首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
W. Herth 《Protoplasma》1982,112(1-2):17-25
Summary The chrysoflagellate algaPoterioochromonas bears two unequal flagella. There is a short naked one and a long flagellum with mastigonemes. Ultrastructural investigation reveals that the centralpair microtubules in both flagella have no fixed position with respect to the flagellar base and root system, or the mastigoneme rows in the long flagellum. The central-pair microtubules are twisted several times along the length of the flagellum. This might indicate active or passive rotation of the central-pair microtubules during flagellar beat.  相似文献   

2.
In the axoneme of eukaryotic flagella the dynein motor proteins form crossbridges between the outer doublet microtubules. These motor proteins generate force that accumulates as linear tension, or compression, on the doublets. When tension or compression is present on a curved microtubule, a force per unit length develops in the plane of bending and is transverse to the long axis of the microtubule. This transverse force (t-force) is evaluated here using available experimental evidence from sea urchin sperm and bull sperm. At or near the switch point for beat reversal, the t-force is in the range of 0.25-1.0 nN/ micro m, with 0.5 nN/ micro m the most likely value. This is the case in both beating and arrested bull sperm and in beating sea urchin sperm. The total force that can be generated (or resisted) by all the dyneins on one micron of outer doublet is also approximately 0.5 nN. The equivalence of the maximum dynein force/ micro m and t-force/ micro m at the switch point may have important consequences. Firstly, the t-force acting on the doublets near the switch point of the flagellar beat is sufficiently strong that it could terminate the action of the dyneins directly by strongly favoring the detached state and precipitating a cascade of detachment from the adjacent doublet. Secondly, after dynein release occurs, the radial spokes and central-pair apparatus are the structures that must carry the t-force. The spokes attached to the central-pair projections will bear most of the load. The central-pair projections are well-positioned for this role, and they are suitably configured to regulate the amount of axoneme distortion that occurs during switching. However, to fulfill this role without preventing flagellar bend formation, moveable attachments that behave like processive motor proteins must mediate the attachment between the spoke heads and the central-pair structure.  相似文献   

3.
M A Farmer  R E Triemer 《Bio Systems》1988,21(3-4):283-291
The flagellar apparatus of euglenoids consists of two functional basal bodies, three unequal microtubular roots subtending the reservoir, and a fourth band of microtubules nucleated from one of the flagellar roots and subtending the reservoir membrane. The flagellar apparatus of some euglenoids may contain additional basal bodies, striated roots ("rhizoplasts"), fibrous roots, striated connecting fibers between basal bodies, layered structures, or various electron-dense connective substances. With the possible exception of Petalomonas cantuscygni, nearly all euglenoids are biflagellate although the length of one flagellum may be highly reduced. The flagellar transition zone and number of basal bodies are highly variable among species. In recent years a cytoplasmic pocket that branches off from the reservoir has been discovered. The microtubules of the ventral flagellar root are continuous with the microtubules which line this pocket. Based on positional and structural similarities, this structure is believed to be homologous with the MTR/cytostome of bodonids. Coupled with other ultrastructural and biochemical data, the fine structure of the flagellar apparatus supports the belief that the euglenoid flagellates are descendant from bodonid ancestors.  相似文献   

4.
Summary. We present a new Chlamydomonas reinhardtii flagellar mutant in which central pair projections are missing and the central pair microtubules are twisted along the length of the flagellum. We have named this mutant tcp1 for twisted central pair. Immunoblots using an antibody that recognizes the heavy chain of sea urchin kinesin reveal that a 70 kDa protein present in wild-type and pf18 (central pairless) axonemes is absent in tcp1, suggesting the presence of an uncharacterized kinesin associated with the central pair apparatus. We demonstrate that the kinesin-like protein Klp1 is not attached to central pair microtubules in tcp1, but rather is located in, or is part of, a region we have termed the internal axonemal matrix. It is proposed that this matrix acts as a scaffold for axonemal proteins that may also be associated with the central pair apparatus. Correspondence: A. Koutoulis, Cell Biology Group, School of Plant Science, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia.  相似文献   

5.
Relatively little is known about the functions of central-pair microtubules (Tamm, S. L., and G. A. Horridge, 1970, Proc. Roy. Soc. Lond. B, 175: 219-233; Omoto, C. K., and C. Kung, 1979, Nature (Lond.). 279:532-534) and radial spokes (Warner, F. D., and P. Satir, 1974, J. Cell Biol., 63:35-63), although a sliding microtubule mechanism has been established for the flagellar movement (Summers, K. E., and I. R. Gibbons, 1971, Proc. Natl. Acad. Sci. USA., 68:3092-3096). In the present report, an attempt was made to determine the functions of central-pair microtubules in flagellar motility. Central-pair microtubules were found to extrude from the tips of elastase-digested axonemes of demembranated Chlamydomonas flagella after the addition of ATP. The length of the extruded central-pair microtubules was approximately 70-100% that of the axoneme. After extrusion, axonemes continued to swim slowly backwards in the reactivation medium, with a trailing central pair attached like a tail to the flagellar tip. During bending movement of the axonemes, partially extruded central pairs rotated counterclockwise about the axoneme axis, as viewed from the distal end (Kamiya, R., 1982, Cell Motil. [Suppl.]:169-173). Axonemes swam backwards with a symmetric waveform and a beat frequency of approximately 10 Hz in the reactivation medium containing 10(-9)-10(-4) M Ca ions. Even at a lower Ca++ concentration, no ciliary-type swimming was noted on the axonemes.  相似文献   

6.
Eukaryotic cilia and flagella are vital sensory and motile organelles. The calcium channel PKD2 mediates sensory perception on cilia and flagella, and defects in this can contribute to ciliopathic diseases. Signaling from Pkd2-dependent Ca2+ rise in the cilium to downstream effectors may require intermediary proteins that are largely unknown. To identify these proteins, we carried out genetic screens for mutations affecting Drosophila melanogaster sperm storage, a process mediated by Drosophila Pkd2. Here we show that a new mutation lost boys (lobo) encodes a conserved flagellar protein CG34110, which corresponds to vertebrate Ccdc135 (E = 6e-78) highly expressed in ciliated respiratory epithelia and sperm, and to FAP50 (E = 1e-28) in the Chlamydomonas reinhardtii flagellar proteome. CG34110 localizes along the fly sperm flagellum. FAP50 is tightly associated with the outer doublet microtubules of the axoneme and appears not to be a component of the central pair, radial spokes, dynein arms, or structures defined by the mbo waveform mutants. Phenotypic analyses indicate that both Pkd2 and lobo specifically affect sperm movement into the female storage receptacle. We hypothesize that the CG34110/Ccdc135/FAP50 family of conserved flagellar proteins functions within the axoneme to mediate Pkd2-dependent processes in the sperm flagellum and other motile cilia.  相似文献   

7.
The emergent flagellum of euglenoids and trypanosomatids contained in addition to microtubules a prominent filamentous structure—the flagellar rod (paraflageliar/paraxonemal rod). Immunoblots and immunofluorescence localization using three antibodies generated against gel-isolated proteins confirmed previous studies that the Euglena flagellar rod consisted of polypeptides migrating at 66-, 69-, and 75-kD. Immunoblotting after two dimensional gel electrophoresis identified ten or more isoforms of these polypeptides. Differences in migration in acrylamide gels under nonreducing and reducing conditions suggested that the rod proteins contain intramolecular disulfide linkages. Comparative peptide mapping showed that the 66-. 69-, and 75-kD polypeptides were distinct, but related proteins, and also identified a fourth related protein migrating at 64-kD. Using antibodies against rod proteins, two overlapping cDNAs were isolated and from their sequences the cDNAs were predicted to encode 334 amino acids of the 66-kD protein: the amino acid sequence had >65% identity to the carboxyl-terminus of the trypanosomatid flagellar rod proteins. Secondary structural prediction suggested that flagellar rod proteins contain an extended segmented coiled coil stalk and two nonhelical heads. Coiled coil appeared to be an important structural motif in the construction of flagellar rod filaments.  相似文献   

8.
Intraflagellar transport (IFT) is the bidirectional movement of multisubunit protein particles along axonemal microtubules and is required for assembly and maintenance of eukaryotic flagella and cilia. One posited role of IFT is to transport flagellar precursors to the flagellar tip for assembly. Here, we examine radial spokes, axonemal subunits consisting of 22 polypeptides, as potential cargo for IFT. Radial spokes were found to be partially assembled in the cell body, before being transported to the flagellar tip by anterograde IFT. Fully assembled radial spokes, detached from axonemal microtubules during flagellar breakdown or turnover, are removed from flagella by retrograde IFT. Interactions between IFT particles, motors, radial spokes, and other axonemal proteins were verified by coimmunoprecipitation of these proteins from the soluble fraction of Chlamydomonas flagella. These studies indicate that one of the main roles of IFT in flagellar assembly and maintenance is to transport axonemal proteins in and out of the flagellum.  相似文献   

9.
Chlamydomonas flagella contain a molecular chaperone now identified as HSP70A, a major cytoplasmic isoform. HSP70A synthesis is upregulated by deflagellation, and its distribution in the flagellum overlaps with the IFT kinesin-II motor FLA10. HSP70A may chaperone flagellar proteins during transport, participating in the assembly and maintenance of the flagellum.  相似文献   

10.
We have used a combination of quick-freezing/deep-etching and colloidal gold immunocytochemistry (i) to analyze the molecular organization of the microtubular membrane skeleton and the flagellum of Trypanosoma brucei, and (ii) to localize two defined cytoskeletal proteins within these structures. The cell body of trypanosomatids is enveloped by a membrane skeleton consisting of a tightly packed array of microtubules which are closely associated with the cell membrane. The membrane-oriented face of these microtubules is richly decorated with microtubule-associated proteins, which form intermicrotubule and microtubule-membrane linkers. In contrast, the cytoplasmic faces of the microtubules have a smooth, nondecorated appearance. A previously identified, highly repetitive microtubule-associated protein is confined to the membrane-oriented face of the microtubular array, suggesting that the function of this protein may be that of a microtubule-membrane linker. Quickfreezing has also been used to reveal the geometric organization of the paraflagellar rod structure in the flagellum, its interaction with the cell body, and a unique series of fleur-de-lis-like molecules which link this organelle to axonemal microtubules. Immunohistochemistry using an antibody against human erythrocyte spectrin suggests that these linker structures may contain ancestral spectrin-like molecules.  相似文献   

11.
Sea urchin sperm contain two isozymes of creatine kinase (CrK) in the sperm head and tail, as termini of a phosphocreatine shuttle to transport energy. The head isozyme is located at the mitochondrion. By using an antibody prepared against denatured flagellar CrK, we now show that the tail isozyme exists along the entire flagellum. This unusual CrK isozyme, of Mr 145 kDa, is a component of the flagellar axoneme as indicated by electron microscopic immunolocalization and cell fractionation. Flagellar CrK specifically reassociated with extracted sperm axonemes as well as with in vitro polymerized sea urchin egg microtubules. Neither sperm mitochondrial CrK nor mammalian muscle CrK bound to axonemes under similar conditions. Thus, although the two sperm isozymes have similar kinetic properties, they differ in affinity for microtubules, a characteristic that may determine the regional differentiation needed for establishing a phosphocreatine shuttle.  相似文献   

12.
Serological similarity of flagellar and mitotic microtubules   总被引:10,自引:5,他引:5       下载免费PDF全文
An antiserum to flagellar axonemes from sperm of Arbacia punctulata contains antibodies which react both with intact flagellar outer fibers and with purified tubulin from the outer fibers. Immunodiffusion tests indicate the presence of similar antigenic determinants on outer-fiber tubulins from sperm flagella of five species of sea urchins and a sand dollar, but not a starfish. The antibodies also react with extracts containing tubulins from different classes of microtubules, including central-pair fibers and both A- and B-subfibers from outer fibers of sperm flagella, an extract from unfertilized eggs, mitotic apparatuses from first cleavage embryos, and cilia from later embryos. Though most tubulins tested share similar antigenic determinants, some clear differences have been detected, even, in Pseudoboletia indiana, between the outer-fiber tubulins of sperm flagella and blastular cilia. Though tubulins are "actin-like" proteins, antitubulin serum does not react with actin from sea urchin lantern muscle. On the basis of these observations, we suggest that various echinoid microtubules are built of similar, but not identical, tubulins.  相似文献   

13.
Constructing a eukaryotic cilium/flagellum is a demanding task requiring the transport of proteins from their cytoplasmic synthesis site into a spatially and environmentally distinct cellular compartment. The clear potential hazard is that import of aberrant proteins could seriously disable cilia/flagella assembly or turnover processes. Here, we reveal that tubulin protein destined for incorporation into axonemal microtubules interacts with a tubulin cofactor C (TBCC) domain-containing protein that is specifically located at the mature basal body transitional fibres. RNA interference-mediated ablation of this protein results in axonemal microtubule defects but no effect on other microtubule populations within the cell. Bioinformatics analysis indicates that this protein belongs to a clade of flagellum-specific TBCC-like proteins that includes the human protein, XRP2, mutations which lead to certain forms of the hereditary eye disease retinitis pigmentosa. Taken with other observations regarding the role of transitional fibres in cilium/flagellum assembly, we suggest that a localized protein processing capacity embedded at transitional fibres ensures the 'quality' of tubulin imported into the cilium/flagellum, and further, that loss of a ciliary/flagellar quality control capability may underpin a number of human genetic disorders.  相似文献   

14.
Trypanosoma brucei is a flagellated protozoan with a highly polarized cellular structure. TbLRTP is a trypanosomal protein containing multiple SDS22-class leucine-rich repeats and a coiled-coil domain with high similarity to a mammalian testis-specific protein of unknown function. Homologues are present in a wide range of higher eukaryotes including zebra fish, where the gene product has been implicated in polycystic kidney disease. Western blot analysis and immunofluorescence with antibodies against recombinant TbLRTP indicate that the protein is expressed throughout the trypanosome life cycle and localizes to distal zones of the basal bodies. Overexpression and RNA interference demonstrate that TbLRTP is important for faithful basal body duplication and flagellum biogenesis. Expression of excess TbLRTP suppresses new flagellum assembly, while reduction of TbLRTP protein levels often results in the biogenesis of additional flagellar axonemes and paraflagellar rods that, most remarkably, are intracellular and fully contained within the cytoplasm. The mutant flagella are devoid of membrane and are often associated with four microtubules in an arrangement similar to that observed in the normal flagellar attachment zone. Aberrant basal body and flagellar biogenesis in TbLRTP mutants also influences cell size and cytokinesis. These findings demonstrate that TbLRTP suppresses basal body replication and subsequent flagellar biogenesis and indicate a critical role for the LRTP family of proteins in the control of the cell cycle. These data further underscore the role of aberrant flagellar biogenesis as a disease mechanism.  相似文献   

15.
In this report, we describe an in vitro system for analyzing microtubule-based movements in supernatants of sea urchin egg and embryo homogenates. Using video enhanced DIC microscopy, we have observed bidirectional saltatory particle movements on native taxol-stabilized microtubules assembled in low speed supernatants of Lytechinus egg homogenates, and gliding of these microtubules across a glass surface. A high speed supernatant of soluble proteins, depleted of organelles, microtubules, and their associated proteins supports the gliding of exogenous microtubules and translocation of polystyrene beads along these microtubules. The direction of microtubule gliding has been determined directly by observation of the gliding of flagellar axonemes in which the (+) and (-) ends could be distinguished by biased polar growth of microtubules off the ends. Microtubule gliding is toward the (-) end of the microtubule, is ATP sensitive, and inhibited only by high concentrations of vanadate. These characteristics suggest that the transport complex responsible for microtubule gliding in S2 is kinesin-like. The implications of these molecular interactions for mitosis and other motile events are discussed.  相似文献   

16.
Regulation of flagellar length in Chlamydomonas   总被引:1,自引:0,他引:1  
Chlamydomonas reinhardtii has two apically localized flagella that are maintained at an equal and appropriate length. Assembly and maintenance of flagella requires a microtubule-based transport system known as intraflagellar transport (IFT). During IFT, proteins destined for incorporation into or removal from a flagellum are carried along doublet microtubules via IFT particles. Regulation of IFT activity therefore is pivotal in determining the length of a flagellum. Reviewed is our current understanding of the role of IFT and signal transduction pathways in the regulation of flagellar length.  相似文献   

17.
Summary InStephanoeca diplocostata microtubules are located in four positions namely: within the flagellar axoneme; just beneath the plasmalemma; associated with the silica deposition vesicles (SDVs) during early stages of costal strip deposition; and in the mitotic spindle. At the anterior end of the cell the 50–60 peripheral microtubules, which are organized more or less parallel to the long axis of the cell, converge around the base of the emergent flagellum. A short second flagellar base is positioned between the nucleus and the base of the emergent flagellum. Developing costal strips are located individually within SDVs in the peripheral cytoplasm. During the early stages of silica deposition each SDV is curved and subtended longitudinally on its concave side by two microtubules. When a costal strip has achieved sufficient rigidity to withstand bending the SDV-associated microtubules are depolymerized. Treatment of exponentially growing cells with sublethal concentrations of microtubule poisons, such as colchicine, podophyllotoxin, griseofulvin andVinca alkaloids depresses growth. Treatment with these drugs also affects the length and morphology of developing costal strips perhaps by interfering with the shaping and supporting functions of SDV-associated microtubules. Instead of being long and crescentic with a standard radius of curvature, costal strips of treated cells are usually short and misshapen, with irregular bends. After drug treatment, juveniles produced as a result of cell division do not develop flagella but can still assemble a lorica although it is usually misshapen. The role of microtubules and microfilaments in lorica production is discussed.  相似文献   

18.
The marine centric diatom Biddulphia levis produced uniflagellate fusiform male gametes completely within the parent cell frustule. These gametes lacked both a central pair of microtubules in the flagellar axoneme and chloroplasts but did contain a cone of microtubules which passed posteriorly from the base of the kinetosome along the nuclear envelope. The gametes were released through a specialized pore in the girdle band leaving behind a cytoplasmic mass which contained chloroplasts and other cytoplasmic components. Tubules which resembled the flimmer hairs on the gamete flagellum occurred in cisternae of the cytoplasmic reticulum in the residual cytoplasm and in the nuclear envelope of the gametes. Gametogenesis in B. levis is compared with similar processes in other centric diatoms.  相似文献   

19.
The unusual tetrahedral shape of Hydrurus foetidus (Vill.) Trev. zoospores is associated with a complex skeletal system of microtubules extending from a broad flagellar root (up to 19 microtubules) into each of three, pointed anterior processes. The posterior end, also pointed and supported by a separate set of microtubules, contains a single large chloroplast with a prominent posterior furrow containing mitochondrial elements. A large immersed pyrenoid is penetrated by paired thylakoids. There is no eyespot. Numerous large Golgi bodies occur immediately anterior to the nucleus and up to 5–6 contractile vacuoles lie near the cell surface at the anterior end. Two terminally inserted flagella extend from the cell surface, a long one serving for cell locomotion, and the other vestigial with an axonemal pattern of 9+0. The flagellar root system consists of: (1) a thin, striated rhizoplast extending from the basal body of the long flagellum and ramifying over the surface of a conspicuous, anteriorly directed, conical projection of the nucleus; (2) a broad microtubular root which emanates from near the basal body of the long flagellum and appears to function as a MTOC; (3) a compound root, consisting of a striated fiber and two associated microtubules, which runs alongside the basal body of the stubby flagellum before terminating at the cell surface; and (4) a short two-membered microtubular root, also associated with the basal body of the stubby flagellum. Other components of the flagellar apparatus include a large dense body near the proximal end of the basal body of the short flagellum, and a small, dense, core-like structure closely associated with one of its triplet fibers. The flagellar apparatus of H. foetidus is remarkably similar in ultrastructure to that of Chrysonebula holmesii Lund.  相似文献   

20.
The subunit protein has been isolated from the central-pair and outer-doublet microtubules of sea urchin sperm tails. Both proteins have a sedimentation constant of 6S and a molecular weight of 120,000. Both are converted to a 60,000 molecular weight species by denaturation in 6 M guanidine hydrochloride and reduction with mercaptoethanol. The reduced-alkylated proteins have the same Rf on disc electrophoresis, and the same amino acid composition, which is very similar to that of muscle actin. The central-pair protein has one binding site for colchicine per 120,000 g. Both proteins appear to have a guanine nucleotide binding site, but the ability to bind GTP in solution has been demonstrated only for the central-pair protein. Although 1 mole of guanine nucleotide is bound per 60,000 g to outer-doublet tubules, the protein obtained by dissolving the doublets at pH 10.5 has lost the guanine nucleotide-binding site and also shows little or no colchicine-binding activity. Comparison of the properties of the isolated protein with electron microscopic evidence on structure of microtubules suggests that the chemical subunit (M = 120,000) consists of two of the 40 A morphological subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号