首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bishydrazides are versatile linkers for attaching glycans to substrates for lectin binding and pathogen detection schemes. The α,ω-bishydrazides of carboxymethylated hexa(ethylene glycol) (4) can be conjugated at one end to unprotected oligosaccharides, then attached onto carrier proteins, tethered onto activated carboxyl-terminated surfaces, or functionalized with a photoactive cross-linking agent for lithographic patterning. Glycoconjugates of bishydrazide 4 can also be converted into dithiocarbamates (DTCs) by treatment with CS(2) under mild conditions, for attachment onto gold substrates. The immobilized glycans serve as recognition elements for cell-surface lectins and enable the detection and capture of bacterial pathogens such as Pseudomonas aeruginosa by their adsorption onto micropatterned substrates. A detection limit of 103 cfu/mL is demonstrated, using a recently introduced method based on optical pattern recognition.  相似文献   

2.
Laser-induced temperature jump experiments were used for testing the rates of thermoinduced conformational transitions of reaction center (RC) complexes in chromatophores of Chromatium minutissimum. The thermoinduced transition of the macromolecular RC complex to a state providing effective electron transport from the multiheme cytochrome c to the photoactive bacteriochlorophyll dimer within the temperature range 220–280 K accounts for tens of seconds with activation energy 0.166 eV/molecule. The rate of the thermoinduced transition in the cytochrome–RC complex was found to be three orders of magnitude slower than the rate of similar thermoinduced transition of the electron transfer reaction from the primary to secondary quinone acceptors studied in the preceding work (Chamorovsky et al. in Eur Biophys J 32:537–543, 2003). Parameters of thermoinduced activation of the electron transfer from the multiheme cytochrome c to the photoactive bacteriochlorophyll dimer are discussed in terms of cytochrome c docking onto the RC.  相似文献   

3.
The adsorption of proteins from human whole saliva (HWS) onto silica and hydroxyapatite surfaces (HA) was followed by quartz crystal microbalance with dissipation (QCM-D) and ellipsometry. The influence of different surface properties and adsorption media (water and PBS) on the adsorption from saliva was studied. The viscoelastic properties of the salivary films formed on the solid surfaces were estimated by the use of the Voigt-based viscoelastic film model. Furthermore, the efficiency of SDS and delmopinol to elute the adsorbed salivary film from the surfaces was investigated at different surfactant concentrations. A biphasic kinetic regime for the adsorption from saliva on the silica and HA surfaces was observed, indicating the formation of a rigidly coupled first layer corresponding to an initial adsorption of small proteins and a more loosely bound second layer. The results further showed a higher adsorption from HWS onto the HA surfaces compared to the silica surfaces in both adsorption media (PBS and water). The adsorption in PBS led to higher adsorbed amounts on both surfaces as compared to water. SDS was found to be more efficient in removing the salivary film from both surfaces than delmopinol. The salivary film was found to be less tightly bound onto the silica surfaces since more of the salivary film could be removed with both SDS and delmopinol compared to that from the HA surface. When adsorption took place from PBS the salivary layer formed at both surfaces seemed to have a similar structure, with a high energy dissipation implying that a softer salivary layer is built up in PBS as opposed to that in water. Furthermore, the salivary layers adsorbed from water solutions onto the HA were found to be softer than those on silica.  相似文献   

4.
肝癌细胞-胞外基质粘附性与粘附识别序列的相关性   总被引:1,自引:0,他引:1  
以微管吸吮技术研究了人肝癌细胞在IV型胶原/层粘连蛋白(LN)/纤维连结蛋白(FN)裱衬表面的粘附性。进一步,用四种人工合成肽精-甘-天冬-丝(RGDS)、甘-精-甘-天冬-苏-脯GRGDTP)、酪-异亮-甘-丝-精(YIGSR0和半胱-天冬-脯-甘-酪-异亮-甘-丝-精(CDPGYIGSR)研究了肝癌细胞粘附性对两种粘附识别序列RGD和YIGSR的依赖性。为了归纳和整理实验结果,根据竞争性抑制的  相似文献   

5.
Errors in analyzing CD spectra of proteins arising from adsorption loss onto glass surfaces were examined for six proteins: apolipoproteins A-I and E, fibronectin, bovine serum albumin, insulin, and glucagon. Among these, the glycoproteins, apolipoprotein E and fibronectin, adsorbed most onto glass surfaces. Their CD intensities decreased by about 50% when proteins were diluted serially from 1 to 0.01 mg/ml in regular glass-ware and CD was measured in uncoated cells. The other proteins, except glucagon, also showed a certain degree of adsorption. Thus, adsorption loss of proteins onto glass surfaces is common and may lead to serious errors in experimental results. Adsorption can be minimized by using plastic containers and pipet tips, coating the cell with silicone, and wetting the cell before adding the protein solution.  相似文献   

6.
Silanized nucleic acids: a general platform for DNA immobilization   总被引:1,自引:0,他引:1  
We have developed a method for simultaneous deposition and covalent cross-linking of oligonucleotide or PCR products on unmodified glass surfaces. By covalently conjugating an active silyl moiety onto oligonucleotides or cDNA in solutions we have generated a new class of modified nucleic acids, namely silanized nucleic acids. Such silanized molecules can be immobilized instantly onto glass surfaces after manual or automated deposition. This method provides a simple and rapid, yet very efficient, solution to the immobilization of prefabricated oligonucleotides and DNA for chip production.  相似文献   

7.
The adsorption of the protein avidin from hen egg white on patterns of silicon dioxide and platinum surfaces on a microchip and the use of fluorescent microscopy to detect binding of biotin are described. A silicon dioxide microchip was formed using plasma-enhanced chemical vapor deposition while platinum was deposited using radiofrequency sputtering. After cleaning using a plasma arc, the chips were placed into solutions containing avidin or bovine serum albumin. The avidin was adsorbed onto the microchips from phosphate-buffered saline (PBS) or from PBS to which ammonium sulfate had been added. Avidin was also adsorbed onto bovine serum albumin (BSA)-coated surfaces of oxide and platinum. Fluorescence microscopy was used to confirm adsorption of labeled protein, or the binding of fluorescently labeled biotin onto previously adsorbed, unlabeled avidin. When labeled biotin in PBS was presented to avidin adsorbed onto a BSA-coated microchip, the fluorescence signal was significantly higher than for avidin adsorbed onto the biochip alone. The results show that a simple, low-cost adsorption process can deposit active protein onto a chip in an approach that has potential application in the development of protein biochips for the detection of biological species.  相似文献   

8.
Polystyrene, polypropylene, and polyethylene surfaces were activated by exposing 1-fluoro-2-nitro-4-azidobenzene coated surface to sunlight. Sunlight intensity of 26,300 lux was found optimum beyond which no appreciable increase in activation was observed. Five-minutes sunlight exposure gave better activated surface than 5 min 365-nm UV light exposure. The efficacy of sunlight-mediated activated surfaces was demonstrated by covalently immobilizing proteins onto them. Horseradish peroxidase when immobilized onto the sunlight-activated surfaces showed more than twofold increase in immobilization than the surface without activation. Thus, sunlight being a versatile, eco-friendly, and clean energy source can be a potential alternative for activation of inert surface for covalent attachment of biomolecule such as protein, DNA, or carbohydrate.  相似文献   

9.
Surface-immobilized liposome layers are of interest for various potential applications such as localized drug delivery, but their characterization is challenging. We have employed an AFM method and fluorescent dye release to analyze anchored liposomes. In addition, we studied whether the liposomes are surface-bound solely via specific interaction (NeutrAvidin/biotin) or whether physisorptive binding also plays a role. Liposomes containing PEG-biotin lipids were affinity bound to NeutrAvidin molecules which had been immobilized onto solid supports via three different hydrogel interlayers. After liposome docking, approaching the surface with a colloid probe mounted onto an AFM cantilever showed considerable compression behavior, consistent with expectation based on intact, deformable liposomes but not lipid bilayers, thus showing that disruption of liposomes did not occur upon immobilization onto these support surfaces. Plastic deformation suggestive of liposome disruption on compression was not observed. The kinetics of fluorescent dye release also demonstrated that intact liposomes had been successfully immobilized onto all three supports. Blocking surface-immobilized NeutrAvidin molecules with excess biotin in solution before exposure to liposomes showed that the docking of liposomes was dependent largely but not exclusively on biotin-NeutrAvidin affinity binding, with evidence for some nonspecific physisorption, as the extent of liposome binding onto blocked NeutrAvidin surfaces was appreciably lower than for unblocked surfaces but not zero. Finally, consecutive addition of further NeutrAvidin and liposome layers enabled fabrication of multilayers, and this was clearly seen in AFM compressibility and fluorescent dye release measurements.  相似文献   

10.
Coupling of photosynthetic reaction centers (RCs) with inorganic surfaces is attractive for the identification of the mechanisms of interprotein electron transfer (ET) and for possible applications in construction of photo- and chemosensors. Here we show that RCs from Rhodobacter sphaeroides can be immobilized on gold surfaces with the RC primary donor looking towards the substrate by using a genetically engineered poly-histidine tag (His7) at the C-terminal end of the M-subunit and a Ni---NTA terminated self-assembled monolayer (SAM). In the presence of an electron acceptor, ubiquinone-10, illumination of this RC electrode generates a cathodic photocurrent. The action spectrum of the photocurrent coincides with the absorption spectrum of RC and the photocurrent decreases in response to the herbicide, atrazine, confirming that the RC is the primary source of the photoresponse. Disruption of the Ni---NTA---RC bond by imidazole leads to about 80% reduction of the photocurrent indicating that most of the photoactive protein is specifically bound to the electrode through the linker.  相似文献   

11.
Amelogenin is believed to be involved in controlling the formation of the highly anisotropic and ordered hydroxyapatite crystallites that form enamel. The adsorption behavior of amelogenin proteins onto substrates is very important because protein–surface interactions are critical to its function. We have previously used LRAP, a splice variant of amelogenin, as a model protein for the full-length amelogenin in solid-state NMR and neutron reflectivity studies at interfaces. In this work, we examined the adsorption behavior of LRAP in greater detail using model self-assembled monolayers containing COOH, CH3, and NH2 end groups as substrates. Dynamic light scattering (DLS) experiments indicated that LRAP in phosphate buffered saline and solutions containing low concentrations of calcium and phosphate consisted of aggregates of nanospheres. Null ellipsometry and atomic force microscopy (AFM) were used to study protein adsorption amounts and quaternary structures on the surfaces. Relatively high amounts of adsorption occurred onto the CH3 and NH2 surfaces from both buffer solutions. Adsorption was also promoted onto COOH surfaces only when calcium was present in the solutions suggesting an interaction that involves calcium bridging with the negatively charged C-terminus. The ellipsometry and AFM studies revealed that LRAP adsorbed onto the surfaces as small subnanosphere-sized structures such as monomers or dimers. We propose that the monomers/dimers were present in solution even though they were not detected by DLS or that they adsorbed onto the surfaces by disassembling or “shedding” from the nanospheres that are present in solution. This work reveals the importance of small subnanosphere-sized structures of LRAP at interfaces.  相似文献   

12.
The immobilization of the glucose/mannose-binding lectin from Concanavalia ensiformis seeds (ConA) onto a monolayer made of a galactomannan extracted from Leucaena leucocephala seeds (GML), which was adsorbed onto - amino-terminated surfaces, was investigated by means of ellipsometry and atomic force microscopy. The mean thickness of GML monolayer, which polysaccharide consists of linear 1 → 4-linked β-d-mannopyranosil units partially substituted at C-6 by α-d-galactopyranosyl units, amounted to (1.5 ± 0.2) nm. ConA molecules adsorbed onto GML surfaces forming (2.0 ± 0.5) nm thick layers. However, in the presence of mannose the adsorption failed, indicating that ConA binding sites were blocked by mannose and were no longer available for mannose units present in the GML backbone. The GML film was also used as support for the adsorption of three serotypes of dengue virus particles (DENV-1, DENV-2 and DENV-3), where DENV-2 formed the thickest film (4 ± 2) nm. The adsorbed layer of DENV-2 onto ConA-covered GML surfaces presented mean thickness values similar to that determined for DENV-2 onto bare GML surfaces. The addition of free mannose units prevented DENV-2 adsorption onto ConA-covered GML films by ∼50%, suggesting competition between virus and mannose for ConA binding sites. This finding suggests that if ConA is also adsorbed to GML surface and its binding site is blocked by free mannose, virus particles are able to recognized GML mannose unities substituted by galactose. Interactions between polysaccharides thin films, proteins, and viruses are of great relevance since they can provide basis for the development of biotechnological devices. These results indicate that GML is a potential polysaccharide for biomaterials development, as those could involve interactions between ConA in immune system and viruses.  相似文献   

13.
A label-free photoelectrochemical cytosensor for highly sensitive and specific detection of Ramos cell was developed based on photoactive films. The films were fabricated by a layer-by-layer (LBL) assembly of positively charged poly(dimethyldiallylammonium chloride) (PDDA) and negatively charged CdSe semiconductor nanoparticles (NPs) capped with mercaptoacetic acid. The resulting modified electrodes were tested as sensors for Ramos cell through the recognition of DNA aptamer which was covalently bound to the electrode using the classic coupling reactions between -COOH groups on the surfaces of CdSe NPs and -NH(2) groups of the aptamer. The newly developed cytosensor exhibited excellent sensitivity and selectivity. The linear range was from 160 to 1600 cells/mL and the detection limit was 84 cells/mL.  相似文献   

14.
A doubly biomimetic PMNC polymer bearing cell antifouling phosphorylcholine and mussel adhesive protein catechol groups is synthesized. The polymer can be deposited onto a variety of substrates by dip-coating in an aqueous solution, adhering to surfaces via the catechol functional group while at the same time forming a cell outer membrane mimetic antifouling surface. Contact angle, ATR-FTIR and XPS measurements confirm polymer coating formation on a variety of inorganic and organic substrates. BSA and bovine plasma fibrinogen protein adsorption on PMNC coated surfaces are reduced significantly compared to unmodified substrates, and platelet adhesion from human serum onto the PMNC coated substrate surfaces is highly suppressed in this study.  相似文献   

15.
Hu W  Hossain M  Lux R  Wang J  Yang Z  Li Y  Shi W 《PloS one》2011,6(1):e16102
Social motility (S motility), the coordinated movement of large cell groups on agar surfaces, of Myxococcus xanthus requires type IV pili (TFP) and exopolysaccharides (EPS). Previous models proposed that this behavior, which only occurred within cell groups, requires cycles of TFP extension and retraction triggered by the close interaction of TFP with EPS. However, the curious observation that M. xanthus can perform TFP-dependent motility at a single-cell level when placed onto polystyrene surfaces in a highly viscous medium containing 1% methylcellulose indicated that "S motility" is not limited to group movements. In an apparent further challenge of the previous findings for S motility, mutants defective in EPS production were found to perform TFP-dependent motility on polystyrene surface in methylcellulose-containing medium. By exploring the interactions between pilin and surface materials, we found that the binding of TFP onto polystyrene surfaces eliminated the requirement for EPS in EPS(-) cells and thus enabled TFP-dependent motility on a single cell level. However, the presence of a general anchoring surface in a viscous environment could not substitute for the role of cell surface EPS in group movement. Furthermore, EPS was found to serve as a self-produced anchoring substrate that can be shed onto surfaces to enable cells to conduct TFP-dependent motility regardless of surface properties. These results suggested that in certain environments, such as in methylcellulose solution, the cells could bypass the need for EPS to anchor their TPF and conduct single-cell S motility to promote exploratory movement of colonies over new specific surfaces.  相似文献   

16.
A new type of copolymer composed of l-histidine (ampholyte) and n-butyl methacrylate (hydrophobic moiety) was developed for the preparation of nonbiofouling surfaces. The copolymer adsorbed onto resin surfaces and made the surface very hydrophilic. The hydrophilization effect was higher than that of bovine serum albumin (BSA). When polystyrene surfaces were coated with the copolymer, both the nonspecific adsorption of protein and the adhesion of cells were significantly reduced in comparison with BSA coating. The newly synthesized polymer is a new and useful candidate for the preparation of nonbiofouling surfaces.  相似文献   

17.
Polypropylene and polyethylene surfaces are activated by introducing an active functional group through 1-fluoro-2 nitro-4-azidobenzene by UV irradiation. Horseradish peroxidase and glucose oxidase are immobilized onto the activated surfaces, simply by incubating the enzymes at 37 degrees C. When untreated surfaces are used, insignificant immobilization of the enzymes is observed.  相似文献   

18.
Dressler DH  Mastai Y 《Chirality》2007,19(5):358-365
In this article, we describe the preparation and use of chiral surfaces derived from enantiomerically pure crystals of amino acids. For this purpose, we chose to employ a self-assembly process to grow nanoscale chiral films of (+)-L or (-)-D cysteine, onto gold surfaces. We utilized those chiral films as resolving auxiliaries in the crystallization of enantiomers from solutions. To demonstrate the chiral discriminating ability of the chiral surfaces in crystallization processes, we investigated the crystallization of rac-glutamic acid onto the chiral films. Our study demonstrates the potential application of chiral films to control chirality throughout crystallization, where one enantiomer crystallizes on the chiral surfaces with relatively high enantiomeric excess. In addition, crystallization of pure glutamic acid enantiomers, and its racemic compound on to chiral films resulted in crystal morphology modification with preferred crystal orientation, which assists in the interpretation of the ability of our chiral surfaces to function as chiral selectors.  相似文献   

19.
Conjugation of proteins to copolymers from poly(acrylic acid) grafted onto PEO-PPO-PEO backbone (Pluronic-PAA) following adsorption of the conjugates onto hydrophobic surfaces is reported. Insulin-Pluronic-PAA conjugates show negligible internalization of insulin into human uterine smooth muscle cells as well as enhancement of mitogenic activity. Glucose-induced release of glycated albumin complexed with a Pluronic-PAA-concanavalin conjugate and adsorbed onto polystyrene nanospheres may provide a model for a glucose-responsive protein delivery system or a heterogeneous diagnostic device.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号