首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Signaling through the B cell Ag receptor (BCR) is a key determinant in the regulation of B cell physiology. Depending on additional factors, such as microenvironment and developmental stage, ligation of the BCR can trigger B lymphocyte activation, proliferation, or apoptosis. The regulatory mechanisms determining B cell apoptosis and survival are not known. Using the chicken B lymphoma cell line DT40 as a model system, we investigated the role of the serine/threonine kinase Akt in B cell activation. While parental DT40 cells undergo apoptosis in response to BCR cross-linking, cells overexpressing Akt show a greatly diminished apoptotic response. By contrast, limiting the activation of Akt, either by inhibiting phosphatidylinositol 3-kinase or by ectopic expression of the phospholipid phosphatase MMAC1, results in a significant increase in the percentage of apoptotic cells after BCR cross-linking. Using various DT40 knockout cell lines, we further demonstrate that the tyrosine kinase Syk is required for Akt activation and that Lyn tyrosine kinase inhibits Akt activation. Taken together, the data demonstrate that Akt plays an important role in B cell survival and that Akt is activated in a Syk-dependent pathway.  相似文献   

2.
3.
B cell linker (BLNK) protein and phospholipase Cgamma2 (PLCgamma2) are components of the BCR signalosome that activate calcium signaling in B cells. Mice lacking either molecule have a severe but incomplete block in B lymphopoiesis. In this study, we generated BLNK-/- PLCgamma2-/- mice to examine the effect of simultaneous disruption of both molecules on B cell development. We showed that BLNK-/- PLCgamma2-/- mice had compounded defects in B cell maturation compared with either single mutant, suggesting that these two molecules cooperatively or synergistically signaled B lymphopoiesis. However, Ig H chain allelic exclusion was maintained in single and double mutants, indicating that signals propagated by BLNK and PLCgamma2 were not involved in this process. Interestingly, in the absence of BLNK, B cell development was dependent on plcgamma2 gene dosage. This was evidenced by the proportionate decrease in splenic B cell population and increase in bone marrow surface pre-BCR+ cells in PLCgamma2-diploid, -haploid, and -null animals. Intracellular calcium signaling and ERK activation in response to BCR engagement were also proportionately decreased and delayed, respectively, with stepwise reduction of plcgamma2 dosage in a BLNK(null) background. Thus, these data indicate the importance of BLNK not only as a conduit to specifically channel BCR-signaling pathways and as a scaffold for the assembling of macromolecular complex, but also as an efficient aggregator or concentrator of PLCgamma2 molecules to effect optimal signaling for B cell generation and activation.  相似文献   

4.
The cAMP-response element-binding protein (CREB) is activated by phosphorylation on Ser-133 and plays a key role in the proliferative and survival responses of mature B cells to B cell receptor (BCR) signaling. The signal link between the BCR and CREB activation depends on a phorbol ester (phorbol 12-myristate 13-acetate)-sensitive protein kinase C (PKC) activity and not protein kinase A or calmodulin kinase; however, the identity and role of the PKC(s) activity has not been elucidated. We found the novel PKCdelta (nPKCdelta) activator bistratene A is sufficient to induce CREB phosphorylation in murine splenic B cells. The pharmacological inhibitor G?6976, which targets conventional PKCs and PKCmu, has no effect on CREB phosphorylation, whereas the nPKCdelta inhibitor rottlerin blocks CREB phosphorylation following BCR cross-linking. Bryostatin 1 selectively prevents nPKCdelta depletion by phorbol 12-myristate 13-acetate when coapplied, coincident with protection of BCR-induced CREB phosphorylation. Ectopic expression of a kinase-inactive nPKCdelta blocks BCR-induced CREB phosphorylation in A20 B cells. In addition, BCR-induced CREB phosphorylation is significantly diminished in nPKCdelta-deficient splenic B cells in comparison with wild type mice. Consistent with the essential role for Bruton's tyrosine kinase and phospholipase Cgamma2 in mediating PKC activation, Bruton's tyrosine kinase- and phospholipase Cgamma2-deficient B cells display defective CREB phosphorylation by the BCR. We also found that p90 RSK directly phosphorylates CREB on Ser-133 following BCR cross-linking and is positioned downstream of nPKCdelta. Taken together, these results suggest a model in which BCR engagement leads to the phosphorylation of CREB via a signaling pathway that requires nPKCdelta and p90 RSK in mature B cells.  相似文献   

5.
6.
The interaction between the 911 complex, via Rad9A, and Claspin is required for activation of the Chk1-mediated checkpoint response, along with ATR, TopBP1, and the 911 clamp loader complex Rad17/RFC. Despite the importance of the Rad9A-Claspin interaction in the cell cycle, this interaction has yet to be characterized. In this work we show this interaction persists in a variety of different conditions. During the course of this study we also determined the nuclear localization of Rad9A affected the localization of the Claspin protein, leading us to the conclusion that Rad9A is able to affect Claspin cellular localization. This was verified experimentally using a Rad9A-null cell line and reconstitution of WT Rad9A. We also show that in mES cells the Rad9A paralog, Rad9B, is also capable of affecting Claspin localization. Together, these data suggest that Rad9 plays a role in locating Claspin to sites of DNA damage, facilitating its role during the Chk1-mediated checkpoint response. Since disruption of both Rad9A and Claspin has been shown to abolish Chk1 activation, we postulate that Rad9A-mediated Claspin localization is a vital step during checkpoint activation.  相似文献   

7.
The relationship of T cell activation to HIV entry and generation of viral DNA intermediates was studied in freshly isolated CD4+ T lymphocytes. Unstimulated cells exposed to infectious virus for up to 48 h did not synthesize any detectable unintegrated HIV DNA duplex forms or integrated genomic provirus. However, activation of these cells with either PHA or OKT3 (anti-CD3) mAb before viral exposure resulted in the generation of unintegrated HIV DNA after 6 h and integrated copies after 24 h. Cell-to-cell fusion studies showed significantly attenuated fusion between freshly isolated resting T cells and T cells constitutively expressing high levels of HIV envelope glycoprotein (HXB/gpt) compared with T cells first stimulated with either PHA or OKT3 mAb. The baseline fusion observed with resting T cells is believed to be a consequence of allogeneic stimulation by the HXB/gpt cell line. These results provide evidence that HIV entry and HIV envelope-dependent cell-to-cell fusion require T cell activation.  相似文献   

8.
9.
The mechanisms responsible for initiating the conversion of globular to filamentous actin (assembly) after stimulation of B lymphocytes and the role of these cytoskeletal changes in cell activation are incompletely understood. We investigated the molecular basis of the signals leading to actin polymerization and concentrated on the involvement of guanosine triphosphate (GTP)-binding regulatory proteins, and protein kinase C (PKC). In addition, we related these early events to later events in B-cell activation, including cell proliferation. Cross-linking the Ag receptor with Staphylococcus aureus Cowan I (SAC) or anti-IgM antibodies, or stimulation of PKC with phorbol ester induced a time- and concentration-dependent increase in the filamentous actin content of B cells. Inhibition or depletion of PKC resulted in decreased actin assembly induced by anti-IgM, SAC, and PMA, suggesting that the signal for polymerization is generated distally to PKC activation. Pertussis toxin pretreatment inhibited the responses to anti-IgM and SAC but not PMA, and direct stimulation of permeabilized cells with GTP gamma S induced microfilament assembly, indicating the involvement of a GTP-binding protein for receptor-mediated events. Disruption of actin polymerization with botulinum C2 toxin or cytochalasin D inhibited the assembly of actin and [3H]TdR incorporation induced by all stimuli. We conclude that human B cell activation by receptor-mediated stimuli results in actin polymerization by signaling pathways coupled to GTP-binding proteins. These changes in the cytoskeleton may be involved in the transduction of messages leading to responses such as proliferation in B lymphocytes.  相似文献   

10.
Tonsillar B lymphocytes were stimulated to proliferate by the mitogenic combination of phorbol dibutyrate and ionomycin. Progression through the cell cycle was monitored by measurements of cellular DNA and RNA content using flow cytometry. Changes in surface expression of class II MHC antigens and CD20 antigen were also monitored as early parameters of B lymphocyte activation and cell cycle progression. The results showed that about 60% of the population synchronously entered and progressed through the cell cycle. The transition from the resting state, signaled by increased RNA content, occurred about 12 to 24 hr after stimulation; S phase entry occurred at about 36 hr. Small, variable populations of cells appeared to be unresponsive to the stimuli, either because they were “preactivated” before in vitro stimulation or were already dying. The kinetics of appearance and accumulation of several cell cycle regulated/regulatory proteins were followed by immunoblotting. The proliferating cell nuclear antigen (PCNA) cyclin A and p33cdk2 proteins were either absent or present in very low amounts in resting cells and first became detectable in increased amount beginning at about 24 hr after stimulation; increased p34cdc2 protein was not detected until about 36 hr. Increased cellular content and phosphorylation of the p110Rb protein was already obvious by 24 hr after stimulation. The effects of several immunosuppressive agents were examined using purified B cells. Both cyclosporin A and an FK506 analogue were shown to inhibit proliferation of B lymphocytes, at the low doses also inhibitory to T cells. © 1995 Wiley-Liss, Inc.  相似文献   

11.
12.
13.
Proliferating cell nuclear antigen is required for DNA excision repair.   总被引:95,自引:0,他引:95  
K K Shivji  M K Kenny  R D Wood 《Cell》1992,69(2):367-374
Fractionation of extracts from human cell lines allows nucleotide excision repair of damaged DNA to be resolved into discrete incision and polymerization stages. Generation of incised intermediates depends on the XP-A protein, a polypeptide that recognizes sites of damaged DNA, and on the human single-stranded DNA-binding protein HSSB. The proliferating cell nuclear antigen (PCNA) is required for the DNA synthesis that converts the nicked intermediates to completed repair events. This need for PCNA implies that repair synthesis is carried out by DNA polymerase delta or epsilon. The ability to visualize repair intermediates in the absence of PCNA facilitates dissection of the multiprotein reaction that leads to incision of damaged DNA in a major pathway of cellular defense against mutagens.  相似文献   

14.
Stringent accessory cell (AC) depletion by a three-step procedure--plastic adherence, nylon wool adherence, followed by simultaneous treatment with two anti-AC monoclonal antibodies + complement--has allowed the demonstration of several AC-dependent stages in the T cell activation pathway. Simultaneous analysis of DNA content and cell surface immunofluorescence (correlation of activation antigen expression with cell cycle position) or DNA and RNA content (cell cycle position) of cultured cells was accomplished by dual parameter flow cytometry. AC-depleted, PHA-stimulated human peripheral blood T lymphocytes (PBTL) failed to exhibit "early" indicators of activation, including increased RNA content, expression of three activation-associated cell surface proteins (IL 2 receptor, transferrin receptor, and 4F2 protein), and the production of IL 2. The AC-depleted PBTL that failed to express these "early" markers of activation also failed to progress into the "late" phase of activation, DNA synthesis. All indicators of PHA responsiveness were fully replenished upon addition of AC but were only reconstituted to intermediate levels by addition of excess quantities of either highly purified IL 1 or crude AC-conditioned medium with lymphocyte-activating factor activity. These data suggest that the AC membrane plays a key and as yet undefined role in the stimulation of T cells by PHA.  相似文献   

15.
16.
NF-kappaB activity in mammalian cells is regulated through the IkappaB kinase (IKK) complex, consisting of two catalytic subunits (IKKalpha and IKKbeta) and a regulatory subunit (IKKgamma). Targeted deletion of Ikkbeta results in early embryonic lethality, thus complicating the examination of IKKbeta function in adult tissues. Here we describe the role of IKKbeta in B lymphocytes made possible by generation of a mouse strain that expresses a conditional Ikkbeta allele. We find that the loss of IKKbeta results in a dramatic reduction in all peripheral B cell subsets due to associated defects in cell survival. IKKbeta-deficient B cells are also impaired in mitogenic responses to LPS, anti-CD40, and anti-IgM, indicating a general defect in the ability to activate the canonical NF-kappaB signaling pathway. These findings are consistent with a failure to mount effective Ab responses to T cell-dependent and independent Ags. Thus, IKKbeta provides a requisite role in B cell activation and maintenance and thus is a key determinant of humoral immunity.  相似文献   

17.
目的 研究髓样细胞分化蛋白(MyD88)抗乙型肝炎病毒(HBV)效应的作用机制。方法 构建MyD88的截短突变体,获得核因子kappa B(NF-κB)超抑制剂IkBa-SR或者NF-κB信号通路激活剂IKKα/IKKβ的表达质粒,分别与HBV复制型质粒瞬时转染Huh7细胞,检测细胞上清液中HBeAg,HBsAg的表达以及胞质中HBV复制中间体DNA的含量,并以NF-κB依赖的荧光素酶报道系统检测它们活化NF-κB的程度。结果 MyD88全长蛋白和2个截短突变体M(1-151)、M(151-296)活化NF-κB的程度与其抑制HBV蛋白以及复制中间体DNA合成的能力相一致。与空载相比,表达NF-κB信号通路激活剂IKKα/IKKβ的质粒共同瞬转细胞后,转染MyD88和HBV表达质粒的细胞中NF-κB的通路明显活化,同时HBV core蛋白的合成显著降低;而NF-κB的超抑制剂IκBα-SR共同瞬转的细胞中core蛋白的表达量显著增加,检测细胞培养上清液中HBeAg和HBsAg及胞质中HBV复制中间体DNA的合成,得到相似结果。结论 NF-κB信号通路的活化在MyD88抑制HBV复制中发挥了关键作用  相似文献   

18.
Vaccinia virus l1 protein is required for cell entry and membrane fusion   总被引:1,自引:1,他引:0  
Genetic and biochemical studies have provided evidence for an entry/fusion complex (EFC) comprised of at least eight viral proteins (A16, A21, A28, G3, G9, H2, J5, and L5) that together with an associated protein (F9) participates in entry of vaccinia virus (VACV) into cells. The genes encoding these proteins are conserved in all poxviruses, are expressed late in infection, and are components of the mature virion membrane but are not required for viral morphogenesis. In addition, all but one component has intramolecular disulfides that are formed by the poxvirus cytoplasmic redox system. The L1 protein has each of the characteristics enumerated above except that it has been reported to be essential for virus assembly. To further investigate the role of L1, we constructed a recombinant VACV (vL1Ri) that inducibly expresses L1. In the absence of inducer, L1 synthesis was repressed and vL1Ri was unable to form plaques or produce infectious progeny. Unexpectedly, assembly and morphogenesis appeared normal and the noninfectious virus particles were indistinguishable from wild-type VACV as determined by transmission electron microscopy and analysis of the component polypeptides. Notably, the L1-deficient virions were able to attach to cells but the cores failed to penetrate into the cytoplasm. In addition, cells infected with vL1Ri in the absence of inducer did not form syncytia following brief low-pH treatment even though extracellular virus was produced. Coimmunoprecipitation experiments demonstrated that L1 interacted with the EFC and indirectly with F9, suggesting that L1 is an additional component of the viral entry apparatus.  相似文献   

19.
In response to inflammatory stimulation, dendritic cells (DCs) have a remarkable pattern of differentiation (maturation) that exhibits specific mechanisms to control antigen processing and presentation. Here, we show that in response to lipopolysaccharides, protein synthesis is rapidly enhanced in DCs. This enhancement occurs via a PI3K-dependent signaling pathway and is key for DC activation. In addition, we show that later on, in a manner similar to viral or apoptotic stress, DC activation leads to the phosphorylation and proteolysis of important translation initiation factors, thus inhibiting cap-dependent translation. This inhibition correlates with major changes in the origin of the peptides presented by MHC class I and the ability of mature DCs to prevent cell death. Our observations have important implications in linking translation regulation with DC function and survival during the immune response.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号