首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The human frontal bone from al’a, Slovak Republic, has previously entered into discussions of the morphological patterns of Central European Neandertals and the origins of early modern humans in that region. A morphological reassessment of its supraorbital region and a morphometric analysis of its overall proportions indicate that it falls well within expected ranges of variation of Late Pleistocene Neandertals and is separate from European earlier Upper Paleolithic early modern human crania. It is similar to the Qafzeh-Skhul sample in some metrical and supraorbital robusticity measures, but it contrasts with them in mid-sagittal curvature and supraorbital torus morphology. In the context of its probable oxygen isotope stage 5 age based on inferred biostratigraphic associations, it should not be employed directly for arguments relating to the emergence of modern humans in Central Europe.  相似文献   

2.
South-Central European fossil hominids dated to the Upper Pleistocene exhibit a distinct morphological and metric continuum in supraorbital form from early Neandertal (Krapina), through late Neandertals (Vindija), to early Upper Paleolithic hominids. The supraorbital morphologies pertinent to this continuum are documented, and the alterations in size and morphology are discussed ralative to the function of supraorbital superstructures and their relationship to overall craniofacial form. It is concluded that this continuum most likely reflects localized transition between Neandertals and modern man in this region of Europe.  相似文献   

3.
Increased longevity, expressed as the number of individuals surviving to older adulthood, represents a key way that Upper Paleolithic Europeans differ from earlier European (Neandertal) populations. Here, we address whether longevity increased as a result of cultural/adaptive change in Upper Paleolithic Europe, or whether it was introduced to Europe as a part of modern human biology. We compare the ratio of older to younger adults (OY ratio) in an early modern human sample associated with the Middle Paleolithic from Western Asia with OY ratios of European Upper Paleolithic moderns and penecontemporary Neandertals from the same region. We also compare these Neandertals to European Neandertals. The difference between the OY ratios of modern humans of the Middle and Upper Paleolithic is large and significant, but there is no significant difference between the Neandertals and early modern humans of Western Asia. Longevity for the West Asian Neandertals is significantly more common than for the European Neandertals. We conclude that the increase in adult survivorship associated with the Upper Paleolithic is not a biological attribute of modern humans, but reflects important cultural adaptations promoting the demographic and material representations of modernity.  相似文献   

4.
The late Neandertal sample from Vindija (Croatia) has been described as transitional between the earlier Central European Neandertals from Krapina (Croatia) and modern humans. However, the morphological differences indicating this transition may rather be the result of different sex and/or age compositions between the samples. This study tests the hypothesis that the metric differences between the Krapina and Vindija mandibular samples are due to sample bias. Mandibles are the focus of this paper because past studies have posited this region as particularly indicative of the Vindija sample's transitional nature. The results indicate that the metric differences between the Krapina and Vindija mandibular samples are not due to sample bias. This conclusion is consistent with an earlier analysis of sample bias for the Vindija supraorbital sample.  相似文献   

5.
The craniometric affinities among Neandertals. Upper Palcolithic Europeans, early anatomically modern Southwest Asians, and archaic and modern Africans are investigated using univariate and multivariate methods. For the first time, it is possible to analyse the North African finds Dar-es-Soltane 5, Nazlet Khater, and Wadi Kubbaniya. It was not possible to include the Neandertals from Central Europe due to their poor state of preservation. The results point to, first, a basic distinction between Neandertals on the one hand and modern humans from all geographic regions on the other, and, secondly, to great similarities between modern African and European populations. Late archaic sapiens specimens from Africa were more similar to Upper Paleolithic Europeans than were the Neandertals. The results do not support the hypothesis that a regional evolution giving rise to modern humans took place in Europe. The results are, however, consistent with the hypothesis that modern populations originated in Africa and spread to Europe from there.  相似文献   

6.
Implicit in much of the discussion of the cultural and population biological dynamics of modern human origins in Europe is the assumption that the Aurignacian, from its very start, was made by fully modern humans. The veracity of this assumption has been challenged in recent years by the association of Neandertal skeletal remains with a possibly Aurignacian assemblage at Vindija Cave (Croatia) and the association of Neandertals with distinctly Upper Paleolithic (but non-Aurignacian) assemblages at Arcy-sur-Cure and St. C?esaire (France). Ideally we need human fossil material that can be confidently assigned to the early Aurignacian to resolve this issue, yet in reality there is a paucity of well-provenanced human fossils from early Upper Paleolithic contexts. One specimen, a right humerus from the site of Vogelherd (Germany), has been argued, based on its size, robusticity, and muscularity, to possibly represent a Neandertal in an Aurignacian context. The morphological affinities of the Vogelherd humerus were explored by univariate and multivariate comparisons of humeral epiphyseal and diaphyseal shape and strength measures relative to humeri of Neandertals and Early Upper Paleolithic (later Aurignacian and Gravettian) modern humans. On the basis of diaphyseal cross-sectional geometry, deltoid tuberosity morphology, and distal epiphyseal morphology, the specimen falls clearly and consistently with European early modern humans and not with Neandertals. Along with the other Vogelherd human remains, the Vogelherd humerus represents an unequivocal association between the Aurignacian and modern human morphology in Europe.  相似文献   

7.
8.
The juvenile occipital bone from the site of Malladetes in Valencia (Spain) is described and compared with other European Pleistocene representatives of the genus Homo. This specimen derives from a Gravettian cultural context and has been AMS radiocarbon-dated to 25,120 +/- 240 years BP. As such, it provides evidence on early modern human anatomy from the Central Mediterranean region of the Iberian peninsula. The clear evidence for a late survival of Neandertals in southern Iberia, has led to considerable debate surrounding the biological and cultural interactions between these Pleistocene humans and their early modern human successors, and it is within this context that the Malladetes specimen represents an important contribution to the discussion. The recently discovered Upper Paleolithic infant from the site of Lagar Velho in Portugal is said to show a mosaic of Neandertal and early modern human characteristics throughout the skeleton and is argued to represent the strongest evidence yet recovered in favor of hybridization between these two Pleistocene populations. Our analysis of the Malladetes occipital, however, reveals no evidence of Neandertal genetic influence.  相似文献   

9.
The East Mediterranean Levant is a small region, but its paleoanthropological record looms large in debates about the origin of modern humans and the fate of the Neandertals. For most of the twentieth century, the Levantine paleoanthropological record supported models of continuity and evolutionary transition between Neandertals and early modern humans. Recent advances in radiometric dating have challenged these models by reversing the chronological relationship between Levantine Neandertals and early modern humans. This revised chronostratigraphy for Levantine Middle Paleolithic human fossils raises interesting questions about the evolutionary relationship between Neandertals and early modern humans. A reconsideration of this relationship moves us closer to understanding the long delay between the origin of morphologically modern‐looking humans during the Middle Paleolithic (>130 Kyr) and the adaptive radiation of modern humans into Eurasia around the time of the transition from the Middle to Upper Paleolithic (50 to 30 Kyr).  相似文献   

10.
Paleoanthropologists have long noted the unique "hyper-barrel-shaped" Neandertal thorax as inferred from fragmentary ribs, clavicles, and sterna. Yet scholars disagree whether the Neandertal thorax represents an adaptation to cold climates or elevated activity levels. Given the difficulties of reconstructing overall chest shape from isolated and fragmentary thoracic skeletal elements, it is worthwhile comparing Neandertals and contemporaneous early modern human fossils from the same geographic region to recent modern human skeletons that are known to have enlarged chests. This study compares thoracic skeletal morphology in two Near Eastern Neandertals (Tabūn C1 and Shanidar 3) and two early modern humans from the same region (Skhūl IV and V) with four samples of recent modern human skeletons from the Andes (n=347): two coastal groups and two groups from high altitudes. The two highland groups, similar to their living descendants, exhibit morphological evidence of anteroposteriorly deep and mediolaterally wide chests as part of respiratory adaptations to high-altitude hypoxia. I calculated the percentage of deviation of each Neandertal and early modern human fossil from the means of the four recent modern human samples for clavicle and rib lengths and curvatures. Shanidar 3 and Tabūn C1 exhibit ribs that are slightly larger and less curved than the Andean samples, indicating slightly larger thoracic skeletons than modern humans who are known to have enlarged chests in response to increased respiratory demands. Skhūl IV and V have significantly shorter ribs with greater curvature suggesting especially narrow thoracic skeletons. Comparisons with Andean populations suggest that the enlarged thoraces of Neandertals may reflect high activity levels, although results from this study do not exclude cold adaptation as an explanatory factor.  相似文献   

11.
Our understanding of the functional morphology of the primate supraorbital region is based largely on previous morphometric and in vivo mechanical tests of hypotheses in non-human anthropoids. Prior tests of two structural hypotheses explaining morphological variation in the supraorbital region, the craniofacial size hypothesis and the spatial hypothesis, did not fully consider modern humans. We extend these previous findings to include modern humans by conducting morphometric tests of these two hypotheses in a sample of adult Melanesian crania. Morphometric correlates of structural predictions for the craniofacial size and spatial hypotheses were developed and compared to measurements of the supraorbital region via bivariate product-moment correlations. Measurements of the supraorbital region are significantly correlated with a craniofacial size estimate across individuals from this Melanesian sample. This result supports the prediction of the craniofacial size hypothesis that the magnitude of the supraorbital region is proportional to craniofacial size. The predicted link between the degree of neural-orbital disjunction and the magnitude of the supraorbital region, explicated in the spatial hypothesis, receives mixed support in the correlation analysis. These two results agree with previous research indicating that support for the craniofacial size and spatial hypotheses can be found across and within anthropoid primate species, including modern humans. Correlational support for both the craniofacial size and spatial hypotheses suggests multiple factors influence variation in the modern human supraorbital region. Thus, a single hypothesis cannot fully account for modern human variation in this region. The low bivariate correlation coefficients in this study further question whether existing hypotheses can adequately explain morphological variation in the supraorbital region in a primate population sample. Novel functional, structural, behavioral and developmental ideas must be explored if we are to better understand morphological variation in the modern human supraorbital region.  相似文献   

12.
This study uses elliptical Fourier analysis to quantify shape differences observed in the P(4) crown of Neandertals and anatomically modern humans. Previously, P(4) shape was assessed qualitatively, and results suggested marked differences between Neandertals and anatomically modern humans (Bailey [2002] New Anat. 269:148-156). The goal of this study was to investigate the P(4) shape in more detail, quantifying it in order to determine its utility for taxonomic classification and phylogenetic analysis. A comparison of mean shapes confirms that the mesiolingual portion of the P(4) is truncated in Neandertals, and that this produces a distinctively asymmetrical P(4). A randomization test confirms that the shape difference between Neandertals and anatomically modern humans is significant. Principal component and discriminant function analyses indicate that the relative size of the lingual portion of the tooth also affects tooth shape, with the lingual portion of the Neandertal P(4) being narrower than that of anatomically modern humans. Classification of P(4) crown shapes using discriminant functions analysis is far from perfect. While 86.4% of the teeth were correctly classified, classification was much better for anatomically modern humans (98.1%) than it was for Neandertals (65%). Fortunately, crown shape is but one of several diagnostic characters of the P(4) crown. P(4) crown asymmetry can be added to the growing list of dental morphological characters distinguishing Neandertals from anatomically modern humans. Moreover, based on a comparison of mean tooth shapes in fossil and recent humans, symmetry, rather than asymmetry, appears to be the primitive state, and the high frequency of P(4) asymmetry is likely derived in Neandertals.  相似文献   

13.
The late Neandertal sample from Vindija (Croatia) has been described as transitional between the earlier Central European Neandertals from Krapina (Croatia) and modern humans. However, the morphological differences indicating this transition may rather be the result of different sex and/or age compositions between the samples. This study tests the hypothesis that the metric differences between the Krapina and Vindija supraorbital samples are due to sampling bias. We focus upon the supraorbital region because past studies have posited this region as particularly indicative of the Vindija sample's transitional nature. Furthermore, the supraorbital region varies significantly with both age and sex.We analyzed four chords and two derived indices of supraorbital torus form as defined by Smith & Ranyard (1980, Am. J. phys. Anthrop.93, pp. 589-610). For each variable, we analyzed relative sample bias of the Krapina and Vindija samples using three sampling methods. In order to test the hypothesis that the Vindija sample contains an over-representation of females and/or young while the Krapina sample is normal or also female/young biased, we determined the probability of drawing a sample of the same size as and with a mean equal to or less than Vindija's from a Krapina-based population. In order to test the hypothesis that the Vindija sample is female/young biased while the Krapina sample is male/old biased, we determined the probability of drawing a sample of the same size as and with a mean equal or less than Vindija's from a generated population whose mean is halfway between Krapina's and Vindija's. Finally, in order to test the hypothesis that the Vindija sample is normal while the Krapina sample contains an over-representation of males and/or old, we determined the probability of drawing a sample of the same size as and with a mean equal to or greater than Krapina's from a Vindija-based population. Unless we assume that the Vindija sample is female/young and the Krapina sample is male/old biased, our results falsify the hypothesis that the metric differences between the Krapina and Vindija samples are due to sample bias.  相似文献   

14.
No evidence of Neandertal mtDNA contribution to early modern humans   总被引:2,自引:1,他引:1  
The retrieval of mitochondrial DNA (mtDNA) sequences from four Neandertal fossils from Germany, Russia, and Croatia has demonstrated that these individuals carried closely related mtDNAs that are not found among current humans. However, these results do not definitively resolve the question of a possible Neandertal contribution to the gene pool of modern humans since such a contribution might have been erased by genetic drift or by the continuous influx of modern human DNA into the Neandertal gene pool. A further concern is that if some Neandertals carried mtDNA sequences similar to contemporaneous humans, such sequences may be erroneously regarded as modern contaminations when retrieved from fossils. Here we address these issues by the analysis of 24 Neandertal and 40 early modern human remains. The biomolecular preservation of four Neandertals and of five early modern humans was good enough to suggest the preservation of DNA. All four Neandertals yielded mtDNA sequences similar to those previously determined from Neandertal individuals, whereas none of the five early modern humans contained such mtDNA sequences. In combination with current mtDNA data, this excludes any large genetic contribution by Neandertals to early modern humans, but does not rule out the possibility of a smaller contribution.  相似文献   

15.
The morphology of the proximal ulna has been shown to effectively differentiate archaic or premodern humans (such as Homo heidelbergensis and H. neanderthalensis) from modern humans (H. sapiens). Accordingly, the morphology of adjacent, articulating elements should be able to distinguish these two broad groups as well. Here we test the taxonomic utility of another portion of the elbow, the distal humerus, as a discriminator of archaic and modern humans. Principal components analysis was employed on a suite of log-raw and log-shape distal humeral measures to examine differences between Neandertal and modern human distal humeri. In addition, the morphological affinities of Broken Hill (Kabwe) E.898, an archaic human distal humeral fragment from the middle Pleistocene of Zambia, and five Pliocene and early Pleistocene australopith humeri were assessed. The morphometric analyses effectively differentiated the Neandertals from the other groups, while the Broken Hill humerus appears morphologically similar to modern human distal humeri. Thus, an archaic/modern human dichotomy-as previously reported for proximal ulnar morphology-is not supported with respect to distal humeral morphology. Relative to australopiths and modern humans, Neandertal humeri are characterized by large olecranon fossae and small distodorsal medial and lateral pillars. The seeming disparity in morphological affinities of proximal ulnae (in which all archaic human groups appear distinct from modern humans) and distal humeri (in which Neandertals appear distinct from modern humans, but other archaic humans do not) is probably indicative of a highly variable, possibly transitional population of which our knowledge is hampered by sample-size limitations imposed by the scarcity of middle-to-late Pleistocene premodern human fossils outside of Europe.  相似文献   

16.
魏偏偏 《人类学学报》2020,39(4):616-631
1960年,在云南省丽江市发现了三根古人类股骨,通过地层观察,仅PA108可归为更新世晚期。前人对PA108做了初步报导,为了进一步了解丽江人股骨的演化分类地位和东亚早期现代人股骨形态变异,本文对PA108的内外结构进行了详尽的分析。研究发现,PA108具有明显的早期现代人特征,即明显的股骨粗线、骨干中部后侧骨密质最厚和中部横断面轮廓形状偏椭圆。PA108标本也有一定的特殊性,体现在骨干中近端和中部骨密质厚度分布上,这可能与其股骨嵴发育较弱有关,这一特征也导致了PA108与其他东亚早期现代人之间的形态差异,这些形态变异进一步扩大了目前已知的东亚地区早期现代人变异范围。同时,在采用骨密质厚度分布模式进行分类时,建议关注股骨骨干中部骨密质最厚部位。  相似文献   

17.
The globular braincase of modern humans is distinct from all fossil human species, including our closest extinct relatives, the Neandertals. Such adult shape differences must ultimately be rooted in different developmental patterns, but it is unclear at which point during ontogeny these group characteristics emerge.Here we compared internal shape changes of the braincase from birth to adulthood in Neandertals (N = 10), modern humans (N = 62), and chimpanzees (N = 62). Incomplete fossil specimens, including the two Neandertal newborns from Le Moustier 2 and Mezmaiskaya, were reconstructed using reference-based estimation methods. We used 3D geometric morphometrics to statistically compare shapes of virtual endocasts extracted from computed-tomographic scans. Throughout the analysis, we kept track of possible uncertainties due to the missing data values and small fossil sample sizes.We find that some aspects of endocranial development are shared by the three species. However, in the first year of life, modern humans depart from this presumably ancestral pattern of development. Newborn Neandertals and newborn modern humans have elongated braincases, and similar endocranial volumes. During a ‘globularization-phase’ modern human endocasts change to the globular shape that is characteristic for Homo sapiens. This phase of early development is unique to modern humans, and absent from chimpanzees and Neandertals.Our results support the notion that Neandertals and modern humans reach comparable adult brain sizes via different developmental pathways. The differences between these two human groups are most prominent directly after birth, a critical phase for cognitive development.  相似文献   

18.
The Mezmaiskaya cave mtDNA is similar in many ways to the Feldhofer cave Neandertal sequence and the more recently obtained Vindija cave sequence. If we accept the contention that the Mezmaiskaya cave specimen is a Neandertal infant, its mtDNA provides no new information about the fate of the European Neandertals. However, there is reason to believe that the Mezmaiskaya cave infant is not a Neandertal, and this places its importance in another light, because it delimits the possible hypotheses of Neandertal and recent human genetic relationships. One possibility is a that the pattern found in ancient mtDNA results from the replacement of an isolated gene pool (Neandertals) by one of its contemporaries (modern humans). A second possibility is natural selection expressed as the substitution of an advantageous mtDNA variant within a single large species, including both Neandertals and modern humans. The geologic, archaeological, and dating evidence shows the Mezmaiskaya cave infant to be a burial from a level even more recent than the Upper Paleolithic preserved at the site, and its anatomy does not contradict the assessment that the Mezmaiskaya cave infant is not a Neandertal. Therefore, the second pattern can be favored over the first.  相似文献   

19.
20.
Studies of cranial differences between modern humans and Neandertals have identified several characteristics for which the two groups differ in their mean values, the proportional relationships with other traits, or both. However, the limited number of fairly complete Neandertals has hindered investigations into patterns of integration – covariance and correlation among traits – in this fossil group. Here, we use multiple approaches specifically designed to deal with fragmentary fossils to test if metric cranial traits in Neandertals fit modern human patterns of integration. Based on 37 traits collected from a sample of 2524 modern humans from Howells’ data set and 20 Neandertals, we show that overall patterns of cranial integration are significantly different between Neandertals and modern humans. However, at the same time, Neandertals are consistent with a modern human pattern of integration for more than three-quarters of the traits. Additionally, the differences between the predicted and actual values for the deviating traits are rather small, indicating that the differences in integration are subtle. Traits for which Neandertals deviate from modern human integration patterns tend to be found in regions where Neandertals and modern humans are known to also differ in their mean values. We conclude that the evolution of patterns of cranial integration is a cause for caution but also presents an opportunity for understanding cranial differences between modern humans and Neandertals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号