首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background. Gastric carcinoids are strongly associated with chronic atrophic gastritis A, and it is suggested that hypergastrinemia plays a critical role in development of gastric carcinoids. Since Helicobacter pylori infection causes hypergastrinemia, it is held that H. pylori infection produces gastric carcinoids. We followed the histological changes of H. pylori‐infected stomachs of Mongolian gerbils for a long time. Materials and Methods. Five‐week‐old‐male Mongolian gerbils were infected with H. pylori ATCC 43504 with cagA gene, expressing vacuolating cytotoxin. Determination of the serum gastrin and histopathological examination of the stomach at 6, 12, 18, and 24 months after H. pylori inoculation was studied and compared with uninfected animals . Results In infected animals, the gastric carcinomas appeared 18 and 24 months after infection. Endocrine cell dysplasias and carcinoids with marked atrophic gastritis of the oxyntic mucosa were observed in the infected animals 24 months after H. pylori inoculation. The serum gastrin level in the infected group increased from an average of 86.2 pg/ml at the beginning of the study to an average of 498 pg/ml and 989 pg/ml at 18 and 24 months after infection, respectively. These changes in the serum gastrin levels were significant compared with uninfected controls that showed no changes. Conclusions. H. pylori infection caused not only gastric carcinomas but also enterochromaffin‐like cell tumors in Mongolian gerbils, due to hypergastrinemia. This model is thought to be useful to study the relationship between hypergastrinemia and gastric carcinoids.  相似文献   

2.
Background. It is still a point of controversy whether Helicobacter pylori‐infected patients are more likely to develop mucosal damage while taking NSADIs. Selective cyclooxygenase (COX‐2) inhibitors may be associated with less severe gastric mucosal damage than conventional NSAIDs, but this association is undefined in H. pylori‐induced gastritis. The aim of this study was to evaluate the effects of selective COX‐2 and nonselective NSAIDs on H. pylori‐induced gastritis. Methods. After intragastric administration of indomethacin, NS‐398 or vehicle alone, once daily for 5 days in H. pylori‐infected and uninfected Mongolian gerbils, we evaluated gastric mucosal damage, inflammatory cell infiltration and prostaglandin E2 (PGE2) concentration. We investigated whether H. pylori infection induced the COX‐2 expression. Results. In H. pylori‐uninfected groups, the indomethacin‐treated group showed the highest mucosal damage score and the lowest PGE2 concentration. There was no difference in mucosal damage scores and PGE2 concentration between NS‐398 and vehicle‐alone treated group. In H. pylori‐infected groups, there was no difference in mucosal damage scores, irrespective of the type of drugs administered. The indomethacin‐treated group showed the lowest PGE2 concentration, similar to that of the NS‐398 and vehicle‐alone treated groups, both without H. pylori infection. Gastric neutrophil and monocyte infiltration scores were higher in H. pylori‐infected groups than in uninfected groups. However, there was no difference in these scores according to the type of drugs administered, within H. pylori‐infected or uninfected groups. COX‐2 protein expression was observed in H. pylori‐infected Mongolian gerbils but not in uninfected ones. Conclusions. Our animal study showed that H. pylori infection induced COX‐2 expression and increased prostaglandin concentration. Administration of NSAIDs decreased the prostaglandin concentration, but did not increase mucosal damage in H. pylori‐induced gastritis. Selective COX‐2 inhibitors, instead of conventional NSIADs, had no beneficial effect on preventing mucosal damage in H. pylori‐induced gastritis.  相似文献   

3.
Background. Mongolian gerbils are frequently used to study Helicobacter pylori‐induced gastritis and its consequences. The presence of an indigenous bacterial flora with suppressive effect on H. pylori may cause difficulties with establishing this experimental model. Aim. The aim of the present study was to determine bacterial profiles in the stomach of Mongolian gerbils with and without (controls) H. pylori infection. Methods. Gastric tissue from H. pylori ATCC 43504 and CCUG 17874 infected and control animals were subjected to microbial culturing and histology. In addition, gastric mucosal samples from H. pylori ATCC 43504 infected and control animals were analyzed for bacterial profiling by temporal temperature gradient gel electrophoresis (TTGE), cloning and pyrosequencing of 16S rDNA variable V3 region derived PCR amplicons. Results. Oral administration of H. pylori ATCC 43504, but not CCUG 17874, induced colonization and gastric inflammation in the stomach of Mongolian gerbils. Temporal temperature gradient gel electrophoresis (TTGE) and partial 16S rDNA pyrosequencing revealed the presence of DNA representing a mixed bacterial flora in the stomach of both H. pylori ATCC 43504 infected and control animals. In both cases, lactobacilli appeared to be dominant. Conclusion. These findings suggest that indigenous bacteria, particularly lactobacilli, may have an impact on the colonization and growth of H. pylori strains in the stomach of Mongolian gerbils.  相似文献   

4.
Background: Helicobacter pylori infection is a major cause of gastritis and gastric carcinoma. Aspirin has anti‐inflammatory and antineoplastic activity. The aim of the present study was to determine the effects of aspirin on H. pylori‐induced gastritis and the development of heterotopic proliferative glands. Methods: H. pylori strain SS1 was inoculated into the stomachs of Mongolian gerbils. Two weeks after inoculation, the animals were fed with the powder diets containing 0 p.p.m. (n = 10), 150 p.p.m. (n = 10), or 500 p.p.m. (n = 10) aspirin. Mongolian gerbils were killed after 36 weeks of infection. Uninfected Mongolian gerbils (n = 10) were used as controls. Histologic changes, epithelial cell proliferation and apoptosis, and prostaglandin E2 (PGE2) levels of gastric tissue were determined. Results: H. pylori infection induced gastric inflammation. Administration of aspirin did not change H. pylori‐induced gastritis, but alleviated H. pylori‐induced hyperplasia and the development of heterotopic proliferative glands. Administration of aspirin accelerated H. pylori‐associated apoptosis but decreased H. pylori‐associated cell proliferation. In addition, the increased gastric PGE2 levels due to H. pylori infection were suppressed by treatment with aspirin, especially at the dose of 500 p.p.m. Conclusions: Aspirin alleviates H. pylori‐induced hyperplasia and the development of heterotopic proliferative glands. Moreover, aspirin increases H. pylori‐induced apoptosis. We demonstrated the antineoplastic activities of aspirin in H. pylori‐related gastric carcinogenesis.  相似文献   

5.
Helicobacter pylori infection has been reported to induce various mucosal changes, including gastric adenocarcinoma, in Mongolian gerbils 62 weeks after inoculation. Using Mongolian gerbils, this study examined whether or not eradication of the bacteria with drugs at specified times after infection prevents the development of mucosal changes. After orally inoculating with H. pylori (TN2GF4, vacA- and cagA-positive), the animals were killed 18 months later. Four or 8 months after H. pylori inoculation, eradication was performed by concurrent treatment with omeprazole+clarithromycin. Immediately after treatment ended, in both the 5 and 9 month groups, it was verified that H. pylori was completely eradicated. Autopsy performed 18 months after H. pylori inoculation revealed gastric hyperplastic polyps with erosive lesions and ulcers that were grossly visible in the non-treated control group. In addition, atrophic gastritis, intestinal metaplasia, carcinoids, and adenocarcinomas were histologically observed in the animals. In animals eradicated after 4 months and autopsied after 18 months, however, such mucosal changes were not observed. In contrast, intestinal metaplasia and mucosal atrophy was observed in animals eradicated after 8 months and autopsied after 18 months. It was concluded that early eradication of H. pylori infection with drug therapy can prevent severe gastric mucosal changes, to include adenocarcinomas, in Mongolian gerbils.  相似文献   

6.
Background. Recently, the acquisition by Helicobacter pylori of resistance to antibiotics has become a serious problem. Therefore, nonantibiotic substances are required to diminish H. pylori‐induced gastric lesions. In the present study, the effects of Cladosiphon fucoidan were examined in terms of H. pylori attachment to porcine gastric mucin in vitro and Helicobacter pylori‐induced gastritis in vivo. Methods. The inhibitory effect of Cladosiphon fucoidan and other polysaccharides on H. pylori attachment to porcine gastric mucin was assayed in vitro with mucin‐coated microtiter plates. The effect of Cladosiphon fucoidan on H. pylori‐induced gastritis was examined in vivo using Mongolian gerbils. H. pylori‐inoculated gerbils were given fucoidan in drinking water. Six weeks after H. pylori‐inoculation, gerbils were sacrificed for macroscopic and microscopic examination of gastric lesions and counting of viable H. pylori in the gastric mucosa. Results. Cladosiphon fucoidan inhibited the H. pylori attachment to porcine gastric mucin at pH 2.0 and 4.0. Two other sulfated polysaccharides, Fucus fucoidan and dextran sulfate sodium, also inhibited the attachment but only at pH 2.0. Inhibitory effects of these three sulfated polysaccharides were not observed at pH 7.2 and nonsulfated polysaccharides, such as mannan and dextran, exerted no influence at any pH. In the in vivo experiment, the H. pylori‐induced gastritis and the prevalence of H. pylori infected animals were markedly reduced by fucoidan in a dose‐dependent manner, at doses of 0.05 and 0.5% in the drinking water. Conclusion. Cladosiphon fucoidan may deserve particular attention as a safe agent that can prevent H. pylori infection and reduce the risk of associated gastric cancer.  相似文献   

7.
Yin YN  Wang CL  Liu XW  Cui Y  Xie N  Yu QF  Li FJ  Lu FG 《Helicobacter》2011,16(5):389-397
Background: Long‐term Helicobacter pylori infection leads to chronic gastritis, peptic ulcer, and gastric malignancies. Indigenous microflora in alimentary tract maintains a colonization barrier against pathogenic microorganisms. This study is aimed to observe the gastric and duodenum microflora alteration after H. pylori infection in Mongolian Gerbils model. Materials and Methods: A total of 18 Mongolian gerbils were randomly divided into two groups: control group and H. pylori group that were given H. pylori NCTC J99 strain intragastrically. After 12 weeks, H. pylori colonization was identified by rapid urease tests and bacterial culture. Indigenous microorganisms in stomach and duodenum were analyzed by culture method. Histopathologic examination of gastric and duodenum mucosa was also performed. Results: Three of eight gerbils had positive H. pylori colonization. After H. pylori infection, Enterococcus spp. and Staphylococcus aureus showed occurrences in stomach and duodenum. Lactobacillus spp. showed a down trend in stomach. The levels and localizations of Bifidobacterium spp., Bacteroides spp., and total aerobes were also modified. Bacteroides spp. significantly increased in H. pylori positive gerbils. No Enterobacteriaceae were detected. Positive colonization gerbils showed a higher histopathologic score of gastritis and a similar score of duodenitis. Conclusions: Long‐term H. pylori colonization affected the distribution and numbers of indigenous microflora in stomach and duodenum. Successful colonization caused a more severe gastritis. Gastric microenvironment may be unfit for lactobacilli fertility after long‐term H. pylori infection, while enterococci, S. aureus, bifidobacteria, and bacteroides showed their adaptations.  相似文献   

8.
9.
10.
Background. Two types of mucous cell are present in gastric mucosa: surface mucous cells (SMCs) and gland mucous cells (GMCs), which consist of cardiac gland cells, mucous neck cells, and pyloric gland cells. We have previously reported that the patterns of glycosylation of SMC mucins are reversibly altered by Helicobacter pylori infection. In this study, we evaluated the effects of H. pylori infection on the expression of GMC mucins in pyloric gland cells. Methods. Gastric biopsy specimens from the antrums of 30 H. pylori‐infected patients before and after eradication of H. pylori and 10 normal uninfected volunteers were examined by immunostaining for MUC6 (a core protein of GMC mucins), α1,4‐N‐acetyl‐glucosaminyl transferase (α4GnT) (the glycosyltransferase which forms GlcNAcα1‐4Galβ‐R), and GlcNAcα1‐4Galβ‐R (a GMC mucin‐specific glycan). Results. MUC6, α4GnT, and HIK1083‐reactive glycan were expressed in the cytoplasm, supranuclear region, and secretory granules in pyloric gland cells, respectively. The immunoreactivity of MUC6 and α4GnT, but not of GlcNAcα1‐4Galβ‐R, in the pyloric gland increased in H. pylori‐associated gastritis, and after the eradication of H. pylori, the increased expression of MUC6 and α4GnT in the gastric mucosa of H. pylori‐infected patients decreased to almost normal levels. This up‐regulation was correlated with the degree of inflammation. Conclusions. In addition to the synthesis of GMC mucins increasing reversibly, their metabolism or release may also increase reversibly in H. pylori‐associated gastritis. The up‐regulation of the expression of gastric GMC mucins may be involved in defense against H. pylori infection in the gastric surface mucous gel layer and on the gastric mucosa.  相似文献   

11.
Amu‐ru 7, a Mongolian folk medicine, is used to treat digestive diseases such as gastritis and gastric and duodenal ulcers. We examined the effect of Amu‐ru 7 on the growth and viability of Helicobacter pylori in vivo and in vitro. By the agar dilution method, the MIC of Amu‐ru 7 for H. pylori strains was shown to be 100–200 μg/mL with a MIC90 of 200 μg/mL. Two hundred micrograms per milliliter of Amu‐ru 7 exhibited potent bactericidal activity against H. pylori in the stationary phase of growth 6 hr after treatment. Amu‐ru 7 inhibited the growth of both AMPC‐resistant and CAM‐resistant strains, and also had a combined effect with AMPC on AMPC‐resistant strain 403. The Amu‐ru 7 inhibited biofilm formation by H. pylori and induced morphological changes, such as bleb‐like formation and shortening of the cell. Although colonization of the stomach of the Mongolian gerbil by H. pylori was not cured by treatment with Amu‐ru 7, both the mean number of H. pylori colonized and the colonization rate were decreased in Amu‐ru 7 treated gerbils. These results suggest the effectiveness Amu‐ru 7 as an adjunct therapy for eradication therapies consisting of a PPI combined with antibiotics.  相似文献   

12.
FK506 and dexamethasone were used to investigate whether or not immunosuppression affects H. pylori colonization and gastric mucosal damage induced by Helicobacter pylori in Mongolian gerbils. Two weeks after H. pylori infection, FK506 and dexamethasone or vehicle alone were subcutaneously administered once daily for the following 2 weeks. FK506 or vehicle alone was administered subcutaneously once daily for 5 weeks (1 week before and 4 weeks after infection). In H. pylori-infected animals for 4 weeks, hemorrhagic erosions and inflammatory responses (neutrophil infiltration and lymphoid follicle formation) were induced in gastric mucosa at an incidence of 100%. Both FK506 and dexamethasone administered for 2 weeks markedly reduced such mucosal changes. In these animals, H. pylori viability in the stomach was significantly elevated. FK506 administered for 5 weeks also significantly inhibited the hemorrhagic erosions, edema and neutrophil infiltration in the stomach. H. pylori viability was slightly elevated as compared with the control. It was concluded that the host immune responses might play dual roles both by deteriorating gastritis induced by H. pylori and by protecting against H. pylori infection in its early stage.  相似文献   

13.
Background. In the Helicobacter pylori‐negative normal stomach, collecting venules are visible in the gastric corpus as numerous minute points. This finding has been termed ‘regular arrangement of collecting venules’ (RAC). The aim of the present study was to investigate the reliability of the presence of the RAC pattern for discrimination of normal gastric mucosa from H. pylori gastritis in pediatric patients. Methods. Fifty‐two consecutive children, adolescents and young adults (male:female 24 : 28; median age 15 years, range 8–29 years) referred for endoscopy and assessed for H. pylori infection were prospectively studied. The lower lesser curvature of the corpus near the incisura was evaluated for the RAC pattern using a standard endoscope with the tip close to, but not in contact with, the gastric surface. Gastric biopsies were taken after the endoscopic observation. Results. In all the 29 RAC‐positive patients, active H. pylori gastritis was absent, whereas H. pylori gastritis was found in 20 of 23 RAC‐negative patients (86.9%). Conclusions. Identification of the RAC pattern at the lower lesser curvature of the corpus using close observation with a standard endoscope proved to be an effective and practical marker to discriminate normal histology from H. pylori gastritis among both children and young adults. Absence of the RAC pattern should prompt gastric mucosal biopsies despite otherwise normal‐appearing gastric mucosa.  相似文献   

14.
Background. Helicobacter pylori is the main cause of gastritis and a primary carcinogen. The aim of this study was to assess oxidative damage in mucosal compartments of gastric mucosa in H. pylori positive and negative atrophic and nonatrophic gastritis. Materials and methods. Five groups of 10 patients each were identified according to H. pylori positive or negative chronic atrophic (Hp‐CAG and CAG, respectively) and nonatrophic gastritis (Hp‐CG and CG, respectively), and H. pylori negative normal mucosa (controls). Oxidative damage was evaluated by nitrotyrosine immunohistochemistry in the whole mucosa and in each compartment at baseline and at 2 and 12 months after eradication. Types of intestinal metaplasia were classified by histochemistry. Results. Total nitrotyrosine levels appeared significantly higher in H. pylori positive than in negative patients, and in Hp‐CAG than in Hp‐CG (p < .001); no differences were found between H. pylori negative gastritis and normal mucosa. Nitrotyrosine were found in foveolae and intestinal metaplasia only in Hp‐CAG. At 12 months after H. pylori eradication, total nitrotyrosine levels showed a trend toward a decrease in Hp‐CG and decreased significantly in Hp‐CAG (p = .002), disappearing from the foveolae (p = .002), but remaining unchanged in intestinal metaplasia. Type I and II of intestinal metaplasia were present with the same prevalence in Hp‐CAG and CAG, and did not change after H. pylori eradication. Conclusions. Oxidative damage of the gastric mucosa increases from Hp‐CG to Hp‐CAG, involving the foveolae and intestinal metaplasia. H. pylori eradication induces a complete healing of foveolae but not of intestinal metaplasia, reducing the overall oxidative damage in the mucosa.  相似文献   

15.
Background. The impact of H. pylori infection on gastric mucosal blood flow and NSAID‐induced gastric damage is unclear. Aim. To study the effects of H. pylori infection on gastric mucosal blood flow, both at basal conditions and after NSAID exposure, and its relation with mucosal damage and nitric oxide production. Methods. Gastric mucosal blood flow, nitric oxide production and gastric damage were assessed in time after H. pylori SS1 or E. coli inoculation in mice. Experiments were conducted in basal conditions or after oral exposure to indomethacin (20 mg/kg). Results. H. pylori infected mice exhibited a significant increase in gastric blood flow and gastric nitric oxide production 1 week after infection, but those parameters returned to basal levels by 4 weeks. NSAID challenge elicited a similar reduction in gastric blood flow [25–35%] in H. pylori‐infected and control animals. However, only 1 week H. pylori‐infected mice, which exhibited a significant baseline hyperemia, were able to maintain gastric blood flow values within the normal range after NSAID exposure. NSAID‐induced gastric damage was increased in H. pylori‐infected mice by 4 weeks, but not 1 week after infection. Conclusions. Underlying H. pylori infection aggravates acute NSAID‐induced gastric damage. However, at early phases, gastric hyperemia associated with increased nitric oxide production may exert some protective role.  相似文献   

16.
Shin CM  Kim N  Jung Y  Park JH  Kang GH  Park WY  Kim JS  Jung HC  Song IS 《Helicobacter》2011,16(3):179-188
Background and Aims: To determine genome‐wide DNA methylation profiles induced by Helicobacter pylori (H. pylori) infection and to identify methylation markers in H. pylori‐induced gastric carcinogenesis. Methods: Gastric mucosae obtained from controls (n = 20) and patients with gastric cancer (n = 28) were included. A wide panel of CpG sites in cancer‐related genes (1505 CpG sites in 807 genes) was analyzed using Illumina bead array technology. Validation of the results of Illumina bead array technique was performed using methylation‐specific PCR method for four genes (MOS, DCC, CRK, and PTPN6). Results: The Illumina bead array showed that a total of 359 CpG sites (269 genes) were identified as differentially methylated by H. pylori infection (p < .0001). The correlation between methylation‐specific PCR and bead array analysis was significant (p < .0001, Spearman coefficient = 0.5054). Methylation profiles in noncancerous gastric mucosae of the patients with gastric cancer showed quite distinct patterns according to the presence or absence of the current H. pylori infection; however, 10 CpG sites were identified to be hypermethylated and three hypomethylated in association with the presence of gastric cancer regardless of H. pylori infection (p < .01). Conclusions: Genome‐wide methylation profiles showed a number of genes differentially methylated by H. pylori infection. Methylation profiles in noncancerous gastric mucosae from the patients with gastric cancer can be affected by H. pylori‐induced gastritis. Differentially methylated CpG sites in this study needs to be validated in a larger population using quantitative methylation‐specific PCR method.  相似文献   

17.
The effects of Lactobacillus johnsonii La1 (LC1) on Helicobacter pylori colonization in the stomach were investigated. H. pylori colonization and gastritis in LC1-inoculated Mongolian gerbils were significantly less intense than those in the control animals. LC1 culture supernatant (>10-kDa fraction) inhibited H. pylori motility and induced bacterial aggregation in human gastric epithelial cells, suggesting the potential of clinical use of LC1 product.  相似文献   

18.
Effects of a novel zinc compound (polaprezinc), N-(3-aminopropionyl)-L-histidinato zinc, on the mucosal ulcerogenic and healing impairing responses induced by monochloramine (NH2Cl) were examined in rat stomach. Oral administration of NH2Cl (> 60 mM) produced severe hemorrhagic lesions in unanesthetized rat stomachs with a marked increase of thiobarbituric acid reactants (TBAR). Pretreatment of the animals with polaprezinc (3 approximately 30 mg/kg, p.o.) showed a dose-dependent inhibition against gastric ulcerogenic and TBAR responses induced by NH2Cl (120 mM). Likewise, mucosal exposure to NH4OH (60 mM) in urethane anesthetized stomachs made ischemic by bleeding from the carotid artery (1 ml per 100 g body w.t.) resulted in severe gastric lesions. This ulcerogenic response caused NH4OH plus ischemia was also attenuated by prior application of polaprezinc as well as taurine (25 mg/ml, 1 ml). On the other hand, the healing of gastric mucosal lesions induced by NH2Cl occurred more slowly than of ethanol-induced lesions, and the latter was significantly delayed by the repeated administration of NH2Cl. Polaprezinc (> 10 mg/kg, p.o.) given twice daily for 7 days not only accelerated the healing of NH2Cl-induced gastric lesions but also antagonized the delayed healing of ethanol-induced lesions in the presence of NH2Cl as well. Polaprezinc showed a scavenging action against NH2Cl in vitro. These results suggest that NH2Cl caused deleterious action on the healing of pre-existing acute lesions as well as irritating action to the mucosa in the rat stomach. Polaprezinc not only protects the stomach against injury caused by NH2Cl but also promotes healing of NH2Cl-induced gastric lesions as well as the delayed healing of ethanol-induced lesions caused by NH2Cl. Although the detailed mechanisms underlying these actions of polaprezinc remain unknown, they may be partly attributable to a scavenging action of this agent against NH2Cl.  相似文献   

19.
Background. Helicobacter pylori infection causes chronic gastritis and results in increased serum concentrations of pepsinogens I and II as well as gastrin, while the ratio of pepsinogen I to II (I : II) is decreased. Inducible nitric oxide synthase (iNOS) is induced in H. pylori‐associated gastritis and may modulate inflammation. However serum nitrate and nitrite (NOx) concentrations in patients with H. pylori‐induced chronic gastritis have not been reported. We examined differences in serum NOx between H. pylori‐negative and positive volunteers relative to differences in pepsinogens and gastrin. Materials and methods. Sera from 80 healthy asymptomatic volunteers younger than 36 years were analyzed for anti‐H. pylori antibody, NOx, gastrin and pepsinogens. Results. In H. pylori antibody‐positive subjects serum NOx concentrations were higher than in negative subjects (p < .005). In H. pylori‐negative subjects, NOx correlated with pepsinogen II (r = .405, p < .05). In subjects with low pepsinogen I or II, NOx was higher in H. pylori‐positive than negative subjects (p < .001). In subjects with high pepsinogen I : II (6 or higher), serum NOx was higher in H. pylori‐positive than in negative subjects. Conclusions. H. pylori‐induced gastritis increases serum NOx concentrations more prominently than those of pepsinogen. In H. pylori‐negative subjects, serum correlates with serum pepsinogen II.  相似文献   

20.
Background. The role of teprenone in Helicobacter pylori‐associated gastritis has yet to be determined. To investigate the effect of teprenone on inflammatory cell infiltration, and on H. pylori colonization of the gastric mucosa in H. pylori‐infected patients, we first compared the effect of teprenone with that of both histamine H2 receptor antagonists (H2‐RA) and sucralfate on the histological scores of H. pylori gastritis. We then examined its in vitro effect on H. pylori‐induced interleukin (IL)‐8 production in MKN28 gastric epithelial cells. Materials and Methods. A total of 68 patients were divided into three groups, each group undergoing a 3‐month treatment with either teprenone (150 mg/day), H2‐RA (nizatidine, 300 mg/day), or sucralfate (3 g/day). All subjects underwent endoscopic examination of the stomach before and after treatment. IL‐8 production in MKN28 gastric epithelial cells was measured by enzyme‐linked immunosorbent assay (ELISA). Results. Following treatment, the teprenone group showed a significant decrease in both neutrophil infiltration and H. pylori density of the corpus (before vs. after: 2.49 ± 0.22 vs. 2.15 ± 0.23, p = .009; 2.36 ± 0.25 vs. 2.00 ± 0.24, p = .035, respectively), with no significant differences seen in either the sucralfate or H2‐RA groups. Teprenone inhibited H. pylori‐enhanced IL‐8 production in MKN28 gastric epithelial cells in vitro, in a dose‐dependent manner. Conclusions. Teprenone may modify corpus H. pylori‐associated gastritis through its effect on neutrophil infiltration and H. pylori density, in part by its inhibition of IL‐8 production in the gastric mucosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号