, ‘Opata’ and ‘Synthetic’ differed in the number of proteins involved in protein folding (2 and 10, respectively). The usefulness of the mapped enzymes for future research on seed composition and characteristics is discussed. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
In 1992, papaya ringspot virus (PRSV) was discovered in the Puna district of Hawaii island where 95% of the state of Hawaii’s papaya was being grown. By 1998 production in Puna had decreased 50% from 1992 levels. A PRSV-resistant transgenic papaya ‘Rainbow’ containing the coat protein gene of PRSV was released commercially in Hawaii in 1998, and saved the papaya industry from further devastation. In the ensuing years since the release of the transgenic papaya, a number of farmers grew hermaphrodite nontransgenic ‘Kapoho’ papaya in close proximity to plantings of hermaphrodite transgenic ‘Rainbow’ papaya. These plantings provided a unique opportunity to assay for transgenic-pollen drift under commercial conditions. Between 2004 and 2010, assays for the GUS (beta-glucuronidase) transgene in embryos were done to study transgenic-pollen drift in commercial ‘Kapoho’ plantings and in replicated field plots. Very low pollen drift (0.8%) was detected in fruit of ‘Kapoho’ trees in the border row of one plantation when 90 embryos were assayed per fruit, while no pollen drift was detected in four other commercial plantings in which eight embryos were tested per fruit. Pollen drift averaged 1.3% of tested embryos in field plots where individual hermaphrodite ‘Kapoho’ trees were adjacent to two or four ‘Rainbow’ trees. In contrast, 67.4% of tested embryos were GUS positive in similarly located female ‘Kapoho’ trees. The very low transgene flow to close-by ‘Kapoho’ plantings is likely due to the fact that hermaphrodite trees are used commercially in Hawaii and that these trees are largely self-pollinated before the stigma is exposed to external pollen.  相似文献   

9.
Mate choice is one of the most important evolutionary mechanisms. Females can improve their fitness by selectively mating with certain males. We studied possible genetic benefits in the obligate pair-living fat-tailed dwarf lemur (Cheirogaleus medius) which maintains life-long pair bonds but has an extremely high rate of extra-pair paternity. Possible mechanisms of female mate choice were investigated by analyzing overall genetic variability (neutral microsatellite marker) as well as a marker of adaptive significance (major histocompatibility complex, MHC-DRB exon 2). As in human medical studies, MHC-alleles were grouped to MHC-supertypes based on similarities in their functional important antigen binding sites. The study indicated that females preferred males both as social and as genetic fathers for their offspring having a higher number of MHC-alleles and MHC-supertypes, a lower overlap with female’s MHC-supertypes as well as a higher genome wide heterozygosity than randomly assigned males. Mutual relatedness had no influence on mate choice. Females engaged in extra-pair mating shared a significant higher number of MHC-supertypes with their social partner than faithful females. As no genetic differences between extra-pair young (EPY) and intra-pair young (IPY) were found, females might engage in extra-pair mating to ‘correct’ for genetic incompatibility. Thus, we found evidence that mate choice is predicted in the first place by the ‘good-genes-as-heterozygosity hypothesis’ whereas the occurrence of extra-pair matings supports the ‘dissassortative mating hypothesis’. To the best of our knowledge this study represents the first investigation of the potential roles of MHC-genes and overall genetic diversity in mate choice and extra-pair partner selection in a natural, free-living population of non-human primates.  相似文献   

10.
Brosius J 《Genetica》1999,107(1-3):209-238
Retroposition is an efficient route to move coding regions around the genome ‘in search’ of novel regulatory elements and to shotgun regulatory elements into the genome ‘in search’ of new target genes. The templates for such retrogenes are mRNAs, and for regulatory retronuons (nuon=any definable nucleic acid sequence) usually small non-mRNAs. An example in support of the ‘master gene’ model for SINEs (short interspersed repetive elements) is provided with neuronal BC1 RNA. Furthermore, an alternative explanation of LINE (long interspersed repetive elements) involvement in the generation of SINEs is given. I will also argue that the status of transposable elements with respect to the host resembles more symbiosis than parasitiasis and that host defense is often lenient as if even to ‘tolerate or support’ retronuons. Finally the paradox of evolution's lack of foresight and the future exaptive use of retronuons is being dealt with by referring to W.F. Doolittle's ‘Hierarchical Approaches to Genome Evolution’. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
 An intervarietal molecular marker map covering most of the nuclear genome was developed in Triticum aestivum. One hundred and six androgenetic-derived doubled haploid lines obtained from the F1 between monosomics of ‘Chinese Spring’ and ‘Courtot’ were analysed for genetic mapping. The map covered 18 of the 21 chromosomes with an identical distribution of markers in the A and B genome, and only small segments of the D genome. Distorted markers were mapped using Bailey’s 2-point method and revealed skewed regions on 1A, 1DS, 2A, 2B, 4AS and 6B. Comparison with a wide cross [‘Opata’×Synthetic hexaploid (T. tauschii/‘Altar 84’)] showed colinearity for markers on homologous chromosomes, but revealed a large proportion (25%) of markers mapped on non-homoeologous chromosomes, i. e. heterologous markers. The origin of the material and distortion segregation are discussed with particular emphasis on investigations of D-genome markers. Received: 2 May 1996 / Accepted: 2 August 1996  相似文献   

12.
The initial aim of the Berkeley Structural Genomics Center is to obtain a near-complete structural complement of two minimal organisms, closely related pathogens Mycoplasma genitalium and M. pneumoniae. The former has fewer than 500 genes and the latter fewer than 700 genes. To achieve this goal, the current protein targets have been selected starting with those predicted to be most tractable and likely to yield new structural and functional information. During the past 3 years, the semi-automated structural genomics pipeline has been set up from cloning, expression, purification, and ultimately to structural determination. The results from the pipeline substantially increased the coverage of the protein fold space of M. pneumoniae and M. genitalium. Furthermore, about 1/2 of the structures of ‘unique’ protein sequences revealed new and novel folds, and over 2/3 of the structures of previously annotated ‘hypothetical proteins’ inferred their molecular functions.  相似文献   

13.
We evaluated the efficiency of callus induction and plantlet regeneration from hypocotyl explants of broccoli (Brassica oleracea var. italica). The cultivars were ‘Marathon’, ‘Greenbelt’, and ‘Shogun’. Transformation success was not affected by the presence of tobacco feeder-cell layers on the culture media. The frequency of shoot regeneration was greater from 10-d-old hypocotyls than from 14-d-old hypocotyls. Both ‘Marathon’ and ‘Greenbelt’ had higher potentials for tissue regeneration than did ‘Shogun’. We found that for transformation selection, the optimum concentration was either 50 mg/L kanamycin or 100 mg/L genetkin.  相似文献   

14.
 Two sets of single chromosome recombinant lines comparing 2D chromosomes from the wheat varieties ‘Ciano 67’ and ‘Mara’ with the common 2D chromosome of ‘Cappelle-Desprez’ in a ‘Cappelle-Desprez’ background were used to detect a diagnostic wheat microsatellite marker for the dwarfing gene Rht8. The genetic linkage maps place the wheat microsatellite marker WMS 261 0.6 cM distal to Rht8 on the short arm of chromosome 2D. By PCR analysis the WMS 261 alleles of ‘Mara’, ‘Cappelle-Desprez’ and ‘Ciano 67’ could be distinguished by different fragment sizes of 192 bp, 174 bp and 165 bp, respectively. A screen of over 100 international varieties of wheat showed that the three allelic variants were all widespread. It also demonstrated that a limited number of varieties carried novel WMS 261 variants of over 200 bp. Following classification of the individual recombinant lines for allelic variants at the WMS 261 locus it was possible to attribute a 7- to 8-cm reduction in plant height with the WMS 261-192-bp allele compared to the WMS 261-174-bp allele in the set of recombinant lines comparing 2D chromosomes of ‘Mara’ and ‘Cappelle-Desprez’. A height reduction of around 3 cm was detected between the WMS 261-174-bp allele and the WMS 261-165-bp allele in the recombinant lines comparing 2D chromosomes of ‘Cappelle-Desprez’ and ‘Ciano 67’. Received: 17 October 1997 / Accepted: 12 November 1997  相似文献   

15.
16.
In a well-known collection of his essays in cognitive psychology Miller (The Psychology of Communication. Penguin, 1974) describes in detail a number of experiments aiming at a determination of the limits (if any) of the human brain in processing information. He concludes that the ‘channel capacity’ of human subjects does not exceed a few bits or that the number of categories of (one-dimensional) stimuli from which unambiguous judgment can be made are of the order of ‘seven plus or minus two’. This ‘magic number’ holds also, Miller found, for the number of random digits a person can correctly recall on a row and also the number of sentences that can be inserted inside a sentence in a natural language and still be read through without confusion. In this paper we propose a dynamical model of information processing by a self-organizing system which is based on the possible use of strange attractors as cognitive devices. It comes as an amusing surprise to find that such a model can, among other things, reproduce the ‘magic number seven plus-minus two’ and also its variance in a number of cases and provide a theoretical justification for them. This justification is based on the optimum length of a code which maximizes the dynamic storing capacity for the strings of digits constituting the set of external stimuli. This provides a mechanism for the fact that the ‘human channel’, which is so narrow and so noisy (of the order of just a few bits per second or a few bits per category) possesses the ability of squeezing or ‘compressing’ practically an unlimited number of bits per symbol—thereby giving rise to a phenomenal memory.  相似文献   

17.
Woolly apple aphid (WAA; Eriosoma lanigerum Hausm.) can be a major economic problem to apple growers in most parts of the world, and resistance breeding provides a sustainable means to control this pest. We report molecular markers for three genes conferring WAA resistance and placing them on two linkage groups (LG) on the genetic map of apple. The Er1 and Er2 genes derived from ‘Northern Spy’ and ‘Robusta 5,’ respectively, are the two major genes that breeders have used to date to improve the resistance of apple rootstocks to this pest. The gene Er3, from ‘Aotea 1’ (an accession classified as Malus sieboldii), is a new major gene for WAA resistance. Genetic markers linked to the Er1 and Er3 genes were identified by screening random amplification of polymorphic deoxyribonucleic acid (DNA; RAPD) markers across DNA bulks from resistant and susceptible plants from populations segregating for these genes. The closest RAPD markers were converted into sequence-characterized amplified region markers and the genome location of these two genes was assigned to LG 08 by aligning the maps around the genes with a reference map of ‘Discovery’ using microsatellite markers. The Er2 gene was located on LG 17 of ‘Robusta 5’ using a genetic map developed in a M.9 × ‘Robusta 5’ progeny. Markers for each of the genes were validated for their usefulness for marker-assisted selection in separate populations. The potential use of the genetic markers for these genes in the breeding of apple cultivars with durable resistance to WAA is discussed.  相似文献   

18.
Summary Suppression of annuals at various intensities was observed around some shrubs ofCoridothymus capitatus growing on kurkar formation in the coastal hills of Israel. The phenomenon was clearly observed as annuals-free belts of 15–20 cm around ‘aggressive’ shrubs. Quantitatively, density of annuals decreased by 16 fold in the annual-free belts as compared to a distance of 60–80 cm from the canopies of the shrubs. Their dry matter was decreased by 5.4 fold around the shrubs. Suppression rate of emergence of planted seeds of annuals (Plantago psyllium andErucaria hispanica) early in the season was 45% higher around ‘aggressive’C. capitatus than that around ‘non-aggressive’ ones. In the laboratory, seed germination of the annuals was strongly suppressed by diffusates and volatiles from shoots, as well as from their water extracts and their essential oils. Incubation of fresh shoots ofC. capitatus in soil collected from around ‘non-aggressive’ shrubs, for 7 days, increased population levels of actinomycetes by 9.6 fold and by 36.7 fold when soil was collected from around ‘aggressive’ shrubs. Isolates of some soil-borne actinomycetes inhibited germination of the test plantsLactuca sativa andAnastatica hierochuntica on agar plates (4–98%). The preliminary results indicate a possible synergistic inhibitory effect induced by essential oils of the aromatic shrub and the phytototic activity of actinomycetes.  相似文献   

19.
Two apple genetic linkage maps were constructed using amplified fragment length polymorphisms (AFLPs), simple sequence repeats (SSRs), random amplified polymorphic DNAs (RAPDs), and expressed sequence tag (EST)-derived markers in combination with a pseudo-testcross mapping strategy in which the cultivars ‘Ralls Janet’ and ‘Delicious’ were used as the respective seed parents. Mitsubakaido (Malus sieboldii) was used as the pollen parent for each of the segregating F1 populations. Expressed sequence tag data were obtained from the random sequencing of cDNA libraries constructed from in vitro cultured shoots and maturing fruits of cv ‘Fuji’, which is the offspring of a cross between ‘Ralls Janet’ and ‘Delicious’. In addition, a number of published gene sequences were used to develop markers for mapping. The ‘Ralls Janet’ map consisted of 346 markers (178 AFLPs, 95 RAPDs, 54 SSRs, 18 ESTs, and the S locus) in 17 linkage groups, with a total length of 1082 cM, while that of ‘Delicious’ comprised 300 markers (120 AFLPs, 81 RAPDs, 64 SSRs, 32 ESTs, and the S, Rf, and MdACS-1 loci) on 17 linkage groups spanning 1031 cM. These maps are amenable to comparisons with previously published maps of ‘Fiesta’ and ‘Discovery’ (Liebhard et al., Mol Breed 10:217–241, 2002; Liebhard et al., Theor Appl Genet 106:1497–1508, 2003a) because several of the SSRs (one to three markers per linkage group) were used in all of the maps. Distorted marker segregation was observed in three and two regions of the ‘Ralls Janet’ and ‘Delicious’ maps, respectively. These regions were localized in different parts of the genome from those in previously reported apple linkage maps. This marker distortion may be dependent on the combinations of cultivars used for map construction.  相似文献   

20.
Transposable elements are short but complex pieces of DNA or RNA containing a streamlined minimal-genome with the capacity for its selfish replication in a foreign genomic environment. Cis-regulatory sections within the elements orchestrate tempo and mode of TE expression. Proteins encoded by TEs mainly direct their own propagation within the genome by recruitment of host-encoded factors. On the other hand, TE-encoded proteins harbor a very attractive repertoire of functional abilities for a cell. These proteins mediate excision, replication and integration of defined DNA fragments. Furthermore, some of these proteins are able to manipulate important host factors by altering their original function. Thus, if the host genome succeeds in domesticating such TE-encoded proteins by taming their ‘anarchistic behavior,’ such an event can be considered as an important evolutionary innovation for its own benefit. In fact, the domestication of TE-derived cis-regulatory modules and protein coding sections took place repeatedly in the course of genome evolution. We will present prominent cases that impressively demonstrate the beneficial impact of TEs on host biology over evolutionary time. Furthermore, we will propose that molecular domestication might be considered as a resumption of the same evolutionary process that drove the transition from ‘primitive genomes’ to ‘modern’ ones at the early dawn of life, that is, the adaptive integration of a short piece of autonomous DNA into a complex regulatory network. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号