首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interactions of mandelate racemase with divalent metal ion, substrate, and competitive inhibitors were investigated. The enzyme was found by electron paramagnetic resonance (EPR) to bind 0.9 Mn2+ ion per subunit with a dissociation constant of 8 muM, in agreement with its kinetically determined activator constant. Also, six additional Mn2+ ions were found to bind to the enzyme, much more weakly, with a dissociation constant of 1.5 mM. Binding to the enzyme at the tight site enhances the effect of Mn2+ on the longitudinal relaxation rate (1/T1p) of water protons by a factor of 11.9 at 24.3 MHz. From the frequency dependence of 1/T1p, it was determined that there are similar to 3 water ligands on enzyme-bound Mn2+ which exchange at a rate larger than or equal to 10-7 sec-1. The correlation time for enzyme-bound Mn2+-water interaction is frequency-dependent, indicating it to be dominated by the electron spin relaxation time of Mn2+. Formation of the ternary enzyme-Mn2+-mandelate complex decreases the number of fast exchanging water ligands by similar to 1, but does not affect tau-c, suggesting the displacement or occlusion of a water ligand. The competitive inhibitors D,L-alpha-phenylglycerate and salicylate produce little or no change in the enzyme-Mn2+-H2O interaction, but ternary complexes are detected indirectly by changes in the dissociation constant of the enzyme-Mn2+ complex and by mutual competition experiments. In all cases the dissociation constants of substrates and competitive inhibitors from ternary complexes determined by magnetic resonance titrations agree with K-M and K-i values determined kinetically and therefore reflect kinetically active complexes. From the paramagnetic effects of Mn2+ on 1/T1 and 1/T2 of the 13C-enriched carbons of 1-[13C]-D,L-mandelate and 2-[13C]-D,L-mandelate, Mn2+ to carboxylate carbon and Mn2+ to carbinol carbon distances of 2.93 plus or minus 0.04 and 2.71 plus or minus 0.04 A, respectively, were calculated, indicating bidentate chelation in the binary Mn2+-mandelate complex. In the active ternary complex of enzyme, Mn2+, and D,L-mandelate, these distances increase to 5.5 plus or minus 0.2 and 7.2 plus or minus 0.2 A, respectively, indicating the presence of at least 98.9% of a second sphere complex in which Mn2+, and C1 and C2 carbon atoms are in a linear array. The water relaxation data suggest that a water ligand is immobilized between the enzyme-bound Mn2+ and the carboxylate of the bound substrate. This intervening water ligand may polarize or protonate the carboxyl group. From 1/T2p the rate of dissociation of the substrate from this ternary complex (larger than or equal to 5.6 times 10-4 sec-1) is at least 52 times greater than the maximal turnover number of the enzyme (1070 sec-1), indicating that the complex detected by nuclear magnetic resonance (NMR) is kinetically competent to participate in catalysis. Relationships among the microscopic rate constants are considered.  相似文献   

2.
Electron spin echo envelope modulation (ESEEM) spectroscopy has been applied to the determination of the number of water molecules coordinated to the metal in the binary complex of staphylococcal nuclease with Mn2+, to the ternary enzyme-Mn2+-3',5'-pdTp complex, and to ternary complexes of a number of mutant enzymes in which metal-binding ligands have been individually altered. Quantitation of coordinated water is based on ESEEM spectral comparisons of Mn2+-EDTA and Mn2+-DTPA, which differ by a single inner sphere water, and with Mn2+-(H2O)6. It was found that Mn2+ in the ternary complex of the wild-type enzyme has a single additional coordinated water, as compared to Mn2+ in the binary complex, confirming earlier findings based on T1 measurements of bound water [Serpersu, E. H., Shortle, D. L., & Mildvan, A. S. (1987) Biochemistry 26, 1289-1300]. Ternary complexes of the mutant proteins D40E, D40G, and D21Y have the same number of water ligands as the ternary complex of the wild-type enzyme, while the D21E mutant has one less water ligand. In order to maintain octahedral coordination geometry, these findings require two additional ligands to Mn2+ from the protein in the binary complex of the wild-type enzyme, probably Glu 43 and Asp 19, and one additional ligand from the protein in the ternary D40G and D21E complexes. Other ESEEM studies of ternary Mn2+ complexes of wild-type, D21E, and D21Y mutants indicate the coordination by Mn2+ of a phosphate of 3',5'-pdTp, as demonstrated by a 31P contact interaction of 3.9 +/- 0.3 MHz. Magnetic interaction of Mn2+ with 31P could not be demonstrated with the D40G and D40E mutants, suggesting that metal-phosphate distances are greater in these mutants than in the wild-type protein. In a parallel NMR study of the paramagnetic effects of enzyme-bound Co2+ (which occupies the Mn2+ site on the enzyme) on the T1 of 31P from enzyme-bound 3',5'-pdTp and 5'-TMP, it was found that metal to 5'-phosphate distances are 0.9-1.6 A shorter in ternary complexes of the wild-type enzyme and of the D21E mutant than in ternary complexes of the D40G mutant. In all cases, the 5'-phosphate of pdTp is in the inner coordination sphere of Co2+ and the 3'-phosphate is predominantly in the second coordination sphere.  相似文献   

3.
Co2+, which activates rabbit muscle pyruvate kinase, competes with Mn2+ for the active site of the enzyme with a KD of 46 muM. Co2+ binds to phosphoenolpyruvate with a KD of 4.1 mM. The structures of the binary Co2+/P-enolpyruvate, and quaternary pyruvate kinase/Co2+/K+/P-enolpyruvate complexes were studied using EPR and the effects of Co2+ on the longitudinal (T1) and transverse (T2) relaxation times of the protons of water and P-enolpyruvate and the phosphorus of P-enolpyruvate. The EPR spectra of all complexes at 6 K, disappear above 40 K and reveal principal g values between 2 and 7 indicating high spin Co2+. For free Co2+ and for the binary Co2+/P-enolpyruvate complex, the T1 of water protons was independent of frequency in the range 8, 15, 24.3, 100, and 220 MHz. Assuming coordination numbers (q) of 6 and 5 for free Co2+ and Co2+/P-enolpyruvate, respectively, correlation times (tauc) of 1.3 times 10(-13) and 1.7 times 10(-13) s, were calculated. The distances from Co2+ and phosphorus and to the cis and trans protons in the binary Co2+/P-enolpyruvate complex calculated from their T1 values were 2.7 A, 4.1 A, AND 5.3 A, respectively, indicating an inner sphere phosphoryl complex. Consistent with direct phosphoryl coordination, a large Co2+ to phosphorus hyperfine contact coupling constant (A/h) of 5 times 10(5) Hz was determined by the frequency dependence of the T2 of phosphorus at 25.1, 40.5, and 101.5 MHz. For both enzyme complexes, the dipolar correlation time tauc was 2 times 10(-12) s and the number of rapidly exchanging water ligands (q) was 0.6 as determined from the frequency dependence of the T1 of water protons. In the quaternary enzyme/Co2+/K+/P-enolyruvate complex this tauc value was consistent with the frequency dependence of the T1 of the phosphorus of enzyme-bound P-enolpyruvate at 25.1 and 40.5 MHz. Distances from enzyme-bound C02+ to the phosphorus and protons of P-enolpyruvate, from their T1 values, were 5.0 A and 8 to 10 A, respectively, indicating a predominantly (greater than or equal to 98%) second spere complex and less than 2% inner sphere complex. Consistent with a second sphere complex on the enzyme, an A/h value of less than 10(3) Hz was determined from the frequency dependence of the T2 of phosphorus. In all complexes the exchange reates were found to be faster than the paramagnetic relaxation rates and the hyperfine contact interaction was found to be small compared to the dipolar interaction. The results thus indicate that the interaction of C02+ with P-enolpyruvate is greatly decreased upon binding to the active site of pyruvate kinase.  相似文献   

4.
Arrangement of the substrates at the active site of brain pyridoxal kinase   总被引:1,自引:0,他引:1  
The distances between enzyme-bound paramagnetic CrATP (a stable, beta, gamma-bidentate complex of Cr3+ and ATP) at the active site of sheep brain pyridoxal kinase and the protons of bound inhibitor 4-dPyr (4-deoxypyridoxine) were determined in the ternary enzyme-CrATP.4-dPyr complex by measuring the paramagnetic effects of Cr3+ on the longitudinal relaxation rates (1/T1p) of the protons of 4-dPyr. The correlation time for the Cr(3+)-4-dPyr dipolar interaction on the enzyme was estimated as 1.59 ns by the frequency dependence of 1/T1p of water protons. Temperature dependence of 1/T1p values indicated the fast exchange of 4-dPyr from the paramagnetic enzyme.CrATP.4-dPyr complex; hence the measured 1/T1p values can be used for metalnucleus distance determinations. The distances from the Cr3+ of the enzyme-bound CrATP to the 2-methyl (7.19 A), 4-methyl (7.18 A), and H6 proton (6.18 A) of the 4-dPyr are too great to permit a direct coordination of any group from 4-dPyr. However, these distances can be built into a model in which phosphorus of the gamma-phosphoryl group of ATP is 4 A away from the oxygen atom of the 5-CH2OH group of the 4-dPyr. This suggests that phosphorylation of pyridoxal can occur via direct transfer of the phosphoryl group between the bound substrates at the active site of pyridoxal kinase.  相似文献   

5.
The interaction of CrADP, an exchange-inert paramagnetic analogue of Mg-ADP, with yeast hexokinase has been studied by measuring the effects of CrADP on the longitudinal nuclear relaxation rate (1/T1) of the protons of water and the protons and phosphorus atom of enzyme-bound glucose-6-P. The paramagnetic effect of CrADP on 1/T1 of water protons is enhanced upon complexation with the enzyme. Titrations measuring this paramagnetic effect at several enzyme concentrations in the presence of glucose-6-P yielded a characteristic enhancement factor for 1/T1 of water protons and the dissociation constant of CrADP from the ternary enzyme . ADPCr . glucose-6-P complex. The latter value (2 mM) is similar to that obtained from kinetic inhibition studies (Danenberg and Cleland [1975]. Biochemistry. 14:28). The presence of glucose-6-P increased the enhancement of the water relaxation rate by enzyme-bound CrADP, suggesting the formation of an enzyme . CrADP . glucose-6-P complex. The existence of such a complex was confirmed by the observation of a paramagnetic effect of enzyme-bound CrADP on the l/T1 of the 31P-nucleus and protons of enzyme-bound glucose-6-P. From the paramagnetic effects of enzyme-bound CrADP on the relaxation rates of the 31P-nucleus and the carbon-bound protons of glucose-6-P in the enzyme . ADPCr . glucose-6-P complex, using the correlation time of approximately 0.7 ns, determined from the magnetic field-dependence of 1/T1 of water protons over the range 24.3-360 MHz, a Cr3+ to phosphorus distance of 6.6 +/- 0.7 A and Cr3+ to alpha- and beta-anomeric proton distances of 8.9 and 9.7 A were calculated. These results imply the absence of a direct coordination of the phosphoryl group of glucose-6-P by the nucleotide-bound metal on hexokinase but indicate van der Waals contact between a phosphoryl oxygen of glucose-6-P and the hydration sphere of the nucleotide-bound metal. The distances are consistent with a model that assumes molecular contact between the phosphorus of glucose-6-P and a beta-phosphoryl oxygen of ADP suggesting an associative phosphoryl transfer. Because after phosphorylation of ADP, the metal ion is coordinated to the transferred phosphoryl group, the overall migration of the phosphoryl group during the phosphoryl transfer is approximately 3.6 A toward the nucleotide-bound metal. Little or no catalysis of phosphoryl transfer from glucose-6-P to alpha, beta-bidentate or beta-monodentate CrADP ( less than or equal to 0.05% of the rate found with MgADP) occurred in the presence of hexokinase, as monitored by glucose formation in a coupled assay system using glucose oxidase and peroxidase. The ability of beta, gamma-bidentate CrATP to act as a substrate (Danenberg and Cleland [1975].  相似文献   

6.
The conformation of the staphylococcal nuclease-bound metal-dTdA complex, previously determined by NMR methods [Weber, D.J., Mullen, G.P., Mildvan, A.S. (1991) Biochemistry 30:7425-7437] was docked into the X-ray structure of the enzyme-Ca(2+)-3',5'-pdTp complex [Loll, P.J., Lattman, E.E. (1989) Proteins: Struct., Funct., Genet. 5:183-201] by superimposing the metal ions, taking into account intermolecular nuclear Overhauser effects from assigned aromatic proton resonances of Tyr-85, Tyr-113, and Tyr-115 to proton resonances of the leaving dA moiety of dTdA, and energy minimization to relieve small overlaps. The proton resonances of the Phe, Tyr, and Trp residues of the enzyme in the ternary enzyme-La(3+)-dTdA complex were sequence specifically assigned by 2D phase-sensitive NOESY, with and without deuteration of the aromatic protons of the Tyr residues, and by 2D heteronuclear multiple quantum correlation (HMQC) spectroscopy and 3D NOESY-HMQC spectroscopy with 15N labeling. While resonances of most Phe, Tyr and Trp residues were unshifted by the substrate dTdA from those found in the enzyme-La(3+)-3',5'-pdTp complex and the enzyme-Ca(2+)-3',5'-pdTp complex, proton resonances of Tyr-85, Tyr-113, Tyr-115, and Phe-34 were shifted by 0.08 to 0.33 ppm and the 15N resonance of Tyr-113 was shifted by 2.1 ppm by the presence of substrate. The optimized position of enzyme-bound dTdA shows the 5'-dA leaving group to partially overlap the inhibitor, 3',5'-pdTp (in the X-ray structure). The 3'-TMP moiety of dTdA points toward the solvent in a channel defined by Ile-18, Asp-19, Thr-22, Lys-45, and His-46. The phosphate of dTdA is coordinated by the metal, and an adjacent inner sphere water ligand is positioned to donate a hydrogen bond to the general base Glu-43 and to attack the phosphorus with inversion. Arg-35 and Arg-87 donate monodentate hydrogen bonds to different phosphate oxygens of dTdA, with Arg-87 positioned to protonate the leaving 5'-oxygen of dA, thus clarifying the mechanism of hydrolysis. Model building of an additional 5'-dGMP onto the 3'-oxygen of dA placed this third nucleotide onto a surface cleft near residues Glu-80, Asp-83, Lys-84, and Tyr-115 with its 3'-OH group accessible to the solvent, thus defining the size of the substrate binding site as accommodating a trinucleotide.  相似文献   

7.
NMR studies of the AMP-binding site and mechanism of adenylate kinase   总被引:3,自引:0,他引:3  
D C Fry  S A Kuby  A S Mildvan 《Biochemistry》1987,26(6):1645-1655
NMR has previously been used to determine the conformation of enzyme-bound MgATP and to locate the MgATP-binding site on adenylate kinase [Fry, D. C., Kuby, S. A., & Mildvan, A. S. (1985) Biochemistry 24, 4680-4694]. To determine the conformation and location of the other substrate, AMP, distances have been measured from Cr3+AMPPCP, a linear competitive inhibitor with respect to MgATP, to six protons and to the phosphorus atom of AMP on adenylate kinase, with the paramagnetic probe-T1 method. Time-dependent nuclear Overhauser effects (NOEs) have been used to measure five interproton distances on enzyme-bound AMP. These distances were used to determine the conformation of bound AMP in addition to its position with respect to metal-ATP. Enzyme-bound AMP exhibits a high anti-glycosyl torsional angle (chi = 110 +/- 10 degrees), a 3'-endo,2'-exo ribose pucker (delta = 105 +/- 10 degrees), and gauche-trans orientations about the C4'-C5' bond (gamma = 180 +/- 10 degrees) and the C5'-O5' bond (beta = 170 +/- 20 degrees). The distance from Cr3+ to the phosphorus of AMP is 5.9 +/- 0.3 A, indicating a reaction coordinate distance of approximately 3 A, which is consistent with an associative SN2 mechanism for the phosphoryl transfer. Ten intermolecular NOEs, from protons of the enzyme to those of AMP, were detected, indicating the proximity of at least three hydrophobic amino acids to bound AMP. These constraints, together with the conformation of AMP and the intersubstrate distances, were used to position AMP into the X-ray structure of adenylate kinase. The AMP binding site is found to be near (less than or equal to 4 A from) Leu-116, Arg-171, Val-173, Val-182, and Leu-190; all of these residues have been found to be invariant in muscle-type rabbit, calf, human, porcine [Kuby, S. A., Palmieri, R. H., Frischat, A., Fischer, A. H., Wu, L. H., Maland, L., & Manship, M. (1984) Biochemistry 23, 2393-2399], and chicken adenylate kinase [Kishi, F., Maruyama, M., Tanizawa, Y., & Nakazawa, A. (1986) J. Biol. Chem. 261, 2942-2945].  相似文献   

8.
The phosphoryl transferring enzymes pyruvate kinase, cAMP-dependent protein kinase and the pyrophosphoryl transferring enzyme PP-Rib-P synthetase utilize the beta, gamma bidentate metal--ATP chelate (delta-isomer) as substrate, as determined with substitution-insert CrIIIATP or CoIII(NH3)4ATP complexes. In addition, these enzymes bind a second divalent cation, which is an essential activator for pyruvate kinase and PP-Rib-P synthetase and an inhibitor of protein kinase. The enzyme-bound metal has been used as a paramagnetic reference point in T1 measurements to determine distances to the protons and phosphorus atoms of the bound nucleotide and acceptor substrates. These distances have been used to construct models of the conformations of the bound substrates. The activating metal forms a second sphere complex of the metal-nucleotide substrate on pyruvate kinase and PP-Rib-P synthetase while the inhibitory metal directly coordinates the polyphosphate chain of the metal-nucleotide substrate on protein kinase. Essentially no change is found in the dihedral angle at the glycosidic bond of ATP upon binding to pyruvate kinase (chi = 30 degrees), an enzyme of low base specificity, but significant changes in the torsional angle of ATP occur on binding to protein kinase (chi = 84 degrees) and PP-Rib-P synthetase (chi = 62 degrees), enzymes with high adenine-base specificity. Intersubstrate distances, measured with tridentate CrATP or beta, gamma bidentate CrAMPPCP as paramagnetic reference points, have been used to deduce the distance along the reaction coordinate on each enzyme. The reaction coordinate distances on pyruvate kinase (# +/- 1 A) and PP-Rib-P synthetase (not less than 3.8 A) are consistent with associative mechanisms, while that on protein kinase (5 +/- 0.7 A) allows room for a dissociative mechanism.  相似文献   

9.
A spin-labeled ester of CoA, R-CoA (3-carboxy-2,2,5,5-tetramethyl-1-pyrolidinyl-1-oxy CoA thioester), has been shown by competition studies using electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) to bind specifically to the propionyl-CoA binding sites of transcarboxylase. Titrations indicate 0.7 +/- 0.2 binding site for R-CoA per enzyme-bound biotin with a dissociation constant of 0.33 +/- 0.12 mM. Propionyl-CoA binds to this site with a 1.3-fold lower disonable agreement with kinetically determined inhibitor constants of CoA and propionyl-CoA and propionyl-CoA (D. B. Northrop (1969), J. Biol. Chem. 244, 5808). The bit of this spin-label on 1/T1 of water protons. The formation of a ternary transcarboxylase-R-CoA-pyruvate complex is suggested by the failure of pyruvate to displace R-CoA from the tight site and is established by the paramagnetic effects of enzyme-bound R-CoA on the relaxation rates of the protons and 13C atoms of enzyme-bound pyruvate. From the paramagnetic effects of R-CoA on the relaxation rates of the methyl protons of pyruvate at 40.5 and 100 MHz, and on the 13C-enriched carbonyl and carboxyl carbon atoms of pyruvate at 25.1 MHz, a correlation time of 7 nsec and distances from the bound nitroxide radical to the methyl protons, the carbonyl, and carboxyl carbon atoms of bound pyruvate of 7.9 +/- 0.7, 10.3 +/- 0.8, and 12.1 +/- 0.9 A, respectively, are calculated. These distances establish the close proximity of the CoA ester and keto acid sites on transcarboxylase. Together with the previously determined distances from the enzyme-bound (Co(II) to the methyl protons and 2 carbon atoms of bound pyruvate and to 12 protons and 3 phosphorus atoms of bound propionyl-CoA, the present distances are used to derive a composite model of the bound substrates in the overall transcarboxylation reaction. In this model the distance from the methyl carbon of pyruvate and the methylene carbon of propionyl-CoA, between which the carboxyl transfer takes place is only approximately 7 A. Depending on the detailed mechanism of the carboxyl transfer, the distance through which the carboxybiotin must migrate is therefore between 0 and 7 A. Hence the major role of the 14-A arm of carboxybiotin is not to permit a large carboxyl migration but, rather to permit carboxybiotin to traverse the gap which occurs at the interface of three subunits and to insinuate itself between the CoA and keto acid sites.  相似文献   

10.
The solution structure of the self-complementary DNA hexamer 5' d(C-G-T-A-C-G)2 is refined by restrained molecular dynamics in which 192 interproton distances, determined from pre-steady-state nuclear Overhauser enhancement measurements, are incorporated into the total energy of the system in the form of effective potentials. First the method is tested by applying an idealized set of distance restraints taken from classical B-DNA to a simulation starting off from A-DNA and vice versa. It is shown that in both cases the expected transition between A- and B-DNA occurs. Second, a set of restrained molecular dynamics calculations is carried out starting from both A- and B-DNA with the experimental interproton distances for 5' d(C-G-T-A-C-G)2 as restraints. Convergence to the same B-type structure is achieved with the interproton distances equal to the measured values within experimental error. The root-mean-square atomic difference between the two average restrained dynamics structures (less than 1 A) is approximately the same as the root-mean-square fluctuations of the atoms.  相似文献   

11.
B D Ray  P R?sch  B D Rao 《Biochemistry》1988,27(23):8669-8676
The paramagnetic effects on the spin-relaxation rates of 31P nuclei in complexes of porcine muscle adenylate kinase with ATP, GTP, GDP, and AMP were measured in the presence of two dissimilar activating paramagnetic cations, Mn(II) and Co(II), to examine the structures of the enzyme-bound complexes. Experiments were performed exclusively on enzyme-bound complexes to limit contributions to observed relaxation rates to two exchanging complexes (with and without cation). Measurements were made at three frequencies, 81, 121.5, and 190.2 MHz, and as a function of temperature in the range 5-30 degrees C to determine the effect of exchange on the observed relaxation rates. Relaxation rates in the E.MnATP, E.MnGTP, and E.MnGDP complexes were shown to be exchange-limited and therefore without structural information. Relaxation rates for the complexes E.CoATP, E.CoGTP, and E.CoGDP were shown to depend on Co(II)-31P distances. Inability to precisely estimate spectral densities arising from electronic relaxation of Co(II) restricts calculations of Co(II)-31P distances in these complexes to upper and lower limits. At the center of these limits, the Co(II)-31P distances of beta-P and gamma-P in E.CoATP and E.CoGTP, and of beta-P (E.CoGDP), are in the range 3.1-3.5 A appropriate for the first coordination sphere. For all these complexes, the corresponding distance for alpha-P is appreciably larger in the range 3.9-4.5 A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
L J Ferrin  A S Mildvan 《Biochemistry》1986,25(18):5131-5145
The large fragment of DNA polymerase I (Pol I) effectively uses oligoribouridylates and oligoriboadenylates as templates, with kinetic properties similar to those of poly(U) and poly(A), respectively, and has little or no activity in degrading them. In the presence of such oligoribonucleotide templates, nuclear Overhauser effects (NOE's) were used to determine interproton distances within and conformations of substrates bound to the large fragment of Pol I, as well as conformations and interactions of the enzyme-bound templates. In the enzyme-oligo(rU)54 +/- 11-Mg2+dATP complex, the substrate dATP has a high anti-glycosidic torsional angle (chi = 62 +/- 10 degrees) and an O1'-endo/C3'-endo sugar pucker (delta = 90 +/- 10 degrees) differing only slightly from those previously found for enzyme-bound dATP in the absence of template [Ferrin, L.J., & Mildvan, A.S. (1985) Biochemistry 24, 4680-4694]. Both conformations are similar to those of deoxynucleotidyl units of B DNA but differ greatly from those of A or Z DNA. The conformation of the enzyme-bound substrate analogue AMPCPP (chi = 50 +/- 10 degrees, delta = 90 +/- 10 degrees) is very similar to that of enzyme-bound dATP and is unaltered by the binding of the template oligo(rU)54 +/- 11 or by the subsequent binding of the primer (Ap)9A. In the enzyme-oligo(rA)50-Mg2+TTP complex, the substrate TTP has an anti-glycosidic torsional angle (chi = 40 +/- 10 degrees) and an O1'-endo sugar pucker (delta = 100 +/- 10 degrees), indistinguishable from those found in the absence of template and compatible with those of B DNA but not with those of A or Z DNA. In the absence of templates, the interproton distances on enzyme-bound dGTP cannot be fit by a single conformation but require a 40% contribution from a syn structure (chi = 222 degrees) and a 60% contribution from one or more anti structures. The presence of the template oligo(rU)43 +/- 9 simplifies the conformation of enzyme-bound dGTP to a single structure with an anti-glycosyl angle (chi = 32 +/- 10 degrees) and an O1'-endo/C3'-endo sugar pucker (delta = 90 +/- 10 degrees), compatible with those of B DNA, possibly due to the formation of a G-U wobble base pair. However, no significant misincorporation of guanine deoxynucleotides by the enzyme is detected with oligo(rU) as template.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The interaction of D-xylose isomerase purified from two sources with Mn2+ and D-xylose or the competitive inhibitor xylitol has been examined by nuclear magnetic resonance. A greater paramagnetic effect of enzyme-bound Mn2+ on the alpha anomer of D-xylose than on the beta anomer was observed, providing independent evidence for the specificity of D-xylose isomerase for the alpha anomeric form of D-xylose. The exchange rate of alpha-D-xylose into the ternary complex, determined from the normalized paramagnetic contribution to the transverse relaxation rate (1/fT2p) of the carbon 1 proton of alpha-D-xylose, exceeds Vmax for the enzymatic reaction by 3 orders of magnitude. The amount of xylitol necessary to displace alpha-D-xylose from the substrate-enzyme-Mn2+ complex is consistent with the Km value for alpha-D-xylose and the inhibitor constant Ki for xylitol previously determined by the methods of enzyme kinetics. These results suggest that the NMR experiments observe complexes of D-xylose isomerase which are kinetically and thermodynamically competent to participate in catalysis. From the frequency dependence of the paramagnetic contribution to the longitudinal relaxation rate (1/T1p) of the carbon 1 proton of alpha-D-xylose, the correlation time (tauc) which modulates the dipolar interaction between enzyme-bound Mn2+ and alpha-D-xylose has been determined (5.1 x 1o(-10) s). From these observations a range of calculated distances between enzyme-bound Mn2+ and the carbon 1 proton of alpha-D-xylose (9.1 +/- 0.7 A) has been found. The enzyme-bound Mn2+ has comparable effects on the carbon 1, carbon 2, and carbon 5 protons of alpha-D-xylose, suggesting that these protons of the enzyme-bound substrate are equidistant from the bound Mn2+. A similar distance (9.4 +/- 0.7 A) between the enzyme-bound Mn2+ and the terminal methylene protons of xylitol, an analog of the open chain intermediate in the reaction, has been determined. The results of the present substrate relaxation and previous water relaxation studies suggest that two small ligands such as water molecules or a large portion of the protein intervene between the bound metal ion and the bound substrate in the active ternary complex.  相似文献   

14.
Nuclear Overhauser effects were used to determine interproton distances on MgATP bound to rabbit muscle creatine kinase. The internuclear distances were used in a distance geometry program that objectively determines both the conformation of the bound MgATP and its uniqueness. Two classes of structures were found that satisfied the measured interproton distances. Both classes had the same anti glycosidic torsional angle (chi = 78 +/- 10 degrees) but differed in their ribose ring puckers (O1'-endo or C4'-exo). The uniqueness of the glycosidic torsional angle is consistent with the preference of creatine kinase for adenine nucleotides. One of these conformations of MgATP bound to creatine kinase is indistinguishable from the conformation found for Co(NH3)4ATP bound to the catalytic subunit of protein kinase, which also has a high specificity for adenine nucleotides [chi = 78 +/- 10 degrees, O1'-endo; Rosevear, P.R., Bramson, H.N., O'Brian, C., Kaiser, E.T., & Mildvan, A.S. (1983) Biochemistry 22, 3439]. Distance geometry calculations also suggest that upper limit distances, when low enough (less than or equal to 3.4 A), can be used instead of measured distances to define, within experimental error, the glycosidic torsional angle of bound nucleotides. However, this approach does not permit an evaluation of the ribose ring pucker.  相似文献   

15.
The paramagnetic effects of Mn(II) and Co(II) on the spin-lattice relaxation rates of 31P nuclei of ATP and ADP and of Mn(II) on the spin-lattice relaxation rate of the delta protons of arginine bound to arginine kinase from lobster tail muscle have been measured. Temperature variation of 31P relaxation rates in E.MnADP and E.MnATP yields activation energies (delta E) in the range 6-10 kcal/mol. Thus, the 31P relaxation rates in these complexes are exchange limited and cannot provide structural information. However, the relaxation rates in E.CoADP and E.CoATP exhibit frequency dependence and delta E values in the range 1-2 kcal/mol; i.e., these rates depend upon 31P-Co(II) distances. These distances were calculated to be in the range 3.2-4.5 A, appropriate for direct coordination between Co(II) and the phosphoryl groups. The paramagnetic effect of Mn(II) on the 1H spin-lattice relaxation rate of the delta protons of arginine in the E.MnADP.Arg complex was also measured at three frequencies (viz., 200, 300, and 470 MHz). These 1H experiments were performed in the presence of sufficient excess of arginine to be observable over the protein background but with MnADP exclusively in the enzyme-bound form so that the enhancement in the relaxation rates of the delta protons of arginine arises entirely from the enzyme-bound complex. Both the observed frequency dependence of these rates and the delta E less than or equal to 1.0 +/- 0.3 kcal/mol indicate that this rate depends on the 1H-Mn(II) distances.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
A S Mildvan 《FASEB journal》1989,3(6):1705-1714
Metal-nucleus distances measured by paramagnetic effects on T1 and interproton distances measured by the nuclear Overhauser effect have been used to determine the conformations, arrangement, locations of enzyme-bound substrates with respect to specific amino acid residues, and to dock them into X-ray structures of enzymes. Synthetic peptide fragments of enzymes that range from 45 to 50 residues in length in some cases retain enough secondary and tertiary structure to bind substrates with affinities and in conformations similar to those found on the complete enzymes. The entire structure of peptides of this size can be determined in solution by 2-dimensional nuclear magnetic resonance (NMR) methods. The applications of NMR methods to enzymology are exemplified by studies of adenylate kinase, ketosteroid isomerase, staphylococcal nuclease, and DNA polymerase I.--Mildvan, A. S. NMR studies of the interactions of substrates with enzymes and their peptide fragments.  相似文献   

17.
Aminoglycoside nucleotidyltransferase (2')-Ia [ANT (2')-Ia] was cloned from Pseudomonas aeruginosa and purified from overexpressing Escherichia coli BL21(DE3) cells. The first enzyme-bound conformation of an aminoglycoside antibiotic in the active site of an aminoglycoside nucleotidyltransferase was determined using the purified aminoglycoside nucleotidyltransferase (2' ')-Ia. The conformation of the aminoglycoside antibiotic isepamicin, a psuedo-trisaccharide, bound to aminoglycoside nucleotidyltransferase (2' ')-Ia has been determined using NMR spectroscopy. Molecular modeling, employing experimentally determined interproton distances, resulted in two different enzyme-bound conformations (conformer 1 and conformer 2) of isepamicin. Conformer 1 was by far the major conformer defined by the following average glycosidic dihedral angles: PhiBC = -65.26 +/- 1.63 degrees and PsiBC = -54.76 +/- 4.64 degrees. Conformer 1 was further subdivided into one major (conformer 1a) and two minor components (conformers 1b and 1c) based on the comparison of glycosidic dihedral angles PhiAB and PsiAB. The arrangement of substrates in the enzyme.metal-ATP.isepamicin complex was determined on the basis of the measured effect of the paramagnetic substrate analogue Cr(H2O)4ATP on the relaxation rates of substrate protons which were used to determine relative distances of isepamicin protons to the Cr3+. Both conformers of isepamicin yielded arrangements that satisfied the NOE restraints and the observed paramagnetic effects of Cr(H2O)4ATP. It has been suggested that aminoglycosides use both electrostatic interactions and hydrogen bonds in binding to RNA and that the contacts made by the A and B rings to RNA are the most important for binding [Fourmy, D., Recht, M. I., Blanchard, S. C., and Puglisi, J. D. (1996) Science 274, 1367-1371]. Comparisons based on the determined conformations of enzyme-bound aminoglycoside antibiotics also suggested that interactions of rings A and B with enzymes may be the major determinant in aminoglycoside binding to enzymes [Serpersu, E. H., Cox, J. R., DiGiammarino, E. L., Mohler, M. L., Ekman, D. R., Akal-Strader, A., and Owston, M. (2000) Cell Biochem. Biophys. (in press)]. The conformation of isepamicin bound to the aminoglycoside nucleotidyltransferase (2' ')-Ia, determined in this work, lent further support to this theory. Furthermore, comparison of enzyme-bound conformations of isepamicin to the RNA-bound conformation of gentamycin C1a also showed remarkable similarities between the enzyme-bound and RNA-bound aminoglycoside antibiotic conformations. These studies should aid in the design of effective inhibitors possessing a broad range of aminoglycoside-modifying enzymes as targets.  相似文献   

18.
25Mg NMR spectroscopy was used to study the interactions of the activating cations with their respective binding sites in the enzymes yeast enolase and rabbit muscle pyruvate kinase (PK). Titration of Mg2+ with enolase allows for the calculation of 1/T2 for Mg2+ bound at site I of 1510 s-1 and a quadrupolar coupling constant chi = 0.30 MHz. Titration of Mg2+ with enolase in the presence of 2-phosphoglycerate (PGA) and Zn2+, where Zn2+ binds specifically at site I, gives a 1/T2 for Mg2+ bound at site II of 4000 s-1 (chi = 0.49 MHz). The Mg2+ at site II appears to be more anisotropic than Mg2+ at site I. The titration of site I of the enolase-Mg-PGA-Mg complex with Zn2+ or Mn2+ shows a simple displacement of the Mg2+. No paramagnetic effects by Mn2+ on 25Mg relaxation were observed. Temperature studies of the 25Mg resonance show that fast exchange of the Mg2+ occurs under these conditions. From the lack of a paramagnetic effect, the distance between the cations at sites I and II must be more than 6-9 A. This distance limits the location, hence the function, of the cation at site II for catalytic activity. Titration of Mg2+ with PK gives a 1/T2 for bound Mg2+ of 2200 s-1 (chi = 0.24 MHz). A titration of Mg2+ with PK in the presence of the inhibitor oxalate gives a 1/T2 of 400 s-1. The temperature dependence of 25Mg relaxation in the PK-Mg-oxalate complex is consistent with slow exchange (Ea = 6.1 +/- 1.6 kcal/mol). The enzyme-bound cation is more tightly sequestered by the addition of a ligand that binds directly to the cation. An investigation of the 25Mg relaxation in the PK-Mn-oxalate-Mg-ATP complex, where the Mg2+ is bound to the nucleotide and the Mn2+ was enzyme bound, was not successful due to precipitation of PK under experimental conditions and the short T2 relaxation for 25Mg in this complex. The applications of 25Mg NMR have been useful in partially describing the properties of the bound Mg2+ in these two metal-requiring enzymes.  相似文献   

19.
Transferred nuclear Overhauser effect measurements (in the two-dimensional mode) have been used to determine the three-dimensional conformation of an ATP analogue, Co(NH3)4ATP, at the active site of sheep kidney Na,K-ATPase. Previous studies have shown that Co(NH3)4ATP is a competitive inhibitor with respect to MnATP for the Na,K-ATPase [Klevickis, C., & Grisham, C.M. (1982) Biochemistry 21, 6979. Gantzer, M.L., et al. (1982) Biochemistry 21, 4083]. Nine unique proton-proton distances on ATPase-bound Co(NH3)4ATP were determined from the initial build-up rates of the cross-peaks of the 2D-TRNOE data sets. These distances, taken together with previous 31P and 1H relaxation measurements with paramagnetic probes, are consistent with a single nucleotide conformation at the active site. The bound Co(NH3)4ATP) adopts an anti conformation, with a glycosidic torsion angle of 35 degrees, and the conformation of the ribose ring is slightly N-type (C2'-exo, C3'-endo). The delta and gamma torsional angles in this conformation are 100 degrees and 178 degrees, respectively. The nucleotide adopts a bent configuration, in which the triphosphate chain lies nearly parallel to the adenine moiety. Mn2+ bound to a single, high-affinity site on the ATPase lies above and in the plane of the adenine ring. The distances from enzyme-bound Mn2+ to N6 and N7 are too large for first coordination sphere complexes, but are appropriate for second-sphere complexes involving, for example, intervening hydrogen-bonded water molecules. The NMR data also indicate that the structure of the bound ATP analogue is independent of the conformational state of the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Lin Y  Nageswara Rao BD 《Biochemistry》2000,39(13):3647-3655
13C spin-lattice relaxation rates have been measured for two complexes of Escherichia coli adenylate kinase (AKe), viz., AKe. [U-(13)C]ATP and AKe.[U-(13)C]AMP.GDP in the presence of the substituent activating paramagnetic cation Mn(II) for the purpose of determination of the enzyme-bound conformations of ATP and AMP. (GDP has been added to the AMP complex with the enzyme in order to hold the cation in the bound complex.) Measurements of relaxation times at three different (13)C frequencies, 181.0, 125.7, and 75.4 MHz, indicate that the relaxation times in the enzyme-nucleotide complexes with the paramagnetic cation are not exchange-limited; i.e. , they are larger than the effective lifetimes of cation binding to these complexes and are, therefore, dependent on the cation-(13)C distances. An analysis of the frequency-dependent relaxation data allowed all of the ten Mn(II)-(13)C distances to be determined in each of the complexes. Similar measurements of the (31)P relaxation rate made on AKe.ATP and AKe.AMP.GDP complexes in the presence of Co(II) as the activating cation yielded Co(II)-(31)P distances for each adenine nucleotide. These distances, together with the interproton distances determined previously from TRNOESY experiments [Lin, Y., and Nageswara Rao, B. D. (2000) Biochemistry 39, 3636-3646], led to a complete characterization of both ATP and AMP conformations in AKe-bound complexes. These conformations differ significantly from the nucleotide conformations in crystals of AKe. AP(5)A and AKe.AMP.AMPPNP as determined by X-ray crystallography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号