首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of the phorbol ester TPA on catecholamine secretion was studied in cultured bovine adrenal chromaffin cells. The pretreatment of chromaffin cells with TPA caused the enhancement of catecholamine secretion induced by the calcium ionophore, A23187. By contrast, neither carbachol- nor high K+-induced secretion was changed by TPA pretreatment. These results support the concept that protein kinase C plays an important role as a factor transducing the Ca2+ signal to the exocytotic process of catecholamine secretion in bovine adrenal chromaffin cells.  相似文献   

2.
Alamethicin causes a concentration-dependent increase of [Ca2+]i in suspensions of bovine adrenal chromaffin cells loaded with fura-2. The basal levels of Cai2+ (234 +/- 37 nM; n = 4) increased to a maximum of 2347 +/- 791 nM (n = 3) with 100 micrograms/ml alamethicin. In the presence of 1 mM Cae2+ the increase reached a plateau within about 2-5 s. This increase was due to Ca2+ entry into chromaffin cells, since in the absence of Cae2+ alamethicin did not modify [Ca2+]i. This contrasts with ionomycin (1 microM) which produced a Cai2+ transient even in the absence of Cae2+. Mn2+ ions also entered chromaffin cells in the presence of alamethicin, as measured by the quenching of fura-2 fluorescence following excitation at 360 nm. Resting chromaffin cells had a measurable permeability to Mn2+ which was drastically increased by cell depolarization by K+ (50 mM) addition. This suggests that Mn2+ is able to permeate voltage-dependent Ca2+ channels. Ni2+ uptake into either resting or K(+)-stimulated chromaffin cells was undetectable, but addition of alamethicin induced rapid uptake of this cation. The alamethicin-induced entry of Ni2+ was decreased by 50 mM K+. Overall, the results are compatible with the formation by alamethicin of ion channels in chromaffin cell plasma membranes.  相似文献   

3.
The effects of 12-O-tetradecanoylphorbol 13-acetate (TPA) on the handling of Ca2+ and insulin release were investigated in the clonal insulin-producing cell line RINm5F. The presence of the phorbol ester lowered the free cytoplasmic Ca2+ and suppressed the increase obtained by depolarization with high concentrations of K+. Despite the lowering in cytoplasmic Ca2+ by TPA, there was a concomitant stimulation of insulin release indicating that one feature of protein kinase C activation is to make the secretory system more sensitive to Ca2+. Furthermore, there was no interaction of TPA with the mechanisms responsible for inositol 1,4,5-tris(phosphate) induced Ca2+ release or Ca2+ uptake in permeabilized cells. Although TPA slightly depolarized the RINm5F cells there was no interference with K+-induced depolarization. It is suggested that an additional effect of protein kinase C activation in these cells, is to stimulate the extrusion of Ca2+ over the plasma membrane.  相似文献   

4.
Catecholamine (CA) release from adrenal medulla evoked by muscarinic receptor stimulation has been studied using isolated perfused adrenal gland and cultured chromaffin cells from dogs. Muscarine and oxotremorine (1-100 microM), and bethanechol (0.1-1 mM) dose-dependently stimulated CA release. Muscarine-evoked CA release was antagonized with M1-antagonist, pirenzepine and, to a lesser extent, with atropine; and was reduced either by removal of extracellular Ca2+ or treatment with Ca2+ channel blockers. Muscarine caused an increase of 45Ca uptake and 22Na uptake. Tetrodotoxin (TTX) did not affect muscarine-evoked increase of 22Na uptake and CA release. Under the absence of extracellular Ca2+, muscarine stimulated a 45Ca efflux. Muscarine-induced CA release was attenuated by treating the cells with 8-(N,N-diethylamino)-octyl-3,4,5-trimethoxybenzoate-HCl (TMB-8) which blocks Ca2+ release from the intracellular store. A phospholipase C inhibitor, neomycin, markedly reduced muscarine-induced CA release but not nicotine- and high K(+)-evoked release. Cinnarizine, a Ca2+ channel blocker, attenuated muscarine-evoked but not caffeine-induced CA release and 45Ca efflux in the absence of extracellular Ca2+. Muscarine caused an increase in intracellular free Ca2+ concentration ([Ca2+]i) in the presence of extracellular Ca2+. It caused a similar increase, but to a lesser extent, in the absence of extracellular Ca2+. The increase of [Ca2+]i induced by muscarine without extracellular Ca2+ was reduced by neomycin and cinnarizine. Polymixin B and retinal, which reduced 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced CA release, had little effect on muscarine-induced CA release. Muscarine increased cellular Ins(1,4,5)P3 production, and atropine inhibited this increase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Fura-2 was used to monitor Pb2+ entry into isolated bovine chromaffin cells exposed to micromolar concentrations of Pb2+ in media containing basal or high concentrations of K+. The entry of Pb2+ consists of voltage-independent and voltage-dependent (K(+)-stimulated) components. The voltage-dependent Pb2+ entry is enhanced by Ca2+ channel agonist BAY K 8644 and blocked by the channel antagonist nifedipine, suggesting the involvement of the L-type Ca2+ channels. In contrast to the transient, K(+)-depolarization-dependent increase in [Ca2+]i, the increase in [Pb2+]i is sustained over a period of several minutes, suggesting the absence of channel inactivation and/or the saturation of Pb(2+)-buffering capacity of the cell cytosol.  相似文献   

6.
In bovine adrenal chromaffin cells nicotinic stimulation or a depolarizing concentration of K+ caused a rapid, transient translocation to membranes of as much as 14% of the total cellular protein kinase C activity. The quantitative relationship between membrane-bound protein kinase C and Ca2+-dependent secretion was determined in cells rendered leaky by digitonin treatment. Intact cells were incubated with various concentrations of 12-O-tetradecanoylphorbol-13-acetate (TPA) to activate and cause translocation of protein kinase C to membrane before permeabilization in the presence of Ca2+. For the same amount of membrane-bound protein kinase C, a similar degree of enhancement of Ca2+-dependent secretion occurred in cells incubated for 1 or 30 min with TPA. Translocation of as little as 2-3% of the cellular protein kinase C to the membrane enhanced Ca2+-dependent secretion by 25-30%. Muscarinic agonists caused a 5% increase in membrane-bound protein kinase C at 2 s which rapidly reversed. Nicotinic and muscarinic receptor-mediated increases in membrane-bound protein kinase C were additive at 10 s and synergistic at 3 min. Muscarinic stimulation enhanced nicotinic receptor-dependent secretion. Prior incubation with TPA caused a similar enhancement of nicotinic-mediated secretion. The data indicate that protein kinase C which is translocated within seconds of stimulation of the cells with a nicotinic agonist or elevated K+ probably enhances the secretory response immediately or soon after exocytosis begins. In addition, the muscarinic receptor-mediated enhancement of nicotinic receptor-stimulated secretion may be due to newly activated protein kinase C.  相似文献   

7.
Fast Ca2+ uptake into K+-depolarized cultured bovine adrenal chromaffin cells has been isotopically measured in a time scale of 1-10 s. Depolarized cells retained as much as 80-fold 45Ca2+ taken up by resting cells; Ca2+ was not taken up by fibroblasts or endothelial-like cells. Because Ca2+ entry was inhibited by inorganic (La3+, Co2+, Mg2+) and organic (nifedipine) Ca2+ channel antagonists and enhanced by the Ca2+ channel activator Bay-K-8644, it seems clear that Ca2+ gains access to the chromaffin cell cytosol mainly through specific voltage-dependent Ca2+ channels. Ca2+ uptake evoked by 59 mM K+ was linear during the first 5 s of stimulation and continued to rise at a much slower rate up to 60 s. The rate of Ca2+ entry became steeper as the external [Ca2+] increased; initial rates of Ca2+ uptake varied from 0.06 fmol/cells . s at 0.125 mM Ca2+ to 2.85 fmol/cell . s at 7.5 mM Ca2+. The early 90Sr2+ uptake was linear but faster than Ca2+ uptake and later on was also saturated; 133Ba2+ was taken up still at a much faster rate and was linear for the entire depolarization period (2-60 s). Increased [K+] gradually depolarized chromaffin cells; Ca2+ and Sr2+ uptakes were not apparent below 30 mM K+ but were linear for 30 to 60 mM K+. In contrast, substantial Ba2+ uptake was seen even in K+-free solutions; and in 5.9 mM K+, Ba2+ uptake was as high as Ca2+ uptake obtained in 60 mM K+. Five to ten-second pulses of 45Ca2+, 90Sr2+, or 133Ba2+ given at different times after pre-depolarization of chromaffin cells served to analyze the kinetics of inactivation of the rates of entry of each divalent cation. Inactivation of Ca2+ uptake was faster than Sr2+, and Ba2+ uptake inactivated very little. Neither voltage changes nor Ca2+ ions passing through the channels seems to cause their inactivation; however, experiments aimed to manipulate the levels of internal Ca2+ using the cell-permeable chelator Quin-2 or the ionophore A23187 strongly suggest that intracellular Ca2+ levels determine the rates of inactivation of these channels.  相似文献   

8.
The effect of K+ and Na+ on the Ca2+ binding site in the dense core of monoaminergic vesicles of pineal nerves was investigated in the rat. Rat pineal glands, bisected immediately after decapitation, were incubated at room temperature in solutions containing high K+ or high Na+ in the presence or absence of Ca2+. Fixation was performed in glutaraldehyde-osmium tetroxide in collidine buffer, with and without CaCl2. It was confirmed that, after fixation in Ca2+-containing solutions, an electron-dense particle, located in the vesicle core, which can be considered a calcium deposit, appears within the synaptic vesicles. It was observed that this Ca2+ deposit may be modified by incubation in a high K+ or high Na+ milieu before fixation in Ca2+ containing solutions. When the incubation was carried out with high K+ and high Ca2+ simultaneously, Ca2+ deposits were considerably increased. With K+ alone, no Ca2+ deposits were apparent, as when electrical stimulation is applied before fixation. This effect was not observed when the incubation was done in high Na+. Consecutive incubations in high K+ and high Na+, respectively, restored the capability of the vesicle cores to bind Ca2+. Prolonged incubation in high Na+ before fixation increased Ca2+ deposits within the vesicles. These findings are in line with data on the effect of these ions upon the storage and release of biogenic amines and suggest that these ions modify the capability of synaptic vesicles to bind Ca2+.  相似文献   

9.
1. Catecholamine secretion from digitonin-treated chromaffin cells is stimulated directly by micromolar Ca2+ in the medium. The permeabilized cells are leaky to proteins. 2. In this study trypsin (30-50 micrograms/ml) added to cells after digitonin treatment completely inhibited subsequent Ca2+-dependent catecholamine secretion. The same concentrations of trypsin did not inhibit secretion from permeabilized cells if trypsin was present only prior to cell permeabilization. 3. The data indicate that trypsin entered digitonin-treated chromaffin cells which were capable of undergoing secretion and that an intracellular, trypsin-sensitive protein is involved in secretion. Chymotrypsin was less potent but had effects similar to those of trypsin. 4. The enhancement of Ca2+-dependent secretion from permeabilized chromaffin cells induced by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) was inhibited by trypsin added simultaneously with Ca2+ to permeabilized cells at concentrations (3-10 micrograms/ml) which had little or no effect on Ca2+-dependent secretion from cells untreated with TPA. Ca2+-dependent secretion in TPA-treated cells was reduced by trypsin only to the level that would have occurred in cells not treated with TPA. Trypsin reduced the large TPA-induced increment of membrane-bound protein kinase C.  相似文献   

10.
Lead buffers (citrate and Tiron) were used to investigate the effects of low concentrations (0.1-6 microM) of Pb2+ on stimulus-secretion coupling in isolated bovine chromaffin cells. Nicotinic agonists and high K elicit secretion by enhancing Ca2+ influx into chromaffin cells. Pb2+ inhibited the catecholamine secretion in response to 500 microM carbachol and 77 mM K+ depolarization but was without significant effect on basal secretion. Pb2+ also inhibited the influx of 45Ca occurring in response to these agents. The K0.5 values for inhibition suggest that the carbachol-evoked flux is more sensitive to Pb2+ than influx in response to a direct depolarization. When extracellular calcium was lowered in the absence of Pb2+, both secretion and 45Ca entry were reduced. The effects of Pb2+ were comparable to those of lowered Ca2+. 22Na influx through nicotinic receptor-mediated channels, measured in the presence of tetrodotoxin (2 microM) and ouabain (50 microM), was inhibited by Pb2+. The results suggest that Pb2+ inhibits exocytotic catecholamine secretion by inhibiting Ca2+ influx. The differential sensitivity to Pb2+ of K- and carbachol-evoked 45Ca flux, coupled with the 22Na measurements, indicates that Pb2+ inhibits the movement of ions through acetylcholine-induced channels as well as through voltage-sensitive calcium channels.  相似文献   

11.
Phorbol esters which activate protein kinase C increased the percentage of membrane-bound protein kinase C activity in bovine adrenal chromaffin cells from less than 10 to 20-50% within 30 min. Permeabilization of chromaffin cells with digitonin in the absence of Ca2+ and phorbol esters caused virtually 100% of the protein kinase C activity to leave the cells within 1 h, which is consistent with protein kinase C being soluble and cytosolic. However, if cells were incubated for 15-30 min with 12-O-tetradecanoylphorbol-13-acetate (TPA) prior to permeabilization, 50-60% of the protein kinase C activity exited from the cells within 1 h of permeabilization. In cells not incubated with phorbol ester, permeabilization in the presence of 1-10 microM Ca2+ also decreased the rate at which protein kinase C exited from the cells. The slower release of protein kinase C caused by prior incubation of the cells with TPA or because of the presence of micromolar Ca2+ in permeabilized cells was associated with increased membrane-bound protein kinase C. The effects of TPA and permeabilization in the presence of micromolar Ca2+ were approximately additive. Active phorbol esters had different abilities to cause retention of protein kinase C in digitonin-treated cells. Dioctanoylglycerol, which activates protein kinase C in vitro and enhanced Ca2+-dependent secretion from permeabilized chromaffin cells similarly to TPA, also increased membrane-bound protein kinase C in intact cells, but had no effect on the retention of protein kinase C in permeabilized cells in the presence or absence of Ca2+. The different abilities of protein kinase C activators to cause retention of protein kinase C in subsequently permeabilized cells suggest differences in the reversibility of the binding. The mixed nicotinic-muscarinic agonist carbachol and the nicotinic agonist 1,1-dimethyl-4-phenylpiperazinium, but not the muscarinic agonist muscarine, caused 3-10% of the total protein kinase C activity to become membrane-bound within 3 min in intact chromaffin cells. Thus, nicotinic stimulation of chromaffin cells may rapidly activate protein kinase C.  相似文献   

12.
Chromaffin granules, the catecholaminergic storage granules from adrenal chromaffin cells, lysed in 10(-9)-10(-7) M Fe2+. Lysis was accompanied by the production of malondialdehyde which results from lipid peroxidation. Both chromaffin granule lysis and malondialdehyde production were inhibited by the free radical trapping agent butylated hydroxytoluene but not by catalase and/or superoxide dismutase. The results suggest that lysis resulted from a direct transfer of electrons from Fe2+ to a component of the chromaffin granule membrane without the participation of either superoxide or hydrogen peroxide and may have resulted from lipid peroxidation. In some experiments, ascorbate alone induced chromaffin granule lysis which was inhibited by EDTA, EGTA, or deferoxamine. The lysis was probably caused by trace amounts of reducible polyvalent cation. Lysis sometimes occurred when Ca2+ was added with EGTA (10 microM free Ca2+ concentration) and was consistently observed together with malondialdehyde production in the presence of Ca2+, EGTA, and 10 microM Fe2+ (total concentration). The apparent Ca2+ dependency for chromaffin granule lysis and malondialdehyde production was probably caused by a trace reducible polyvalent ion displaced by Ca2+ from EGTA and not by a Ca2+-dependent reaction involving the chromaffin granule.  相似文献   

13.
The relationship between the concentration of cytosolic free Ca2+ ([Ca2+]i) and secretion of parathyroid hormone (PTH) was investigated in isolated bovine parathyroid cells using the fluorescent Ca2+ indicator, quin 2. Increasing the concentration of extracellular Ca2+ from 0.5 to 2.0 mM caused a 3-fold increase in [Ca2+]i (from 183 +/- 4 to 568 +/- 21 nM) which was associated with a 2-4-fold decrease in secretion of PTH. Decreasing extracellular Ca2+ to about 1 microM caused a corresponding fall in [Ca2+]i to 60-90 nM. Extracellular Ca2+-induced changes in [Ca2+]i were not affected by omission of extracellular Na+. Depolarizing concentrations of K+ (30 mM) depressed [Ca2+]i at all concentrations of extracellular Ca examined, and this was associated with increased secretion of PTH. Ionomycin (0.1 or 1 microM) increased [Ca2+]i at extracellular Ca2+ concentrations of 0.5, 1.0, and 2.0 mM, but inhibited secretion of PTH only at Ca concentrations near the "Ca2+ set point" (1.25 microM). In contrast, dopamine, norepinephrine (10 microM each), and Li+ (20 mM) potentiated secretion of PTH without causing any detectable change in [Ca2+]i. The results obtained with these latter secretagogues provide evidence for a mechanism of secretion which is independent of net changes in [Ca2+]i. The phorbol ester 12-O-tetradecanoyl phorbol 13-acetate (TPA) did not alter [Ca2+]i or secretion of PTH at low (0.5 mM) extracellular Ca2+ concentrations. At 2.0 mM extracellular Ca2+, however, TPA (20 nM or 1 microM) depressed [Ca2+]i and potentiated secretion of PTH. The addition of TPA prior to raising the extracellular Ca2+ concentration reduced the subsequent increase in [Ca2+]i. The results show that the effects of TPA on secretion in the parathyroid cell are not readily dissociated from changes in [Ca2+]i and suggest that some TPA-sensitive process, perhaps involving protein kinase C, may be involved in those mechanisms that regulate [Ca2+]i in response to changes in extracellular Ca2+.  相似文献   

14.
The effect of caffeine on catecholamine secretion and intracellular free Ca2+ concentration [( Ca2+]i) in bovine adrenal chromaffin cells was examined using single fura-2-loaded cells and cell populations. In cell populations caffeine elicited a large (approximately 200 nM) transient rise in [Ca2+]i that was independent of external Ca2+. This rise in [Ca2+]i triggered little secretion. Single cell measurements of [Ca2+]i showed that most cells responded with a large (greater than 200 nM) rise in [Ca2+]i, whereas a minority failed to respond. The latter, whose caffeine-sensitive store was empty, buffered a Ca2+ load induced by a depolarizing stimulus more effectively than those whose store was full. The caffeine-sensitive store in bovine chromaffin cells may be involved in Ca2+ homeostasis rather than in triggering exocytosis.  相似文献   

15.
K+-stimulated 45Ca2+ influx was measured in rat brain presynaptic nerve terminals that were predepolarized in a K+-rich solution for 15 s prior to addition of 45Ca2+. This 'slow' Ca2+ influx was compared to influx stimulated by Na+ removal, presumably mediated by Na+-Ca2+ exchange. The K+-stimulated Ca2+ influx in predepolarized synaptosomes, and the Na+-removal-dependent Ca2+ influx were both saturating functions of the external Ca2+ concentration; and both were half-saturated at 0.3 mM Ca2+. Both were reduced about 50% by 20 microM Hg2+, 20 microM Cu2+ or 0.45 mM Mn2+. Neither the K+-stimulated nor the Na+-removal-dependent Ca2+ influx was inhibited by 1 microM Cd2+, La3+ or Pb2+, treatments that almost completely inhibited K+-stimulated Ca2+ influx in synaptosomes that were not predepolarized. The relative permeabilities of K+-stimulated Ca2+, Sr2+ or Ba2+ influx in predepolarized synaptosomes (10:3:1) and the corresponding selectivity ratio for Na+-removal-dependent divalent cation uptake (10:2:1) were similar. These results strongly suggest that the K+-stimulated 'slow' Ca2+ influx in predepolarized synaptosomes and the Na+-removal-dependent Ca2+ influx are mediated by a common mechanism, the Na+-Ca2+ exchanger.  相似文献   

16.
Calcium can ameliorate Na+ toxicity in plants by decreasing Na+ influx through nonselective cation channels. Here, we show that elevated external [Ca2+] also inhibits Na+ -induced K+ efflux through outwardly directed, K+ -permeable channels. Noninvasive ion flux measuring and patch-clamp techniques were used to characterize K+ fluxes from Arabidopsis (Arabidopsis thaliana) root mature epidermis and leaf mesophyll under various Ca2+ to Na+ ratios. NaCl-induced K+ efflux was not related to the osmotic component of the salt stress, was inhibited by the K+ channel blocker TEA+, was not mediated by inwardly directed K+ channels (tested in the akt1 mutant), and resulted in a significant decrease in cytosolic K+ content. NaCl-induced K+ efflux was partially inhibited by 1 mm Ca2+ and fully prevented by 10 mm Ca2+. This ameliorative effect was at least partially attributed to a less dramatic NaCl-induced membrane depolarization under high Ca2+ conditions. Patch-clamp experiments (whole-cell mode) have demonstrated that two populations of Ca2+ -sensitive K+ efflux channels exist in protoplasts isolated from the mature epidermis of Arabidopsis root and leaf mesophyll cells. The instantaneously activating K+ efflux channels showed weak voltage dependence and insensitivity to external and internal Na+. Another population of K+ efflux channels was slowly activating, steeply rectifying, and highly sensitive to Na+. K+ efflux channels in roots and leaves showed different Ca2+ and Na+ sensitivities, suggesting that these organs may employ different strategies to withstand salinity. Our results suggest an additional mechanism of Ca2+ action on salt toxicity in plants: the amelioration of K+ loss from the cell by regulating (both directly and indirectly) K+ efflux channels.  相似文献   

17.
Stimulation of the nicotinic receptor of bovine chromaffin cells results in a rise in intracellular free calcium [( Ca2+]i) and subsequent release of catecholamine. This response is totally dependent on the presence of external Ca2+. Monitoring [Ca2+]i using quin-2 demonstrated a rise in [Ca2+]i in response to muscarinic agonists which was approximately 4-times less than that obtained in response to nicotinic stimulation. This atropine-sensitive [Ca2+]i rise occurred after a 10-s lag and was found to be independent of the external Ca2+, implying the existence of an intracellular Ca2+ source. Despite producing this [Ca2+]i rise low concentrations of the muscarinic agonist, methacholine (under 1 X 10(-3) M), failed to trigger secretion itself and did not effect the secretory response elicited by nicotine. Challenging the cells with higher methacholine concentrations (over 1 X 10(-3) M) resulted in the same [Ca2+]i rise, no secretion, but an inhibition of secretion due to nicotine. This latter response, however, was found to be atropine-insensitive and therefore non-muscarinic. The [Ca2+]i rise and secretion due to depolarization by 55 mM K+ were largely unaffected by prior addition 1 X 10(-2) M methacholine, inferring that high concentrations of methacholine inhibit nicotine-induced secretion by interacting with the nicotinic receptor. These results provide evidence consistent with the existence of an intracellular Ca2+ store mobilized by muscarinic receptor activation in bovine chromaffin cells and show that, despite causing a rise in [Ca2+]i, bovine chromaffin cell muscarinic stimulation does not effect secretion itself or secretion induced by either nicotine or high K+.  相似文献   

18.
Chromogranin A is a major component of storage granules in many different secretory cell types. After [35S]methionine labelling of proteins from cultured bovine chromaffin cells, chromogranin A was immunoprecipitated with specific antibodies, and the radioactivity incorporated into chromogranin A was determined and used as an index of its synthesis rate. Depolarization of cells with nicotine or high K+ evoked a Ca2+-dependent increase in chromogranin A synthesis, whereas muscarine, which does not evoke significant Ca2+ influx from bovine chromaffin cells, had no effect on chromogranin A synthesis. Forskolin, an activator of adenylate cyclase, affected neither the basal nor the nicotine-stimulated rate of chromogranin A synthesis. In contrast, 12-O-tetradecanoylphorbol 13-acetate (TPA), an activator of protein kinase C, significantly enhanced the incorporation of radioactivity into chromogranin A. Sphingosine, an inhibitor of protein kinase C, abolished both nicotine-stimulated and TPA-induced chromogranin A synthesis. In addition, long-term treatment of chromaffin cells with TPA decreased protein kinase C activity and inhibited the nicotine-stimulated chromogranin A synthesis. These results suggest that protein kinase C may play an important role in the control of chromogranin A synthesis.  相似文献   

19.
The effects of extracellular K+ in relation to extracellular Ca2+ on acid production were studied. Studies were performed in vitro using isolated cells from rat stomachs, and acid production was indirectly determined by 14C-aminopyrine (AP) accumulation. In the absence of K+ in the incubation medium histamine-stimulated AP accumulation ratios were significantly decreased independently in the presence or absence of extracellular Ca2+. Under basal conditions, in the absence of extracellular Ca2+, increasing concentrations of extracellular K+ enhanced AP accumulation ratios to significantly higher than those found in the presence of Ca2+. In histamine-, cAMP-, and carbachol-stimulated parietal cells, high K+ concentrations increased AP accumulation significantly less in Ca(2+)-free than in Ca(2+)-containing media. High K+ also induced significantly both an increase in cytosolic free Ca2+ concentration and 45Ca2+ uptake. The present results confirmed the importance of K+ in gastric acid production and suggested a role for Ca2+ as a modulator of mechanisms of parietal cell stimulation.  相似文献   

20.
The role of intramitochondrial K+ content on the increase in membrane permeability to Ca2+, as induced by carboxyatractyloside was studied. In mitochondria containing a high K+ concentration (83 nmol/mg), carboxyatractyloside induced a fast and extensive mitochondrial Ca2+ release, membrane de-energization, and swelling. Conversely, in K(+)-depleted mitochondria (11 nmol/mg), carboxyatractyloside was ineffective. The addition of 40 mM K+ to K(+)-depleted mitochondria restored the capability of atractyloside to induce an increase in membrane permeability to Ca2+ release. The determination of matrix free Ca2+ concentration showed that, at an external free-Ca2+ concentration of 0.8 microM, control mitochondria contained 3.9 microM of free Ca2+ whereas K(+)-depleted mitochondria contained 0.9 microM free Ca2+. It is proposed that intramitochondrial K+ affects the matrix free Ca2+ concentration required to induce a state of high membrane permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号