首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Affymetrix microarray data and Northern blot assays demonstrated that phospholipid transfer protein (PLTP) was induced 6-fold when either murine or human macrophages were incubated in the presence of ligands for the liver X receptor (LXR) and the retinoid X receptor. Two functional LXR response elements (LXREs) were identified and characterized in the proximal promoter of the human PLTP gene. One LXRE corresponds to a traditional direct repeat separated by 4 bp. However, the second LXRE is novel in that it corresponds to an inverted repeat separated by 1 bp, and is identical to the farnesoid X receptor response element. These studies demonstrate that PLTP is a direct target for activated LXR and farnesoid X receptor (FXR). In addition, apolipoprotein E (apoE), a known LXR target gene in macrophages, was shown to be activated in liver cells by FXR ligands. Taken together, the current data suggest that a small number of genes that currently include PLTP, apoE, and apoC-II, are induced in macrophages by activated LXR and in liver by activated FXR.  相似文献   

5.
6.
7.
Peroxisome proliferator-activated receptor alpha (PPARalpha) is a nuclear receptor that controls lipid and glucose metabolism and exerts antiinflammatory activities. PPARalpha is also reported to influence bile acid formation and bile composition. Farnesoid X receptor (FXR) is a bile acid-activated nuclear receptor that mediates the effects of bile acids on gene expression and plays a major role in bile acid and possibly also in lipid metabolism. Thus, both PPARalpha and FXR appear to act on common metabolic pathways. To determine the existence of a molecular cross-talk between these two nuclear receptors, the regulation of PPARalpha expression by bile acids was investigated. Incubation of human hepatoma HepG2 cells with the natural FXR ligand chenodeoxycholic acid (CDCA) as well as with the nonsteroidal FXR agonist GW4064 resulted in a significant induction of PPARalpha mRNA levels. In addition, hPPARalpha gene expression was up-regulated by taurocholic acid in human primary hepatocytes. Cotransfection of FXR/retinoid X receptor in the presence of CDCA led to up to a 3-fold induction of human PPARalpha promoter activity in HepG2 cells. Mutation analysis identified a FXR response element in the human PPARalpha promoter (alpha-FXR response element (alphaFXRE)] that mediates bile acid regulation of this promoter. FXR bound the alphaFXRE site as demonstrated by gel shift analysis, and CDCA specifically increased the activity of a heterologous promoter driven by four copies of the alphaFXRE. In contrast, neither the murine PPARalpha promoter, in which the alphaFXRE is not conserved, nor a mouse alphaFXRE-driven heterologous reporter, were responsive to CDCA treatment. Moreover, PPARalpha expression was not regulated in taurocholic acid-fed mice. Finally, induction of hPPARalpha mRNA levels by CDCA resulted in an enhanced induction of the expression of the PPARalpha target gene carnitine palmitoyltransferase I by PPARalpha ligands. In concert, these results demonstrate that bile acids stimulate PPARalpha expression in a species-specific manner via a FXRE located within the human PPARalpha promoter. These results provide molecular evidence for a cross-talk between the FXR and PPARalpha pathways in humans.  相似文献   

8.
The bile salt export pump (BSEP) plays an integral role in lipid homeostasis by regulating the canalicular excretion of bile acids. Induction of BSEP gene expression is mediated by the farnesoid X receptor (FXR), which binds as a heterodimer with the retinoid X receptor (RXR) to the FXR response element (FXRE) located upstream of the BSEP gene. RXR ligands mimic several partner ligands and show additive effects upon coadministration. Using real-time quantitative PCR and cotransfection reporter assays, we demonstrate that the RXR agonist LG100268 antagonizes induction of BSEP expression mediated by endogenous and synthetic FXR ligands, CDCA and GW4064, respectively. Moreover, this antagonism is a general feature of RXR agonists and is attributed to a decrease in binding of FXR/RXR heterodimers to the BSEP-FXRE coupled with the inability of RXR agonists to recruit coactivators to FXR/RXR. Our data suggest that FXR/RXR is a conditionally permissive heterodimer and is the first example of RXR ligand-mediated antagonism of FXR activity. Because FXR agonists lower triglyceride levels, our results suggest a novel role for RXR-mediated antagonism of FXR activity in the development of hypertriglyceridemia observed with RXR agonists in rodents and humans.  相似文献   

9.
Farnesoid X receptor activates transcription of the phospholipid pump MDR3   总被引:13,自引:0,他引:13  
The human multidrug resistance gene MDR3 encodes a P-glycoprotein that belongs to the ATP-binding cassette transporter family (ABCB4). MDR3 is a critical trans-locator for phospholipids across canalicular membranes of hepatocytes, evidenced by the fact that human MDR3 deficiencies result in progressive familial intrahepatic cholestasis type III. It has been reported previously that MDR3 expression is modulated by hormones, cellular stress, and xenobiotics. Here we show that the MDR3 gene is trans-activated by the farnesoid X receptor (FXR) via a direct binding of FXR/retinoid X receptor alpha heterodimers to a highly conserved inverted repeat element (a FXR response element) at the distal promoter (-1970 to -1958). In FXR trans-activation assays, both the endogenous FXR agonist chenodeoxycholate and the synthetic agonist GW4064 activated the MDR3 promoter. Deletion or mutation of this inverted repeat element abolished FXR-mediated MDR3 promoter activation. Consistent with these data, MDR3 mRNA was significantly induced by both chenodeoxycholate and GW4064 in primary human hepatocytes in time- and dose-dependent fashions. In conclusion, we demonstrate that MDR3 expression is directly up-regulated by FXR. These results, together with the previous report that the bile salt export pump is a direct FXR target, suggest that FXR coordinately controls secretion of bile salts and phospholipids. Results of this study further support the notion that FXR is a master regulator of lipid metabolism.  相似文献   

10.
Recent studies have indicated that bile acids regulate the expression of several genes involved in bile acid and lipid metabolism as ligands for the farnesoid X receptor (FXR). We report here that bile acids are directly able to govern cholesterol metabolism by a novel mechanism. We show that chenodeoxycholic acid (CDCA) enhances low density lipoprotein (LDL) receptor gene expression in human cultured cell lines (HeLa, Hep G2, and Caco-2). The proteolytic activation of sterol regulatory element-binding protein-2 (SREBP-2), a major regulator for LDL receptor gene expression, is not affected by CDCA. Both deoxycholic acid and lithocholic acid as well as CDCA, but not ursodeoxycholic acid, increase the mRNA level for the LDL receptor, even when Hep G2 cells are cultured with 25-hydroxycholesterol, a potent suppressor of gene expression for the LDL receptor. Although it seems possible that FXR might be involved in genetic regulation, both reporter assays with a reporter gene containing the LDL receptor promoter as well as Northern blot analysis reveal that FXR is not involved in the process. On the other hand, inhibition of mitogen-activated protein (MAP) kinase activities, which are found to be induced by CDCA, abolishes the CDCA-mediated up-regulation of LDL receptor gene expression. We further demonstrate that CDCA stabilizes LDL receptor mRNA and that the MAP kinase inhibitors accelerate its turnover. Taken together, these results indicate that bile acids increase LDL uptake and the intracellular cholesterol levels through the activation of MAP kinase cascades in conjunction with a down-regulation of bile acid biosynthesis by FXR. This work opens up a new avenue for developing pharmaceutical interventions that lower plasma LDL by stabilizing LDL receptor mRNA.  相似文献   

11.
12.
Human kininogen gene is transactivated by the farnesoid X receptor   总被引:3,自引:0,他引:3  
Human kininogen belongs to the plasma kallikreinkinin system. High molecular weight kininogen is the precursor for two-chain kinin-free kininogen and bradykinin. It has been shown that the two-chain kinin-free kininogen has the properties of anti-adhesion, anti-platelet aggregation, and anti-thrombosis, whereas bradykinin is a potent vasodilator and mediator of inflammation. In this study we show that the human kininogen gene is strongly up-regulated by agonists of the farnesoid X receptor (FXR), a nuclear receptor for bile acids. In primary human hepatocytes, both the endogenous FXR agonist chenodeoxycholate and synthetic FXR agonist GW4064 increased kininogen mRNA with a maximum induction of 8-10-fold. A more robust induction of kininogen expression was observed in HepG2 cells, where kininogen mRNA was increased by chenodeoxycholate or GW4064 up to 130-140-fold as shown by real time PCR. Northern blot analysis confirmed the up-regulation of kininogen expression by FXR agonists. To determine whether kininogen is a direct target of FXR, we examined the sequence of the kininogen promoter and identified a highly conserved FXR response element (inverted repeat, IR-1) in the proximity of the kininogen promoter (-66/-54). FXR/RXRalpha heterodimers specifically bind to this IR-1. A construct of a minimal promoter with the luciferase reporter containing this IR-1 was transactivated by FXR. Deletion or mutation of this IR-1 abolished FXR-mediated promoter activation, indicating that this IR-1 element is responsible for the promoter transactivation by FXR. We conclude that kininogen is a novel and direct target of FXR, and bile acids may play a role in the vasodilation and anti-coagulation processes.  相似文献   

13.
14.
The primary bile acid receptor farnesoid X receptor (FXR) maintains lipid and glucose homeostasis by regulating expression of numerous bile acid-responsive genes, including an orphan nuclear receptor and metabolic regulator SHP. Using SHP as a model gene, we studied how FXR activity is regulated by p300 acetylase. FXR interaction with p300 and their recruitment to the SHP promoter and acetylated histone levels at the promoter were increased by FXR agonists in mouse liver and HepG2 cells. In contrast, p300 recruitment and acetylated histones at the promoter were not detected in FXR-null mice. p300 directly interacted with and acetylated FXR in vitro. Overexpression of p300 wild type increased, whereas a catalytically inactive p300 mutant decreased, acetylated FXR levels and FXR transactivation in cells. While similar results were observed with a related acetylase, CBP, GCN5 did not enhance FXR transactivation, and its recruitment to the promoter was not increased by FXR agonists, suggesting functional specificity of acetylases in FXR signaling. Down-regulation of p300 by siRNA decreased acetylated FXR and acetylated histone levels, and occupancy of FXR at the promoter, resulting in substantial inhibition of SHP expression. These results indicate that p300 acts as a critical coactivator of FXR induction of SHP by acetylating histones at the promoter and FXR itself. Surprisingly, p300 down-regulation altered expression of other metabolic FXR target genes involved in lipoprotein and glucose metabolism, such that beneficial lipid and glucose profiles would be expected. These unexpected findings suggest that inhibition of hepatic p300 activity may be beneficial for treating metabolic diseases.  相似文献   

15.
16.
17.
Dehydroepiandrosterone sulfotransferase (STD) is a hydroxysteroid sulfo-conjugating enzyme with preferential substrate specificity for C-19 androgenic steroids and C-24 bile acids. STD is primarily expressed in the liver, intestine and adrenal cortex. Earlier studies have shown that androgens inhibit the rat Std promoter function through a negative androgen response region located between -235 and -310 base pair positions (Song, C. S., Jung, M. H., Kim, S. C., Hassan, T., Roy, A. K., and Chatterjee, B. (1998) J. Biol. Chem. 273, 21856-21866). Here we report that the primary bile acid chenodeoxycholic acid (CDCA) also acts as an important regulator of the Std gene promoter. CDCA is a potent inducer of the Std gene, and its inducing effect is mediated through the bile acid-activated farnesoid X receptor (FXR), a recently characterized member of the nuclear receptor superfamily. The ligand-activated FXR acts as a heterodimer with the 9-cis-retinoic acid receptor (RXR) and regulates the Std gene by binding to an upstream region at base pair positions -169 to -193. This specific binding region was initially identified by bile acid responsiveness of the progressively deleted forms of the Std promoter in transfected HepG2 hepatoma and enterocyte-like Caco-2 cells. Subsequently, the precise RXR/FXR binding position was established by protein-DNA interaction using in vitro footprinting and electrophoretic mobility shift analyses. Unlike all other previously characterized FXR target genes, which contain an inverted repeat (IR) of the consensus hexanucleotide half-site (A/G)G(G/T)TCA with a single nucleotide spacer (IR-1), the bile acid response element of the Std promoter does not contain any spacer between the two hexanucleotide repeats (IR-0). A promoter-reporter construct carrying three tandem copies of the IR-0 containing -169/-193 element, linked to a minimal thymidine kinase promoter, can be stimulated more than 70-fold in transfected Caco-2 cells upon CDCA treatment. Autoregulation of the STD gene by its bile acid substrate may provide an important contributing role in the enterohepatic bile acid metabolism and cholesterol homeostasis.  相似文献   

18.
19.
The farnesoid X receptor (FXR) is a bile acid/alcohol-activated nuclear receptor that regulates lipid homeostasis. Unlike other steroid receptors, FXR binds bile acids in an orientation that allows the steroid nucleus A ring to face helix 12 in the receptor, a crucial domain for coactivator-recruitment. Because most naturally occurring bile acids and alcohols contain a cis-oriented A ring, which is distinct from that of other steroids and cholesterol metabolites, we investigated the role of this 5beta-configuration in FXR activation. The results showed that the 5beta-(A/B cis) bile alcohols 5beta-cyprinol and bufol are potent FXR agonists, whereas their 5alpha-(A/B trans) counterparts antagonize FXR transactivation and target gene expression. Both isomers bound to FXR, but their ability to induce coactivator-recruitment and thereby induce transactivation differed. These findings suggest a critical role for the A-ring orientation of bile salts in agonist/antagonist function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号