首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Voltage-dependent membrane currents of cells dissociated from tongues of larval tiger salamanders (Ambystoma tigrinum) were studied using whole-cell and single-channel patch-clamp techniques. Nongustatory epithelial cells displayed only passive membrane properties. Cells dissociated from taste buds, presumed to be gustatory receptor cells, generated both inward and outward currents in response to depolarizing voltage steps from a holding potential of -60 or -80 mV. Almost all taste cells displayed a transient inward current that activated at -30 mV, reached a peak between 0 and +10 mV and rapidly inactivated. This inward current was blocked by tetrodotoxin (TTX) or by substitution of choline for Na+ in the bath solution, indicating that it was a Na+ current. Approximately 60% of the taste cells also displayed a sustained inward current which activated slowly at about -30 mV and reached a peak at 0 to +10 mV. The amplitude of the slow inward current was larger when Ca2+ was replaced by Ba2+ and it was blocked by bath applied CO2+, indicating it was a Ca2+ current. Delayed outward K+ currents were observed in all taste cells although in about 10% of the cells, they were small and activated only at voltages more depolarized than +10 mV. Normally, K+ currents activated at -40 mV and usually showed some inactivation during a 25-ms voltage step. The inactivating component of outward current was not observed at holding potentials more depolarized -40 mV. The outward currents were blocked by tetraethylammonium chloride (TEA) and BaCl2 in the bath or by substitution of Cs+ for K+ in the pipette solution. Both transient and noninactivating components of outward current were partially suppressed by CO2+, suggesting the presence of a Ca2(+)-activated K+ current component. Single-channel currents were recorded in cell-attached and outside-out patches of taste cell membranes. Two types of K+ channels were partially characterized, one having a mean unitary conductance of 21 pS, and the other, a conductance of 148 pS. These experiments demonstrate that tiger salamander taste cells have a variety of voltage- and ion-dependent currents including Na+ currents, Ca2+ currents and three types of K+ currents. One or more of these conductances may be modulated either directly by taste stimuli or indirectly by stimulus-regulated second messenger systems to give rise to stimulus-activated receptor potentials. Others may play a role in modulation of neurotransmitter release at synapses with taste nerve fibers.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Transient outward currents in rat saphenous arterial myocytes were studied using the perforated configuration of the patch-clamp method. When myocytes were bathed in a Na-gluconate solution containing TEA to block large-conductance Ca2+-activated K+ (BK) currents, depolarizing pulses positive to +20 mV from a holding potential of -100 mV induced fast transient outward currents. The activation and inactivation time constants of the current were voltage dependent, and at +40 mV were 3.6 +/- 0.8 ms and 23.9 +/- 6.4 ms (n = 4), respectively. The steady-state inactivation of the transient outward current was steeply voltage dependent (z = 1.7), with 50% of the current inactivated at -55 mV. The current was insensitive to the A-type K+ channel blocker 4-AP (1-5 mM), and was modulated by external Ca, decreasing to approximately 0.85 of control values upon raising Ca2+ from 1 to 10 mM, and increasing approximately 3-fold upon lowering it to 0.1 mM. Transient outward currents were also recorded following replacement of internal K+ with either Na+ or Cs+, raising the possibility that the current was carried by monovalent ions passing through voltage-gated Ca2+ channels. This hypothesis was supported by the finding that the transient outward current had the same inactivation rate as the inward Ba2+ current, and that both currents were effectively blocked by the L-type Ca2+ channel blocker, nifedipine and enhanced by the agonist BAYK8644.  相似文献   

3.
IKx is a voltage-dependent K+ current in the inner segment of rod photoreceptors that shows many similarities to M-current. The depression of IKx by external Ba2+ was studied with whole-cell voltage clamp. Ba2+ reduced the conductance and voltage sensitivity of IKx tail currents and shifted the voltage range over which they appeared to more positive potentials. These effects showed different sensitivities to Ba2+: conductance was the least sensitive (K0.5 = 7.6 mM), voltage dependence intermediate (K0.5 = 2.4 mM) and voltage sensitivity the most sensitive (K0.5 = 0.2 mM). Ca2+, Co2+, Mn2+, Sr2+, and Zn2+ did not have actions comparable to Ba2+ on the voltage dependence or the voltage sensitivity of IKx tail currents. In high K+ (100 mM), the voltage range of activation of IKx was shifted 20 mV negative, as was the tau-voltage relation. High K+ did not prevent the effect of Ba2+ on conductance, but abolished its ability to affect voltage dependence and voltage sensitivity. Ba2+ also altered the apparent time-course of activation and deactivation of IKx. Low Ba2+ (0.2 mM) slowed both deactivation and activation, with most effect on deactivation; at higher concentrations (1-25 mM), deactivation and activation time courses were equally affected, and at the highest concentrations, 5 and 25 mM Ba2+, the time course became faster than control. Rapid application of 5 mM Ba2+ suggested that the time dependent currents in Ba2+ reflect in part the slow voltage-dependent block and unblock of IKx channels by Ba2+. This blocking action of Ba2+ was steeply voltage- dependent with an apparent electrical distance of 1.07. Ba2+ appears to interact with IKx channels at multiple sites. A model which assumes that Ba2+ has a voltage-independent and a voltage-dependent blocking action on open or closed IKx channels reproduced many aspects of the data; the voltage-dependent component could account for both the Ba(2+)- induced shift in voltage dependence and reduction in voltage sensitivity of IKx tail currents.  相似文献   

4.
1. Effects of bath-applied phorbol dibutyrate (PDBu) on M currents (IM) and on the inhibition of IM by muscarine and luteinizing hormone-releasing hormone (LHRH) were recorded in voltage-clamped bullfrog lumbar sympathetic ganglion cells. 2. PDBu (0.1-30 microM) produced a slowly developing, irreversible and partial (less than or equal to 60%) inhibition of IM. This effect was not replicated by 4-alpha-phorbol or by vehicle. 3. After treatment with PDBu, residual IM showed a reduced sensitivity to inhibition by muscarine or LHRH but not by Ba2+. The reduced response to muscarine appeared to result from a 10-fold shift in the concentration dependence for inhibition. 4. PDBu did not clearly reproduce the ability of muscarine to inhibit the slow, Ca-activated K current IAHP or to increase the leak conductance at hyperpolarized potentials. The latter effect of muscarine was enhanced, rather than inhibited, by PDBu. 5. IM and IAHP were not inhibited by 1 mM dibutyryl cyclic AMP or by 20 microM forskolin. 6. It is concluded that activation of protein kinase C, but not protein kinase A, partly replicates the effect of muscarine on frog sympathetic neurons.  相似文献   

5.
There have been periodic reports of nonclassic (4-aminopyridine insensitive) transient outward K+ current in guinea pig ventricular myocytes, with the most recent one describing a novel voltage-gated inwardly rectifying type. In the present study, we have investigated a transient outward current that overlaps inward Ca2+ current (I(Ca,L)) in myocytes dialyzed with 10 mM K+ solution and superfused with Tyrode's solution. Although depolarizations from holding potential (Vhp) -40 to 0 mV elicited relatively small inward I(Ca,L) in these myocytes, removal of external K+ or addition of 0.2 mM Ba2+ more than doubled the amplitude of the current. The basis of the enhancement of I(Ca,L) was the suppression of a large transient outward K+ current. Similar enhancement was observed when Vhp was moved to -80 mV and test depolarizations were preceded by short prepulses to -40 mV. Investigation of the time and voltage properties of the outward K+ transient indicated that it was inwardly rectifying and unlikely to be carried by voltage-gated channels. The outward transient was attenuated in myocytes dialyzed with high-Mg2+ solution, accelerated in myocytes dialyzed with 100 microM spermine solution, and abolished with time in myocytes dialyzed with ATP-free solution. These and other findings suggest that the outward transient is a component of classic "time-independent" inwardly rectifying K+ current.  相似文献   

6.
7.
On the resting potential of isolated frog sympathetic neurons   总被引:4,自引:0,他引:4  
S W Jones 《Neuron》1989,3(2):153-161
One of the oldest questions of electrophysiology, the origin of the resting potential, has yet to be answered satisfactorily for most cells. Isolated frog sympathetic neurons, studied with whole-cell recording, generally have resting potentials of approximately -75 mV with an input resistance of approximately 300 M omega. These properties are not expected from the M-type K+ current (IM) or from other ionic currents previously described in these cells. In the -60 to -110 M mV voltage region, at least three currents are present: an inwardly rectifying current (IQ), a resting current with little voltage sensitivity carried at least in part by K+, and a (Na+,K+)ATPase pump current. The resting K+ current, not IM or IQ is the primary ionic current near the resting potential under these conditions. The electrogenic pump contributes an additional approximately 10 mV of hyperpolarization.  相似文献   

8.
A single channel current was studied in the membrane of the immature oocyte of the european frog (Rana esculenta) by using the "patch clamp" technique in the "cell attached" configuration. Single channel activity appeared as short outward currents when membrane potential was made positive inside; full activation required seconds to be complete, no inactivation being appreciable. Deactivation (or current block) upon membrane repolarization was so fast that no inward current could be detected in any case. The reversal potential, estimated by interpolating the I/V diagrams, was -30 mV using standard Ringer as electrode filling solution, and the elementary conductance was 95 pS. Neither reversal potential nor elementary conductance were affected by removal of external Ca2+ (Mg2+ or Ba2+ substitution) or external Cl- (methanesulphonate substitution). The reversal potential moved towards positive potentials by substituting external Na+ with K+, the magnitude of the shifts being consistent with a ratio PK/PNa = 6.4. A distinctive property of the current/voltage relation for this K-current is its anomalous bell-shape, the outward current displaying a maximum at membrane potentials around 75 mV with standard Ringer as electrode filling solution and tending to zero with more positive potentials.  相似文献   

9.
External barium ions inhibit K+ currents of Xenopus oocytes expressing ShH4 delta 6-46, the non-inactivating deletion of the Shaker K+ channel. At the macroscopic level, Ba2+ block comprises both a fast and a slow component. The fast component is less sensitive to Ba2+ (apparent dissociation constant at 0 mV, K(0), approximately 19.1 mM) than the slow component and is also less voltage dependent (apparent electrical distance, delta, approximately 0.14). The slow component (K(0), approximately 9.4 mM, delta approximately 0.25) is relieved by outward K+ current, which suggests that the corresponding binding site resides within the channel conduction pathway. At the single channel level, the fast component of block is evidenced as an apparent reduction in amplitude, suggesting an extremely rapid blocking and unblocking reaction. In contrast, the slow component appears to be associated with long blocked times that are present from the beginning of a depolarizing command. Installation of the slow component is much slower than a diffusion limited process; for example, the blocking time constant (tau) produced by 2 mM Ba2+ is approximately 159 s (holding potential, HP = -90 mV). However, the blocking rate of this slow component is not a linear function of external Ba2+ and tends to saturate at higher concentrations. This is inconsistent with a simple bi-molecular blocking reaction. These features of external Ba2+ block can be accounted for by a simple model of two sequential Ba2+ binding sites, where the deeper of the two sites produces the slow component of block.  相似文献   

10.
11.
Enterocytes from the winter flounder (Pseudopleuronectes americanus) were isolated by collagenase digestion and maintained in flounder Ringer's solution. Whole cell currents were studied using the amphotericin-perforated whole-cell patch clamp technique. The mean resting membrane potential and capacitance values or dissociated cells were-45±7 mV and 5±0.4 pF, respectively. Enterocytes held at-20 mV and treated with 1 mol·l-1 ionomycin exhibited outward currents when cells were stepped through a series of voltages from-60 to +110 mV. The reversal potential of this current in flounder Ringer's solution was-55 mV and the voltage at which half-maximal activation occurred was +20 mV. Voltage-dependent inhibition of outward current was observed at +60 mV and above. When cells were bathed in symmetric K Ringer's solution the reversal potential shifted to zero mV and no inhibition of current was observed at voltages between-60 and 140 mV. When the holding potential of the cell was changed from-20 to-80 mV and stepped from-60 to +110 mV, a second [previously characterized, O'Grady et al. (1991)] K current with delayed-rectifier properties was identified. This observation demonstrated that the delayed rectifier K channel and the Ca2+-activated K channel described in this study exist in the same cell. Extracellular addition of 2 mmol·l-1 Ba2+ to cells bathed in symmetric K Ringer's solution resulted in nearly complete inhibition of outward current. Charybdotoxin produced only minor effects on this current. Addition of 8-Br cGMP to the bathing solution also inhibited outward current and this effect could be partially reversed following washout of 8-Br cGMP from the bathing solution. The results of this study indicated that a Ca2+-activated K conductance in winter flounder enterocytes is potentially inhibited by agents that increase intracellular cGMP. A similar effect of cGMP on a delayed rectifier K channel in flounder enterocytes was previously demonstrated.Abbreviations ANP atrial natriuretic peptide - CTX charybdotoxin - EPPS N-2-hydroxyethylpiperazine-N-3-propanesulfonic acid  相似文献   

12.
Alison Taylor  Colin Brownlee 《Planta》1993,189(1):109-119
The electrical properties of unfertilized eggs of Fucus serratus L. were characterized using voltage clamp and current clamp with single electrodes. The plasma membrane of the unfertilized egg is excitable. Depolarizing the egg in current clamp induced a transient depolarizing voltage response, the amplitude of which was dependent on the presence of external Ca2+ or Ba2+ and was blocked by La3+. The repolarizing phase was blocked by tetraethylammonium ions. Repeated stimulation at frequencies greater than 0.5 Hz caused a transient loss of excitability. Voltage-clamp experiments revealed that an inward current with an activation threshold of -35 mV underlies the depolarizing phase of the voltage response. This current showed rapid activation and slow inactivation. The current was blocked by La3+ and could be carried by Ca2+ and Ba2+ but not by Sr2+ or Na+. Further depolarization to values more positive than-5 mV induced a slowly activating outward K+ current in addition to the inward current, which corresponded to the repolarizing phase of the voltage response. This K+ current showed little or no inactivation during stimulation and slow deactivation on return to the resting potential. Hyperpolarizing the egg elicited an inward current. On fertilization, the Fucus egg generates a depolarizing fertilization potential. Voltage-clamp experiments revealed an inward fertilization current underlying the fertilization potential. Within 15 min of fertilization a dramatic, irreversible increase in resting K+ permeability developed. The roles of the plasma-membrane channels in generation of the fertilization potential and egg activation are discussed.Abbreviations and Symbols ASW artificial seawater - SECC single-electrode current clamp - SEVC single-electrode voltage clamp - TEA tetraethylammonium - Vm membrane potential This work was supported by The Marine Biological Association U.K., Science and Engineering Research Council U.K. and The Royal Society of London.  相似文献   

13.
In whole cell patch clamp recordings on enzymatically dissociated adrenal zona fasciculata (AZF) cells, a rapidly inactivating A-type K+ current was observed in each of more than 150 cells. Activation of IA was steeply voltage dependent and could be described by a Boltzmann function raised to an integer power of 4, with a midpoint of -28.3 mV. Using the "limiting logarithmic potential sensitivity," the single channel gating charge was estimated to be 7.2 e. Voltage-dependent inactivation could also be described by a Boltzmann function with a midpoint of -58.7 mV and a slope factor of 5.92 mV. Gating kinetics of IA included both voltage-dependent and -independent transitions in pathways between closed, open, and inactivated states. IA activated with voltage-dependent sigmoidal kinetics that could be fit with an n4h formalism. The activation time constant, tau a, reached a voltage- independent minimum at potentials positive to 0 mV. IA currents inactivated with two time constants that were voltage independent at potentials ranging from -30 to +45 mV. At +20 mV, tau i(fast) and tau i(slow) were 13.16 +/- 0.64 and 62.26 +/- 5.35 ms (n = 34), respectively. In some cells, IA inactivation kinetics slowed dramatically after many minutes of whole cell recording. Once activated by depolarization, IA channels returned to the closed state along pathways with two voltage-dependent time constants which were 0.208 s, tau rec-f and 10.02 s, tau rec-s at -80 mV. Approximately 90% of IA current recovered with slow kinetics at potentials between -60 and -100 mV. IA was blocked by 4-aminopyridine (IC50 = 629 microM) through a mechanism that was strongly promoted by channel activation. Divalent and trivalent cations including Ni2+ and La3+ also blocked IA with IC50's of 467 and 26.4 microM, respectively. With respect to biophysical properties and pharmacology, IA in AZF cells resembles to some extent transient K+ currents in neurons and muscle, where they function to regulate action potential frequency and duration. The function of this prominent current in steroid hormone secretion by endocrine cells that may not generate action potentials is not yet clear.  相似文献   

14.
Depolarization-activated outward currents of bushy neurones of 6-14-day-old Wistar rats have been investigated in a brain slice preparation. Under current-clamp, the cells produced a single action potential at the beginning of suprathreshold depolarizing current steps. On voltage-clamp depolarizations, the cells produced a mixed outward K+ current that included a component with rapid activation and rapid inactivation, little TEA+ sensitivity, a half-inactivation voltage of -77 +/- 2 mV (T = 25 degrees C; n = 7; Mean +/- S.E.M.) and single-exponential recovery from inactivation (taurecovery= 12 +/- 1 ms at -100 mV; n=3). This transient component was identified as an A-type K+ current. Bushy cells developed a high-threshold TEA-sensitive K+ current that exhibited less prominent inactivation. These characteristics suggested that this current was associated with the activation of delayed rectifier K+ channels. Bushy neurones also possessed a low-threshold outward K+ current that showed partial inactivation and high 4-aminopyridine sensitivity. Part of this current component was blocked by 200 nmol/l dendrotoxin-I. Application of 100 micromol/l 4-aminopyridine changed the firing behaviour of the bushy neurones from the primary-like pattern to a much less rapidly adapting one, suggesting that the low-threshold current might have important roles in maintaining the physiological function of the cells.  相似文献   

15.
The effect of ionomycin on the human KCNQ4 channels expressed in Xenopus leavis oocytes was investigated. KCNQ4 channels expressed in Xenopus oocytes were measured using two-electrode voltage clamp. The activation of KCNQ4 current had slow activation kinetics and low threshold (approximately -50 mV). The expressed current of KCNQ4 showed the half-maximal activation (V(1/2)) was -17.8 mV and blocked almost completely by KCNQ4 channel blockers, linopirdine (300 microM) or bepridil (200 microM). The significant increase of KCNQ4 outward current induced by ionomycin (calcium salt) is about 1.7-fold of control current amplitude at +60 mV and shifted V(1/2) by approximately -8 mV (from -17.8 to -26.0 mV). This effect of ionomycin could be reversed by the further addition of BAPTA-AM (0.3 mM), a membrane-permeable calcium chelator. Furthermore, the increased effect of ionomycin on KCNQ4 current is abolished by pretreatment of linopirdine or bepridil. In contrast, direct cytoplasmic injection of calcium medium (up to 1 mM calcium, 50 nl) did not mimic the effect of ionomycin. In conclusion, the effect of ionomycin on enhancement of KCNQ4 current is independent of intracellular calcium mobilization and possibly acts on intramembrane hydrophobic site of KCNQ4 protein expressed in Xenopus oocytes.  相似文献   

16.
1. The neurons of the retina have electrical properties that are different from those of most of the other neurons of the central nervous system. To identify the voltage-gated ion channels found in the retina, we screened mouse retinal cDNA libraries with oligonucleotide probes homologous to the mammalian K+ channel MBK1 (Kv1.1) and ligated two partial clones to produce a full-length clone with no significant differences from MBK1. 2. Expression of MBK1 mRNA was determined by RNAse protection. MBK1 mRNA was detected in retinal RNA and was also detected in brain, liver, and heart RNAs. 3. We transcribed the full-length clone, injected it into oocytes of Xenopus laevis, and measured the membrane currents 2 to 6 days later. Depolarization from a holding voltage of -90mV induced a slowly activated outward current with a peak value as large as 20 microA. The current inactivated very slowly with a single exponential time course [mean time constant, 6.5 +/- 0.4 sec (SEM) for activation voltage of -10mV]. 4. The outward current was reduced to half-maximal by 0.42 mM tetraethylammonium, 1.1 mM 4-aminopyridine, and 3.2 mM Ba2+ but was not significantly attenuated by Co2+ (1 mM). 5. The reversal potential (measured with tail currents) changed by 53mV per decade change of [K+] from 1 to 77 mM. 6. The voltage for half-maximal activation of the conductance was -26.6mV (+/- 1.7mV), and the voltage required for an e-fold increase in conductance was 6.9mV (+/- 0.5mV). 7. Thus, the mRNA for MBK1 found in the mouse retina causes the expression of a voltage-dependent K+ current which has properties suitable for may retinal neurons.  相似文献   

17.
K S Elmslie  W Zhou  S W Jones 《Neuron》1990,5(1):75-80
LHRH (chicken II luteinizing hormone-releasing hormone) partially reduces calcium currents and slows the activation kinetics of part of the remaining current in frog sympathetic neurons. The effects of LHRH are mimicked by intracellular dialysis with GTP-gamma-S. A strong depolarization can temporarily reverse the effects of LHRH or GTP-gamma-S: activation kinetics return to normal, and the amplitude of the current is increased (facilitation). Facilitation develops rapidly (tau = 4-6 ms at greater than +30 mV) and decays more slowly (t 1/2 = 60 ms at -80 mV). Tail currents in LHRH are smaller and faster than in the control, and these effects are partially reversed by facilitation. These results can be explained by a model in which a fraction of the channels is shifted into a "reluctant" gating mode, where opening requires stronger depolarization. If this mechanism is at the root of presynaptic inhibition, our results predict that inhibition of transmitter release would be overcome during bursts of high frequency activity.  相似文献   

18.
Membrane properties of isolated mudpuppy taste cells   总被引:13,自引:3,他引:10       下载免费PDF全文
The voltage-dependent currents of isolated Necturus lingual cells were studied using the whole-cell configuration of the patch-clamp technique. Nongustatory surface epithelial cells had only passive membrane properties. Small, spherical cells resembling basal cells responded to depolarizing voltage steps with predominantly outward K+ currents. Taste receptor cells generated both outward and inward currents in response to depolarizing voltage steps. Outward K+ currents activated at approximately 0 mV and increased almost linearly with increasing depolarization. The K+ current did not inactivate and was partially Ca++ dependent. One inward current activated at -40 mV, reached a peak at -20 mV, and rapidly inactivated. This transient inward current was blocked by tetrodotoxin (TTX), which indicates that it is an Na+ current. The other inward current activated at 0 mV, peaked at 30 mV, and slowly inactivated. This more sustained inward current had the kinetic and pharmacological properties of a slow Ca++ current. In addition, most taste cells had inwardly rectifying K+ currents. Sour taste stimuli (weak acids) decreased outward K+ currents and slightly reduced inward currents; bitter taste stimuli (quinine) reduced inward currents to a greater extent than outward currents. It is concluded that sour and bitter taste stimuli produce depolarizing receptor potentials, at least in part, by reducing the voltage-dependent K+ conductance.  相似文献   

19.
Patch-clamp studies were carried out in villus enterocytes isolated from the guinea pig proximal small intestine. In the whole-cell mode, outward K+ currents were found to be activated by depolarizing command pulses to -45 mV. The activation followed fourth order kinetics. The time constant of K+ current activation was voltage-dependent, decreasing from approximately 3 ms at -10 mV to 1 ms at +50 mV. The K+ current inactivated during maintained depolarizations by a voltage- independent, monoexponential process with a time constant of approximately 470 ms. If the interpulse interval was shorter than 30 s, cumulative inactivation was observed upon repeated stimulations. The steady state inactivation was voltage-dependent over the voltage range from -70 to -30 mV with a half inactivation voltage of -46 mV. The steady state activation was also voltage-dependent with a half- activation voltage of -22 mV. The K+ current profiles were not affected by chelation of cytosolic Ca2+. The K+ current induced by a depolarizing pulse was suppressed by extracellular application of TEA+, Ba2+, 4-aminopyridine or quinine with half-maximal inhibitory concentrations of 8.9 mM, 4.6 mM, 86 microM and 26 microM, respectively. The inactivation time course was accelerated by quinine but decelerated by TEA+, when applied to the extracellular (but not the intracellular) solution. Extracellular (but not intracellular) applications of verapamil and nifedipine also quickened the inactivation time course with 50% effective concentrations of 3 and 17 microM, respectively. Quinine, verapamil and nifedipine shifted the steady state inactivation curve towards more negative potentials. Outward single K+ channel events with a unitary conductance of approximately 8.4 pS were observed in excised inside-out patches of the basolateral membrane, when the patch was depolarized to -40 mV. The ensemble current rapidly activated and thereafter slowly inactivated with similar time constants to those of whole-cell K+ currents. It is concluded that the basolateral membrane of guinea pig villus enterocytes has a voltage-gated, time-dependent, Ca(2+)-insensitive, small-conductance K+ channel. Quinine, verapamil, and nifedipine accelerate the inactivation time course by affecting the inactivation gate from the external side of the cell membrane.  相似文献   

20.
Calcium-dependent potassium current in barnacle photoreceptor   总被引:2,自引:2,他引:0       下载免费PDF全文
When barnacle lateral eye photoreceptors are depolarized to membrane potentials of 0 to +50 mV in the dark, the plot of outward current through the cell membrane against time has two distinct maxima. The first maximum occurs 5-10 ms after the depolarization began. The current then decays to a minimum at approximately 500 ms after the onset of depolarization, and then increases to a second maximum 4-6 s after the depolarization began. If depolarization is maintained, the current again decays to reach a steady value approximately 1 min after depolarization began. The increase in current to the maximum at 4-6s from the minimum at approximately 500 ms is termed the "late current." It is maximum for depolarizations to around +25 mV and is reduced in amplitude at more positive potentials. It is not observed when the membrane is depolarized to potentials more positive than +60 mV. The late current is inhibited by external cobaltous ion and external tetraethylammonium ion, and shows a requirement for external calcium ion. When the calcium-sequestering agent EGTA is injected, the late current is abolished. Illumination of a cell under voltage clamp reduces the amplitude of the late current recorded subsequently in the dark. On the basis of the voltage dependence and pharmacology of the late current, it is proposed that the current is a calcium-dependent potassium current.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号