首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Hydrogenase from Desulfovibrio desulfuricans (ATCC No. 27774) grown in unenriched and in enriched 61Ni and 57Fe media has been purified to apparent homogeneity. Two fractions of enzymes with hydrogenase activity were separated and were termed hydrogenase I and hydrogenase II. they were shown to have similar molecular weights (77,600 for hydrogenase I and 75,500 for hydrogenase II), to be composed of two polypeptide chains, and to contain Ni and non-heme iron. Because of its higher specific activity (152 versus 97) hydrogenase II was selected for EPR and M?ssbauer studies. As isolated, hydrogenase II exhibits an "isotropic" EPR signal at g = 2.02 and a rhombic EPR signal at g = 2.3, 2.2, and 2.0. Isotopic substitution of 61Ni proves that the rhombic signal is due to Ni. Combining the M?ssbauer and EPR data, the isotropic g = 2.02 EPR signal was shown to originate from a 3Fe cluster which may have oxygenous or nitrogenous ligands. In addition, the M?ssbauer data also revealed two [4Fe-4S]2+ clusters iun each molecule of hydrogenase II. The EPR and M?ssbauer data of hydrogenase I were found to be identical to those of hydrogenase II, indicating that both enzymes have common metallic centers.  相似文献   

2.
The [NiFe] hydrogenase isolated from Desulfovibrio gigas was poised at different redox potentials and studied by M?ssbauer spectroscopy. The data firmly establish that this hydrogenase contains four prosthetic groups: one nickel center, one [3Fe-xS], and two [4Fe-4S] clusters. In the native enzyme, both the nickel and the [3Fe-xS] cluster are EPR-active. At low temperature (4.2 K), the [3Fe-xS] cluster exhibits a paramagnetic M?ssbauer spectrum typical for oxidized [3Fe-xS] clusters. At higher temperatures (greater than 20 K), the paramagnetic spectrum collapses into a quadrupole doublet with parameters magnitude of delta EQ magnitude of = 0.7 +/- 0.06 mm/s and delta = 0.36 +/- 0.06 mm/s, typical of high-spin Fe(III). The observed isomer shift is slightly larger than those observed for the three-iron clusters in D. gigas ferredoxin II (Huynh, B. H., Moura, J. J. G., Moura, I., Kent, T. A., LeGall, J., Xavier, A. V., and Münck, E. (1980) J. Biol. Chem. 255, 3242-3244) and in Azotobacter vinelandii ferredoxin I (Emptage, M. H., Kent, T. A., Huynh, B. H., Rawlings, J., Orme-Johnson, W. H., and Münck, E. (1980) J. Biol. Chem. 255, 1793-1796) and may indicate a different iron coordination environment. When D. gigas hydrogenase is poised at potentials lower than -80 mV (versus normal hydrogen electrode), the [3Fe-xS] cluster is reduced and becomes EPR-silent. The M?ssbauer data indicate that the reduced [3Fe-xS] cluster remains intact, i.e. it does not interconvert into a [4Fe-4S] cluster. Also, the electronic properties of the reduced [3Fe-xS] cluster suggest that it is magnetically isolated from the other paramagnetic centers.  相似文献   

3.
The bleomycin-iron complexes with CO, NO, C2H5NC, OH-, N-3, CN-, and CH3NH2 were characterized by electronic, ESR, 1H-NMR, and M?ssbauer spectroscopies and the findings were compared with the corresponding hemoprotein complexes. The 1H-NMR and M?ssbauer features for the CO and C2H5NC adducts of the bleomycin-Fe(II) complex are consistent with an S = 0 ferrous assignment. The OH-, CH3NH2, and N-3 adducts of the bleomycin-Fe(III) complex show the ESR, 1H-NMR, and M?ssbauer spectra typical of a low-spin Fe(III). The unique M?ssbauer parameters of the bleomycin-Fe(II)-NO complex demonstrate mixing between the NO pi- and the Fe 3d-orbitals. The magnitude of the proton chemical shifts over +/- 50 ppm indicates a high-spin ferric type for the bleomycin-Fe(III)-CN complex. The M?ssbauer parameters (delta EQ = 0.89 and delta = 0.48 mm/s) of the CN- adduct differ substantially from those of typical low-spin hemoprotein-cyanide complexes. Except for the CN- adduct, the M?ssbauer and crystal field parameters of these bleomycin-iron complexes are similar to those of the corresponding hemoprotein complexes.  相似文献   

4.
Two different hydrogenases have been isolated from Clostridium pasteurianum W5. Hydrogenase II (uptake) is active in H2 oxidation while hydrogenase I (bidirectional) is active both in H2 oxidation and evolution. Previous EPR and electron nuclear double resonance (ENDOR) studies of oxidized hydrogenase I have now been complemented by analogous studies on oxidized 57Fe-enriched hydrogenase II and its CO derivative (using 12CO and 13CO). Binding of CO greatly changes the EPR spectrum of oxidized hydrogenase II, and use of 13CO leads to resolved hyperfine splitting from interaction with a single 13CO molecule (AC approximately 34 MHz). This coupling is over 50% larger than that seen for hydrogenase I. 57Fe ENDOR disclosed two types of iron site in both oxidized hydrogenase II and its CO derivative. Combination of EPR, ENDOR, and M?ssbauer results shows that site 1 has AFe1 = 18 MHz shifting to approximately 30 MHz upon CO binding and consisting of two Fe atoms and site 2 has A2 approximately 7 MHz shifting to approximately 10 MHz and containing a single Fe. These results are very similar to those seen for hydrogenase I, which indicates that a structurally similar 3Fe cluster, believed to be the catalytically active site, is present in both. Proton ENDOR shows a solvent exchangeable resonance only in the CO derivative of hydrogenase II. This indicates a structural difference between hydrogenases I and II that is brought out by CO binding. No evidence of 14N coordination to the cluster is seen for either enzyme.  相似文献   

5.
Measurements with a PAM fluorometer showed that the photochemical activity of photosystem II (PS II) in sulfur-deprived Chlamydomonas reinhardtii cells (media TAP-S) decreases slowly under aerobic conditions. In a closed cultivator, when the rate of O2 photosynthetic evolution declines below the rate of respiration, the cell culture is under anaerobic conditions in which the activation of hydrogenase and the production of hydrogen take place. We found that the slow decrease in PS II activity is followed by an abrupt inactivation of PS II centers just after the onset of anaerobiosis. This fast PS II inactivation is reversed by aeration of the media and is accompanied by an increase in the fluorescence parameter Ft. Moreover, the rate of the abrupt PS II inactivation diminished after the addition into the medium of electron acceptors such as CO2 (carbonate-bicarbonate buffer), NO3- and SO4(2-) , the assimilation of which in chloroplasts requires a lot of reductants. We suggest that the PS II inactivation is due to the overreduction of the plastoquinone pool after the onset of anaerobiosis.  相似文献   

6.
Acetate-grown cells of Methanosarcina barkeri MS were found to form methane from H2:CO2 at the same rate as hydrogen-grown cells. Cells grown on acetate had similar levels of soluble F420-reactive hydrogenase I, and higher levels of cytochrome-linked hydrogenase II compared to hydrogen-grown cells. The hydrogenase I and II activities in the crude extract of acetate-grown cells were separated by differential binding properties to an immobilized Cu2+ column. Hydrogenase II did not react with ferredoxin or F420, whereas hydrogenase I coupled to both ferredoxin and F420. A reconstituted soluble protein system composed of purified CO dehydrogenase, F420-reactive hydrogenase I fraction, and ferredoxin produced H2 from CO oxidation at a rate of 2.5 nmol/min · mg protein. Membrane-bound hydrogenase II coupled H2 consumption to the reduction of CoM-S-S-HTP and the synthesis of ATP. The differential function of hydrogenase I and II is ascribed to ferredoxin-linked hydrogen production from CO and cytochrome b-linked H2 consumption coupled to methanogenesis and ATP synthesis, respectively.  相似文献   

7.
The work describes a novel approach for sustained photobiological production of H(2) gas via the reversible hydrogenase pathway in the green alga Chlamydomonas reinhardtii. This single-organism, two-stage H(2) production method circumvents the severe O(2) sensitivity of the reversible hydrogenase by temporally separating photosynthetic O(2) evolution and carbon accumulation (stage 1) from the consumption of cellular metabolites and concomitant H(2) production (stage 2). A transition from stage 1 to stage 2 was effected upon S deprivation of the culture, which reversibly inactivated photosystem II (PSII) and O(2) evolution. Under these conditions, oxidative respiration by the cells in the light depleted O(2) and caused anaerobiosis in the culture, which was necessary and sufficient for the induction of the reversible hydrogenase. Subsequently, sustained cellular H(2) gas production was observed in the light but not in the dark. The mechanism of H(2) production entailed protein consumption and electron transport from endogenous substrate to the cytochrome b(6)-f and PSI complexes in the chloroplast thylakoids. Light absorption by PSI was required for H(2) evolution, suggesting that photoreduction of ferredoxin is followed by electron donation to the reversible hydrogenase. The latter catalyzes the reduction of protons to molecular H(2) in the chloroplast stroma.  相似文献   

8.
Vacuoles were isolated from fermenting yeast cells grown on minimal medium supplemented with 40 μM (57)Fe. Absolute concentrations of Fe, Cu, Zn, Mn, Ca, and P in isolated vacuoles were determined by ICP-MS. M?ssbauer spectra of isolated vacuoles were dominated by two spectral features: a mononuclear magnetically isolated high-spin (HS) Fe(III) species coordinated primarily by hard/ionic (mostly or exclusively oxygen) ligands and superparamagnetic Fe(III) oxyhydroxo nanoparticles. EPR spectra of isolated vacuoles exhibited a g(ave) ~ 4.3 signal typical of HS Fe(III) with E/D ~ 1/3. Chemical reduction of the HS Fe(III) species was possible, affording a M?ssbauer quadrupole doublet with parameters consistent with O/N ligation. Vacuolar spectral features were present in whole fermenting yeast cells; however, quantitative comparisons indicated that Fe leaches out of vacuoles during isolation. The in vivo vacuolar Fe concentration was estimated to be ~1.2 mM while the Fe concentration of isolated vacuoles was ~220 μM. M?ssbauer analysis of Fe(III) polyphosphate exhibited properties similar to those of vacuolar Fe. At the vacuolar pH of 5, Fe(III) polyphosphate was magnetically isolated, while at pH 7, it formed nanoparticles. This pH-dependent conversion was reversible. Fe(III) polyphosphate could also be reduced to the Fe(II) state, affording similar M?ssbauer parameters to that of reduced vacuolar Fe. These results are insufficient to identify the exact coordination environment of the Fe(III) species in vacuoles, but they suggest a complex closely related to Fe(III) polyphosphate. A model for Fe trafficking into/out of yeast vacuoles is proposed.  相似文献   

9.
Cell extracts from acetate-grown Methanosarcina thermophila contained CO-oxidizing:H2-evolving activity 16-fold greater than extracts from methanol-grown cells. Following fractionation of cell extracts into soluble and membrane components, CO-dependent H2 evolution and CO-dependent methyl-coenzyme M methylreductase activities were only present in the soluble fraction, but addition of the membrane fraction enhanced both activities. A b-type cytochrome(s), present in the membrane fraction, was linked to a membrane-bound hydrogenase. CO-oxidizing:H2-evolving activity was reconstituted with: (i) CO dehydrogenase complex, (ii) a ferredoxin, and (iii) purified membranes with associated hydrogenase. The ferredoxin was a direct electron acceptor for the CO dehydrogenase complex. The ferredoxin also coupled CO oxidation by CO dehydrogenase complex to metronidazole reduction.  相似文献   

10.
Methanosarcina barkeri has recently been shown to produce a multisubunit membrane-bound [NiFe] hydrogenase designated Ech (Escherichia coli hydrogenase 3) hydrogenase. In the present study Ech hydrogenase was purified to apparent homogeneity in a high yield. The enzyme preparation obtained only contained the six polypeptides which had previously been shown to be encoded by the ech operon. The purified enzyme was found to contain 0.9 mol of Ni, 11.3 mol of nonheme-iron and 10.8 mol of acid-labile sulfur per mol of enzyme. Using the purified enzyme the kinetic parameters were determined. The enzyme catalyzed the H2 dependent reduction of a M. barkeri 2[4Fe-4S] ferredoxin with a specific activity of 50 U x mg protein-1 at pH 7.0 and exhibited an apparent Km for the ferredoxin of 1 microM. The enzyme also catalyzed hydrogen formation with the reduced ferredoxin as electron donor at a rate of 90 U x mg protein-1 at pH 7.0. The apparent Km for the reduced ferredoxin was 7.5 microM. Reduction or oxidation of the ferredoxin proceeded at similar rates as the reduction or oxidation of oxidized or reduced methylviologen, respectively. The apparent Km for H2 was 5 microM. The kinetic data strongly indicate that the ferredoxin is the physiological electron donor or acceptor of Ech hydrogenase. Ech hydrogenase amounts to about 3% of the total cell protein in acetate-grown, methanol-grown or H2/CO2-grown cells of M. barkeri, as calculated from quantitative Western blot experiments. The function of Ech hydrogenase is ascribed to ferredoxin-linked H2 production coupled to the oxidation of the carbonyl-group of acetyl-CoA to CO2 during growth on acetate, and to ferredoxin-linked H2 uptake coupled to the reduction of CO2 to the redox state of CO during growth on H2/CO2 or methanol.  相似文献   

11.
The incorporation of 57Fe into two lipoxygenase isoenzymes from soybeans has been achieved making possible the first observations of the iron environment in these proteins using M?ssbauer spectroscopy. Immature soybean seeds were grown in tissue culture medium supplied with 57Fe. The iron in the active lipoxygenases that were isolated from the cultured seeds was readily detected in M?ssbauer measurements. It was unequivocally demonstrated that the native enzyme contains high-spin Fe(II). Based on the sign of the electric field gradient, the most likely ligand sphere for the iron in native lipoxygenase consists of oxygen and nitrogen ligands in a roughly octahedral field of symmetry. It was possible to detect M?ssbauer signals in highly concentrated samples of native lipoxygenases containing 57Fe at natural abundance. The spectra obtained for enriched and natural abundance native enzyme had the same high-spin Fe(II) M?ssbauer parameters. This confirmed that the environment of the iron in enzymes isolated from cultured seeds and dry soybeans were the same. The M?ssbauer spectra (4.2-250 K) for samples of both isoenzymes after oxidation of the iron in native enzyme by the product of lipoxygenase catalysis were extremely broad (20 mm/s) with no obvious narrow resonance lines. This was the result of the existence of paramagnetically broadened spectra for such samples even at relatively high temperature as evidenced by the appropriate EPR signal. A small molecule containing an iron site sharing many of these M?ssbauer and electron paramagnetic resonance properties with lipoxygenase was identified: Fe(II)/(III).diethylenetriaminepentaacetic acid.  相似文献   

12.
Previous M?ssbauer and electron nuclear double resonance (ENDOR) studies of oxidized hydrogenase I (bidirectional) from Clostridium pasteurianum W5 demonstrated that this enzyme contains two diamagnetic [4Fe-4S]2+ clusters and an iron-sulfur center of unknown structure and composition that is characterized by its novel M?ssbauer and ENDOR properties. In the present study we combine ENDOR and EPR measurements to show that the novel cluster contains 3-4 iron atoms. In addition, we have used EPR and ENDOR spectroscopies to investigate the effect of binding the competitive inhibitor carbon monoxide to oxidized hydrogenase I, using 13C-labeled CO and enzyme isotopically enriched in 57Fe. Treatment of oxidized enzyme with CO causes the g-tensor of the paramagnetic center to change from rhombic to axial symmetry. The observation of a 13C signal by ENDOR spectroscopy and analysis of the EPR broadening show that a single CO covalently binds to the paramagnetic center. The 13C hyperfine coupling constant (Ac approximately equal to 21 MHz) is within the range observed for inorganic iron-carbonyl clusters. The observation of 57Fe ENDOR signals from two types of iron site ([A1c] approximately 30-34 MHz; [A2c] approximately 6 MHz) and resolved 57Fe hyperfine interactions in the EPR spectrum from two nuclei characterized by [A1c] confirm that the iron-sulfur cluster remains intact upon CO coordination, but show that CO binding greatly changes the 57Fe hyperfine coupling constants.  相似文献   

13.
Moorella thermoacetica ferments glucose to three acetic acids. In the oxidative part of the fermentation, the hexose is converted to 2 acetic acids and 2 CO(2) molecules with the formation of 2 NADH and 2 reduced ferredoxin (Fd(red)(2-)) molecules. In the reductive part, 2 CO(2) molecules are reduced to acetic acid, consuming the 8 reducing equivalents generated in the oxidative part. An open question is how the two parts are electronically connected, since two of the four oxidoreductases involved in acetogenesis from CO(2) are NADP specific rather than NAD specific. We report here that the 2 NADPH molecules required for CO(2) reduction to acetic acid are generated by the reduction of 2 NADP(+) molecules with 1 NADH and 1 Fd(red)(2-) catalyzed by the electron-bifurcating NADH-dependent reduced ferredoxin:NADP(+) oxidoreductase (NfnAB). The cytoplasmic iron-sulfur flavoprotein was heterologously produced in Escherichia coli, purified, and characterized. The purified enzyme was composed of 30-kDa (NfnA) and 50-kDa (NfnB) subunits in a 1-to-1 stoichiometry. NfnA harbors a [2Fe2S] cluster and flavin adenine dinucleotide (FAD), and NfnB harbors two [4Fe4S] clusters and FAD. M. thermoacetica contains a second electron-bifurcating enzyme. Cell extracts catalyzed the coupled reduction of NAD(+) and Fd with 2 H(2) molecules. The specific activity of this cytoplasmic enzyme was 3-fold higher in H(2)-CO(2)-grown cells than in glucose-grown cells. The function of this electron-bifurcating hydrogenase is not yet clear, since H(2)-CO(2)-grown cells additionally contain high specific activities of an NADP(+)-dependent hydrogenase that catalyzes the reduction of NADP(+) with H(2). This activity is hardly detectable in glucose-grown cells.  相似文献   

14.
Anions modulate hydrogenase activity in cell-free preparations of Chlamydomonas reinhardtii, and this modulation is greatly influenced by the charge properties of the redox agent included to mediate electron transfer to hydrogenase. With cationic methyl viologen as the electron mediator, anions stimulate the maximum velocity of H2 production (e.g., a 320% increase in the presence of 1 M NaCl) but have little effect on the Km for methyl viologen. Conversely, when hydrogenase activity is mediated by polyanionic metatungstate or ferredoxin, H2 production is strongly inhibited by anions (e.g., 70-77% inhibition by 0.2 M NaCl). This inhibition is primarily due to a reduced affinity of hydrogenase for these mediators (as evidenced by a large increase in Km values), rather than a change in the maximum velocity of the reaction. Anions have little effect on the kinetics of hydrogenase activity mediated by zwitterionic sulfonatopropyl viologen, a redox agent with a nearly neutral net charge. These results suggest the presence of a cationic region near the active site of hydrogenase. This cationic region, probably due to lysine and/or arginine residues, may serve in vivo to facilitate the interaction between hydrogenase and ferredoxin, the polyanionic, physiological electron mediator.  相似文献   

15.
The magnetic properties of the nickel(II) site in active Desulfovibrio baculatus (DSM 1743) [NiFeSe] hydrogenase have been measured using the multifield saturation magnetization technique. The periplasmic [NiFeSe] hydrogenase was isolated from bacteria grown in excess selenium in the presence of 57Fe. Saturation magnetization data were collected at three fixed fields (1.375, 2.75, 5.5 tesla) over the temperature range from 2 to 100 K. M?ssbauer and EPR spectroscopies were used to characterize the magnetic state of the two [4Fe-4S] clusters of the enzyme and to quantitate the small amounts of iron impurities present in the sample. The nickel(II) site was found to be diamagnetic (low spin, S = 0). In combination with recent results from extended x-ray absorption fine structure studies, this magnetic state indicates that the nickel(II) site of active D. baculatus [NiFeSe] hydrogenase is five-coordinate.  相似文献   

16.
M?ssbauer effect and electron paramagnetic resonance (EPR) were measured for yeast aconitase [EC 4.2.1.3] purified from the cells of Candida lipolytica (ATCC 200114). M?ssbauer spectra suggested that yeast aconitase nostly contained two high-spin Fe(III) ions in an antiferromagnetically coupled binuclear complex that resembled oxidized 2 Fe ferredoxins, together with a small amount of high-spin Fe(II). EPR spectra recorded no signal at 77degreesK, but showed a slightly asymmetric signal centered at g=2.0 at 4.2degreesK, presumably due to the small amount of Fe(II) Fe(III) pairs.  相似文献   

17.
18.
19.
On the novel H2-activating iron-sulfur center of the "Fe-only" hydrogenases   总被引:1,自引:0,他引:1  
The two hydrogenases (I and II) of the anaerobic N2-fixing bacterium Clostridium pasteurianum (Cp) and the hydrogenases of the anaerobes Megasphaera elsdenii (Me) and Desulfovibrio vulgaris (strain Hildenborough, Dv), contain iron-sulfur clusters but not nickel. They are the most active hydrogenases known. All four enzymes in their reduced states give rise to EPR signals typical of [4Fe-4S]1+ clusters but exhibit novel EPR signals in their oxidized states. For example, Cp hydrogenase I exhibits a sharp rhombic EPR signal when oxidized under mild conditions but the enzyme is inactivated by over-oxidation and then exhibits an axial EPR signal. A similar axial signal is observed from mildly oxidized hydrogenase I after treatment with CO. EPR, M?ssbauer and ENDOR spectroscopy indicate that the EPR signals from the oxidized enzyme and its CO derivative arise from a novel spin-coupled Fe center. Low temperature magnetic circular dichroism (MCD) studies reveal that an EPR-silent Fe-S cluster with S greater than 1/2 is also present in oxidized hydrogenase I. From a study of all spectroscopic properties of Cp, Dv, and Me hydrogenases, it is concluded that the H2-activating site of all four is a novel Fe-S cluster with S greater than 0 and integer, which in the oxidized state is exchange-coupled to a S = 1/2 species. The data are most consistent with the S = 1/2 species being a low spin Fe(III) center. The H2-activating site is susceptible to oxidative rearrangements to yield both active and inactive states of the enzyme. We discuss the possible implications of these finding to methods of enzyme oxidation and purification procedures currently used for hydrogenases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号