首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human genes coding for pLG72 and d-amino acid oxidase have recently been linked to the onset of schizophrenia. pLG72 was proposed as an activator of the human FAD-containing flavoprotein d-amino acid oxidase (hDAAO). In the brain this oxidizes d-serine, a potent activator of N-methyl-d-aspartate receptor. We have investigated the mechanistic regulation of hDAAO by pLG72. Immunohistochemical analyses revealed that hDAAO and pLG72 are both expressed in astrocytes of the human cortex, where they most likely interact, considering their partial overlapping subcellular distribution and their coimmunoprecipitation. We demonstrated that the specific in vitro interaction of the two proteins yields a complex composed of 2 hDAAO homodimers and 2 pLG72 molecules. Binding of pLG72 did not affect the kinetic properties and FAD binding ability of hDAAO; instead, a time-dependent loss of hDAAO activity in the presence of an excess of pLG72 was found. The binding affects the tertiary structure of hDAAO, altering the amount of the active form. We finally demonstrated that overexpression of hDAAO in glioblastoma cells decreases the levels of d-serine, an effect that is null when pLG72 is coexpressed. These data indicate that pLG72 acts as a negative effector of hDAAO. Therefore, a decrease in the synaptic concentration of d-serine as the result of an anomalous increase in hDAAO activity related to hypoexpression of pLG72 may represent a molecular mechanism by which hDAAO and pLG72 are involved in schizophrenia susceptibility.  相似文献   

2.
A simple and rapid technique for the determination of the d-amino acids which are oxidized by d-amino acid oxidase has been presented. This method involves an oxidation of d-amino acids with d-amino acid oxidase in the presence of catalase, and the spectrophotometric determination of the resultant α-keto acids with MBTH. The additions of l-amino acids have no influence on the quantitative estimation of d-amino acids. The method is suitable for the assay of d-amino acids in the presence of the l isomers, and is also applicable for the determination of d-amino acid oxidase activity.  相似文献   

3.
Glycine oxidase (GO) is a homotetrameric flavoenzyme that contains one molecule of non-covalently bound flavin adenine dinucleotide per 47 kDa protein monomer. GO is active on various amines (sarcosine, N-ethylglycine, glycine) and d-amino acids (d-alanine, d-proline). The products of GO reaction with various substrates have been determined, and it has been clearly shown that GO catalyzes the oxidative deamination of primary and secondary amines, a reaction similar to that of d-amino acid oxidase, although its sequence homology is higher with enzymes such as sarcosine oxidase and N-methyltryptophane oxidase. GO shows properties that are characteristic of the oxidase class of flavoproteins: it stabilizes the anionic flavin semiquinone and forms a reversible covalent flavin-sulfite complex. The approximately 300 mV separation between the two FAD redox potentials is in accordance with the high amount of the anionic semiquinone formed on photoreduction. GO can be distinguished from d-amino acid oxidase by its low catalytic efficiency and high apparent K(m) value for d-alanine. A number of active site ligands have been identified; the tightest binding is observed with glycolate, which acts as a competitive inhibitor with respect to sarcosine. The presence of a carboxylic group and an amino group on the substrate molecule is not mandatory for binding and catalysis.  相似文献   

4.
The selected thermotolerant, lactose-utilizing yeast strain Kluyveromyces marxianus NBIMCC 8362 possesses high specific d-amino acid oxidase activity (60Ug(-1)), which was increased nine-fold (545Ug(-1)) by design of the growth medium and conditions for d-amino oxidase induction. Applying an optimized simple and rapid procedure for chemical permeabilization of K. marxianus cells with the cationic detergent cetyltrimethylammonium bromide, the enzyme activities (d-amino acid oxidase and catalase) of the cells have been further increased for up to 43- and 58-fold, respectively. However, the enzyme activities of the permeabilized cells decreased rapidly due to the leakage of the enzymes. Treating the permeabilized cells with 0.1% glutaraldehyde at 4°C for 10min stabilized the enzyme in the cells and prevented their outflow. The process is stable for 10 cycles and the productivity measured was 16.6mmmoll(-1)h(-1). The d-alanine transformation efficiency of K. marxianus permeabilized and GA entrapted cells was 98%.  相似文献   

5.
Induction of the d-amino acid oxidase (EC. 1.4.3.3) from the yeast Trigonopsis variabilis was investigated by using a minimal medium containing glucose as the carbon and energy source, (NH(inf4))(inf2)SO(inf4) as the nitrogen source, and various d- and dl-amino acid derivatives as inducers. The best new inducers found were N-carbamoyl-d-alanine, N-acetyl-d-tryptophan, and N-chloroacetyl-d-(alpha)-aminobutyric acid; when the induction effects of these compounds were compared with the effects of d-alanine as the nitrogen source and inducer, the resulting activities of d-amino acid oxidase per gram of dried yeast were 4.2, 2.1, and 1.5 times higher, respectively. The optimum concentration of the best inducer, N-carbamoyl-d-alanine, was 5 mM. This inducer could also be used in its racemic form. The induction was pH dependent. After cultivation of the yeast in a 50-liter bioreactor, d-amino acid oxidase activity of about 3,850 (mu)kat (231,000 U) was obtained. In addition, production of the d-amino acid oxidase was found to be significantly dependent on the metal salt composition of the medium. Addition of zinc ions was required to obtain high d-amino acid oxidase levels in the cells. The optimum concentration of ZnSO(inf4) was about 140 (mu)M.  相似文献   

6.
7.
A new procedure for the assay of d-amino acid oxidase activity has been developed. α-Ketoisovaleric acid, derived from d-valine, was estimated by high-performance liquid chromatography after reaction with o-phenylenediamine to give the corresponding quinoxalinol derivative. α-Ketovaleric acid was used as an internal standard to ensure the reproducibility of the method. As an example of application, kidney cortex homogenates were analyzed for their d-amino acid oxidase activity. The advantages of the presented procedure for the determination of the enzymatic activity in biological samples compared with previously reported procedures are discussed.  相似文献   

8.
3-Amino 1,2,4-triazole inhibits catalase irreversibly in the presence of hydrogen peroxide produced by urate oxidase and d-amino acid oxidase. Linearity can be obtained between the inhibition of catalase and the activity of the oxidases. A few microunits urate oxidase and d-amino acid oxidase, corresponding to less than 1 μg frozen-dried rat liver and kidney, respectively, can be determined by the simple assay of the remaining catalatic activity.  相似文献   

9.
Considering the key role of d-serine in N-methyl-d-aspartate receptor-mediated neurotransmission, it is highly relevant to define the role that enzymes play in d-serine synthesis and degradation. In particular, the details of regulation of the d-serine catabolic human enzyme d-amino acid oxidase (hDAAO) are unknown although different lines of evidence have shown it to be involved in schizophrenia susceptibility. Here we investigated the effect of three single nucleotide polymorphisms and known mutations in hDAAO, i.e., D31H, R279A, and G331V. A very low amount of soluble G331V hDAAO is produced in E. coli cells: the recombinant variant enzyme is fully active. Human U87 glioblastoma cells transiently transfected for G331V hDAAO show a low viability, a significant amount of protein aggregates, and augmented apoptosis. The recombinant D31H and R279A hDAAO variants do not show alterations in tertiary and quaternary structures, thermal stability, binding affinity for inhibitors, and the modulator pLG72, whereas the kinetic efficiency and the affinity for d-serine and for FAD were higher than for the wild-type enzyme. While these effects for the substitution at position 31 cannot be structurally explained, the R279A mutation might affect the hDAAO FAD-binding affinity by altering the “structurally ambivalent” peptide V47–L51. In agreement with the observed increased activity, expression of D31H and R279A hDAAO variants in U87 cells produces a higher decrease in cellular d/(d + l) serine ratio than the wild-type counterpart. In vivo, these substitutions could affect cellular d-serine concentration and its release at synapsis and thus might be relevant for schizophrenia susceptibility.  相似文献   

10.
Oxidative modification of Trigonopsis variabilisd-amino acid oxidase in vivo is traceable as the conversion of Cys108 into a stable cysteine sulfinic acid, causing substantial loss of activity and thermostability of the enzyme. To simulate native and modified oxidase each as a microheterogeneity-resistant entity, we replaced Cys108 individually by a serine (C108S) and an aspartate (C108D), and characterized the purified variants with regard to their biochemical and kinetic properties, thermostability, and reactivity towards oxidation by hypochlorite. Tandem MS analysis of tryptic peptides derived from a hypochlorite-treated inactive preparation of recombinant wild-type oxidase showed that Cys108 was converted into cysteine sulfonic acid, mimicking the oxidative modification of native enzyme as isolated. Colorimetric titration of protein thiol groups revealed that in the presence of ammonium benzoate (0.12 mM), the two muteins were not oxidized at cysteines whereas in the wild-type enzyme, one thiol group was derivatized. Each site-directed replacement caused a conformational change in d-amino acid oxidase, detected with an assortment of probes, and resulted in a turnover number for the O2-dependent reaction with D-Met which in comparison with the corresponding wild-type value was decreased two- and threefold for C108S and C108D, respectively. Kinetic analysis of thermal denaturation at 50 °C was used to measure the relative contributions of partial unfolding and cofactor dissociation to the overall inactivation rate in each of the three enzymes. Unlike wild-type, C108S and C108D released the cofactor in a quasi-irreversible manner and were therefore not stabilized by external FAD against loss of activity. The results support a role of the anionic side chain of Cys108 in the fine-tuning of activity and stability of d-amino acid oxidase, explaining why C108S was a surprisingly poor mimic of the native enzyme.  相似文献   

11.
1. A sensitive fluorimetric procedure for the assay of d-amino acid oxidase has been developed. 2. The method depends on the formation of a fluorescent derivative, 2-hydroxy-3-methylquinoxaline, on condensation of pyruvate with o-phenylenediamine in acid medium. 3. 2-Hydroxy-3-methylquinoxaline fluoresces strongly in 50% (v/v) sulphuric acid after excitation at 375mmu. A single emission peak is observed at 480mmu. 4. Formation of the quinoxaline is dependent on time, temperature, acidity and relative concentration of reactants. 5. A particulate preparation from mouse kidney required FAD for optimum activity at pH8.5; K(m) was 3.8x10(-3)m; K(FAD) was 1.4x10(-7)m and the reaction was strongly inhibited by p-chloromercuribenzoate and phenylmercuric acetate. 6. Subcellular fractionation on a sucrose density gradient confirmed that the d-amino acid oxidase was localized on small granules.  相似文献   

12.
A new method of colorimetric determination of d-amino acid oxidase and urate oxidase using catalase and 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole is reported. This method is based on the combination of two steps of enzyme reactions and colorimetric procedure. The values obtained by this method are satisfactorily correlated with those obtained by the dinitrophenylhydrazine method for d-amino acid oxidase activity and the ultraviolet method for urate oxidase activity and showed good reproducibility and accuracy. It is considered that the method can be useful as a method of activity determination for studying enzyme kinetics and the reaction mechanism.  相似文献   

13.
The reactivities of anionic nitroalkanes with 2-nitropropane dioxygenase of Hansenula mrakii, glucose oxidase of Aspergillus niger, and mammalian d-amino acid oxidase have been compared kinetically. 2-Nitropropane dioxygenase is 1200 and 4800 times more active with anionic 2-nitropropane than d-amino acid oxidase and glucose oxidase, respectively. The apparent Km values for anionic 2-nitropropane are as follows: 2-nitropropane dioxygenase, 1.61 mm; glucose oxidase, 16.7 mm; and d-amino acid oxidase, 11.1 mm. Anionic 2-nitropropane undergoes an oxygenase reaction with 2-nitropropane dioxygenase and glucose oxidase, and an oxidase reaction with d-amino acid oxidase. In contrast, anionic nitroethane is oxidized through an oxygenase reaction by 2-nitropropane dioxygenase, and through an oxidase reaction by glucose oxidase. All nitroalkane oxidations by these three flavoenzymes are inhibited by Cu and Zn-superoxide dismutase of bovine blood, Mn-superoxide dismutases of bacilli, Fe-superoxide dismutase of Serratia marcescens, and other O2? scavengers such as cytochrome c and NADH, but are not affected by hydroxyl radical scavengers such as mannitol. None of the O2? scavengers tested affected the inherent substrate oxidation by glucose oxidase and d-amino acid oxidase. Furthermore, the generation of O2? in the oxidation of anionic 2-nitropropane by 2-nitropropane dioxygenase was revealed by ESR spectroscoy. The ESR spectrum of anionic 2-nitropropane plus 2-nitropropane dioxygenase shows signals at g1 = 2.007 and g11 = 2.051, which are characteristic of O2?. The O2? generated is a catalytically essential intermediate in the oxidation of anionic nitroalkanes by the enzymes.  相似文献   

14.
A simple, quick procedure for the isolation of pig kidney d-amino acid oxidase [EC 1.4.3.3; d-amino acid:oxygen oxidoreductase (deaminating)] is described based upon the use of granulated hydroxylapatite for chromatography. The purity appears to be comparable to that obtained by other procedures. The holoenzyme was isolated as the benzoate complex.  相似文献   

15.
d-amino acid oxidase is the prototype of flavin-dependent oxidases. The recent resolution of its 3D structure has provided an explanation for several of its properties and has led to a substantial revision of the mechanism of d-amino acid dehydrogenation, with significant implications for the general uderstanding of flavin-dependent catalysis  相似文献   

16.
《Biotechnology advances》2017,35(6):657-668
Enantiomerically pure amino acids are of increasing interest for the fine chemical, agrochemicals and pharmaceutical industries. During past years l-amino acids have been produced from deracemization of dl-solution employing the stereoselective flavoenzyme d-amino acid oxidase. On the other hand, the isolation of corresponding d-isomer was hampered by the scarce availability of a suitable l-amino acid oxidase activity. On this side, l-amino acid deaminase (LAAD), only present in the Proteus bacteria, represents a suitable alternative. This FAD-containing enzyme catalyzes the deamination of l-amino acids to the corresponding α-keto acids and ammonia, with no hydrogen peroxide production (a potentially dangerous oxidizing species) since the electrons of the reduced cofactor are transferred to a membrane-bound cytochrome. Very recently the structure of LAAD has been solved: in addition to a FAD-binding domain and to a substrate-binding domain, it also possesses an N-terminal putative transmembrane α-helix (residues 8–27, not present in the crystallized protein variant) and a small α + β subdomain (50–67 amino acids long, named “insertion module”) strictly interconnected to the substrate binding domain. Structural comparison showed that LAAD resembles the structure of several soluble amino acid oxidases, such as l-proline dehydrogenase, glycine oxidase or sarcosine oxidase, while only a limited structural similarity with d- or l-amino acid oxidase is apparent. In this review, we present an overview of the structural and biochemical properties of known LAADs and describe the advances that have been made in their biotechnological application also taking advantage from improved variants generated by protein engineering studies.  相似文献   

17.
The stereoconfiguration of amino acids, as determined by treatment with L-amino acid oxidase, d-amino acid oxidase and l-glutamate decarboxylase (containing l-aspartate decarboxylase activity), in the peptides from a mycobacillin-synthesizing cell-free system is identical with that of the growing mycobacillin peptide chaid if its synthesis starts from l-proline and is interrupted at various points by amino acid deprivation.  相似文献   

18.
Peroxisomes were purified from the nervous tissue of 14-day-old rats by means of a Nycodenz gradient. Peroxisomal enzymes exhibited different sedimentation patterns: dihydroxyacetone phosphate acyl-transferase equilibrates at 1.142 g/ml together with the first peak of catalase; palmitoyl-CoA oxidase and d-amino acid oxidase activities are mainly recovered at 1.154 g/ml; the second peak of catalase is found at 1.175 g/ml. Morphological and semi-quantitative analyses of immunogold-labelled peroxisomes reveal profound heterogeneity of the particles. Very small (=0.2 μm diameter), electron dense vesicles containing catalase or thiolase, but devoid of other tested enzymes, are preferentially found in the light region, together with larger (>0.2 <0.3 μm) and less electron dense palmitoyl-CoA oxidase-positive peroxisomes. At intermediate density (1.154 g/ml) peroxisomes of more uniform size (0.25–0.27 μm), containing palmitoyl-CoA oxidase or thiolase with or without catalase are preferentially found. This population extends toward the densest region of the gradient, where very large d-amino acid oxidase-containing peroxisomes are also found. In this region, smaller peroxisomes, often polymorphic, which are catalase- and thiolase-positive and d-amino acid oxidase/palmitoyl-CoA oxidase-negative, are also observed. The possibility that the heterogeneity of neural peroxisomes may reflect both cellular heterogeneity and ongoing peroxisomal biogenesis is discussed.  相似文献   

19.
Catalase-positive particles (diameter 0.1–0.3 μm) from Harder's gland of the rat were prepared by differential centrifugation. It was demonstrated that these particles do not contain the oxidases thought to be characteristic of peroxisomal systems (i.e. urate oxidase, d-amino acid oxidase, and α-hydroxy acid oxidase). Cytochemical DAB reaction was employed to demonstrate the organelles in the gland tissue and in subcellular fractions by electron microscopy.  相似文献   

20.
The preparation of flavin adenine dinucleotide-affinity columns employing glucose oxidase and d-amino acid oxidase covalently linked to Sepharose-4B is described. Both immobilized enzymes have very good long-term stabilities, retaining at least half of their original flavin adenine dinucleotide-binding capacity over 11 months. In both cases pure flavin adenine dinucleotide is obtained readily in good yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号