首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Drift-feeding salmonids in boreal streams face temperatures below physical optima for extensive periods of the year. Because juvenile salmonids react to low water temperatures by becoming nocturnal, knowledge about their foraging ability at low light intensities in cold water is needed to accurately estimate energy intake during non-summer conditions. In a laboratory stream channel, we studied temperature effects on the drift-feeding behaviour of juvenile Atlantic salmon, brown trout, and European grayling in simulated daylight and moonlight at temperatures ranging from 2 °C to 11 °C. Prey capture probability was positively related to temperature, but the temperature dependence did not agree with predictions of the Metabolic Theory of Ecology. Furthermore, reaction distance was positively related to temperature for the three species, which may be one of the underlying mechanisms responsible for the temperature effects on prey capture probability. Overall, the three species had similar capture rates at the different temperature and light levels, although there were species differences. European grayling had a slightly higher prey capture probability than brown trout, and brown trout had a shorter reaction distance than Atlantic salmon and European grayling. These results have implications for both energetics-based drift-foraging theory and for studies of winter ecology.  相似文献   

2.
SUMMARY. 1. The chief objective was to construct a thermal tolerance polygon for juvenile Atlantic salmon, Salmo salar L., using fish from four groups and two populations: two age groups from one population (0+, 1+ parr from River Leven), two size groups from the other population (slow and Fast growing 1+ parr from River Lune). 2. Fish were acclimated to constant temperatures of 5, 10, 15, 20, 25 and 27°C; then the temperature was raised or lowered at 1°C h?1 to determine the upper and lower limits for feeding and survival over 10 min, 100 min, 1000 min and 7 days. As they were not significantly different between the four groups of fish, values at each acclimation temperature were pooled to provide arithmetic means (with SE) for the thermal tolerance polygon. 3. Incipient lethal levels (survival over 7 days) defined a tolerance zone within which salmon lived for a considerable time; upper mean incipient values increased with increasing acclimation temperature to reach a maximum of 27.8±0.2°C, lower mean incipient values were below 0°C and were therefore undetermined at acclimation temperatures <20°C but increased at higher acclimation temperatures to 2.2±0.4°C. Resistance to thermal stress outside the tolerance zone was a function of time; the ultimate lethal level (survival for 10 min) increased with acclimation temperature to a maximum of 33°C whilst the minimum value remained close to 0°C. Temperature limits for feeding increased slightly with acclimation temperature to upper and lower mean values of 22.5±0.3°C and 7.0±0.3°C. 4. In spite of different methodologies, values in the present investigation are similar to those obtained in previous, less comprehensive studies in the laboratory. They also agree with field observations on the temperature limits for feeding and survival. Thermal tolerance polygons are now available for eight species of salmonids and show that the highest temperature limits for feeding and survival are those recorded for juvenile Atlantic salmon.  相似文献   

3.
The earthworm Drawida ghilarovi Gates 1969 is a typical representative of the Amur fauna and the only species of the tropic family Moniligastridae on the territory of Russia. The northern boundary of its range passes from the Khingan (Hinggan) River on the west, along the mountain framing of the Amur plains, to Evoron Lake (or, probably, to the Amgun River valley) on the east. Drawida ghilarovi is widespread in the Sikhote Alin, but the northern boundary of its distribution in the northern part of this mountain range has not been delimited; the same applies to the left bank of the Amur downstream of Komsomolsk-on-Amur and its lower reaches. These earthworms lay cocoons in summer in the surface soil horizon (0–20 cm) and overwinter also at a depth of only 15–20 cm, although D. ghilarovi is classified as an anecic (deep burrower) species (Vsevolodova-Perel, 1997). The median lethal temperature (LT50%) is about −15°C for cocoons and −12°C for worms; the minimum tolerable temperature, about −20 and −16°C, respectively. The mechanism of protection against freezing in cocoons involves a decrease in water content from an average of 71.1 ± 0.8% to a minimum of 39.8%; this decrease in worms is less significant: from 85.5 ± 0.8% (feeding worms) to 75.3 ± 0.7% (wintering worms). Since the development of juveniles in cocoons is completed by autumn, the critical factor is the minimum temperature to which the worms are exposed. In woodless areas near Khabarovsk, the average soil temperature at a depth of 40 cm during the coldest month is only 2–3°C higher than LT50% (the difference is greater in forest habitats), and the minimal temperature should be still lower. Under current climatic conditions, D. ghilarovi could have inhabited the area extending over the Zeya River basin and, in the north, to the sources of left-bank tributaries of the middle and lower reaches of the Amur (not everywhere, but in the warmest habitats). The present-day boundaries of the D. ghilarovi appear to reflect past changes in climatic and soil conditions.  相似文献   

4.
We used implanted miniature data loggers to obtain the first measurements of body temperature from a free-ranging anthropoid primate. Vervet monkeys (Chlorocebus pygerythrus) living in a highly seasonal, semi-arid environment maintained a lower mean 24-h body temperature in winter (34.6 ± 0.5 °C) than in summer (36.2 ± 0.1 °C), and demonstrated increased heterothermy (as indexed by the 24-h amplitude of their body temperature rhythm) in response to proximal environmental stressors. The mean 24-h amplitude of the body temperature rhythm in summer (2.5 ± 0.1 °C) was lower than that in winter (3.2 ± 0.4 °C), with the highest amplitude for an individual monkey (5.6 °C) recorded in winter. The higher amplitude of the body temperature rhythm in winter was a consequence primarily of lower 24-h minimum body temperatures during the nocturnal phase, when monkeys were inactive. These low minimum body temperatures were associated with low black globe temperature (GLMM, β = 0.046, P < 0.001), short photoperiod (β = 0.010, P < 0.001) and low rainfall over the previous 2 months, which we used as a proxy for food availability (β = 0.001, P < 0.001). Despite the lower average winter minimum body temperatures, there was no change in the lower modal body temperature between winter and summer. Therefore, unlike the regulated physiological adjustments proposed for torpor or hibernation, these minimum winter body temperatures did not appear to reflect a regulated reduction in body temperature. The thermoregulatory plasticity nevertheless may have fitness benefits for vervet monkeys.  相似文献   

5.
This study provides first insights into the energetics of the Nesomyinae, a subfamily of rodents endemic to Madagascar. The ancestral nesomyine colonized Madagascar from Africa ca. 30–15 mya at the onset of Oligocene global cooling. We tested the hypothesis that, contrary to what might be expected from Island Biogeography theory, post-colonization character displacement of thermoregulatory traits was constrained by phylogenetic inertia through climate adaptation. The study was conducted in the Parc National d’Ankarafantsika, Madagascar. We measured the basal metabolic rate (BMR) and body temperature (T b) patterns of naturally warm-acclimated, freshly captured adult long-tailed big-footed mice Macrotarsomys ingens (67.4 g). The mean ± SD BMR of M. ingens was 0.298 ± 0.032 Watts (n = 12), 31.7 % lower than that predicted by a phylogenetically independent allometric equation. Body mass was correlated with BMR. The lower critical limit of thermoneutrality (T lc) was 30.7 °C. The mean ± SD T b = 36.1 ± 0.8 °C (n = 12) compared well with the mean T b values for myomorph rodents from the Afrotropical zone, but was lower than those of the Neotropical and Palearctic zones. M. ingens became pathologically hypothermic when exposed to ambient temperatures lower than 18 °C. The soil temperature at depths of 250 mm and deeper did not decrease below 22 °C throughout the austral winter. The thermoregulatory data for M. ingens did not differ from those that characterize mainland Afrotropical rodents. However, BMR and T b were lower than those of Holarctic rodents. Thus, contrary to expectations of Island Biogeography theory that rapid character displacement often occurs in morphological and behavioural traits when mammals colonize islands, M. ingens displayed climate-related physiological traits indicative of phylogenetic inertia. Presumably the tropical conditions that prevailed on Madagascar at the time of colonisation differed very little from those of the African mainland, and hence there was no strong driving force for change. Unlike small tenrecs and lemurs that radiated on Madagascar prior to the Oligocene, traits associated with an insular existence, such as daily torpor and hibernation, were not evident in M. ingens.  相似文献   

6.
Heleomyza borealis Boh. (Diptera, Heleomyzidae) overwinters as larvae in Arctic habitats, where they may experience winter temperatures below ? 15°C. The larvae freeze at c.? 7°C but in acclimation experiments 80% survived when exposed to ? 60°C. Of the larvae exposed to between ? 4 and ? 15°C, only 3% pupated. However, when cooled to ? 20°C this increased to 44%, with 4% emerging as adults. Larvae maintained at 5°C contained low levels of glycerol, sorbitol and trehalose, which did not increase with acclimation to low temperatures. However, levels of fructose increased from 6.1 μg mg?1 fw in control animals to 17 μg mg?1 fw when exposed to ? 2°C for 1 week. Larval body water (2.2 ± 0.1 g/g dw, mean ± SD, n = 100) and lipid content (0.22 ± 0.002 g/g fw, mean ± SE) showed no significant change during acclimation to low temperatures. Larvae maintained at a constant 5°C survived for over 18 months with little loss of body mass (from 7.5 ± 1.2 to 7.0 ± 1.2 mg fw, mean ± SD, n = 20), but none pupated. Heleomyza borealis larvae appear to feed and grow until they reach a body mass of about 7.5 mg and then become dormant. They remain in this state until they experience a low temperature stimulus (< ? 15°C) followed by a warm period (≈ 5°C). This ensures that the larvae pupate and adults emerge in early summer, allowing the maximum growing period before the following winter. Heleomyza borealis are adapted to survive long winters in a dormant larval state. They have a low metabolic rate, can conserve body water even at subzero temperatures but do not synthesize large quantities of cryoprotectants.  相似文献   

7.
Microbes are key players in oceanic carbon fluxes. Temperate ecosystems are seasonally variable and thus suitable for testing the effect of warming on microbial carbon fluxes at contrasting oceanographic conditions. In four experiments conducted in February, April, August and October 2013 in coastal NE Atlantic waters, we monitored microbial plankton stocks and daily rates of primary production, bacterial heterotrophic production and respiration at in situ temperature and at 2 and 4°C over ambient values during 4-day incubations. Ambient total primary production (TPP) exceeded total community respiration (< 200 µm, TR) in winter and fall but not in spring and summer. The bacterial contribution to ecosystem carbon fluxes was low, with bacterial production representing on average 6.9 ± 3.2% of TPP and bacterial respiration (between 0.8 and 0.2 µm) contributing on average 35 ± 7% to TR. Warming did not result in a uniform increase in the variables considered, and most significant effects were found only for the 4°C increase. In the summer and fall experiments, under warm and nutrient-deficient conditions, the net TPP/TR ratio decreased by 39 and 34% in the 4°C treatment, mainly due to the increase in respiration of large organisms rather than bacteria. Our results indicate that the interaction of temperature and substrate availability in determining microbial carbon fluxes has a strong seasonal component in temperate planktonic ecosystems, with temperature having a more pronounced effect and generating a shift toward net heterotrophy under more oligotrophic conditions as found in summer and early fall.  相似文献   

8.
The cost of living for freshwater fish in a warmer, more polluted world   总被引:1,自引:0,他引:1  
Little of the vast literature on the temperature physiology of freshwater fish is useful in predicting the effects of global warming. In the present review a series of laboratory experiments is reviewed in which rainbow trout (Oncorhynchus mykiss) were exposed to simulated global warming, a 2 °C increment superimposed upon the natural thermal regime, in the presence and absence of two common freshwater pollutants, ammonia and acidity (low pH). Simulated global warming had little effect on the growth and physiology of trout fed to satiation over much of the summer. However, in late summer, when ambient water temperature was at its highest, the addition of 2 °C caused a marked inhibition of appetite and growth, although this impact was not exacerbated by a reduction in food availability. In winter, + 2 °C stimulated metabolism, appetite and growth by approximately 30–60%. Exposure of satiation‐fed trout to low levels of pollutants produced unexpected results. Ammonia (NH3 + NH4+ = 70 μm) stimulated summer growth and energy conversion efficiency, whilst acidification (pH 5.2) increased appetite and growth but caused no disturbance of electrolyte balance. These pollutant effects were additive upon, but not synergistic with, the effects of + 2 °C. The ability of the fish to acclimate to the experimental conditions was tested with acute lethal temperature and/or toxicant challenges. Fish exposed to + 2 °C had a slightly (0.2–1.0 °C) but significantly higher lethal temperature than those exposed to ambient temperature when fed to satiation. However, there was no evidence of acclimation to either ammonia or low pH. It is concluded that the impact of global warming on freshwater fish will vary seasonally. The additional temperature may provide growth benefits in winter, but may threaten fish populations living towards the upper end of their thermal tolerance zone in (late) summer.  相似文献   

9.
1. The chief objective was to determine the upper and lower thermal limits for feeding and survival in the stone loach, Noemacheilus barbatulus, using juveniles (total length 30–45 mm, live weight 0.25–0.80 g) from one population and adults (total length 77–100 mm, live weight 3.6–7.9 g) from three populations. 2. Fish were acclimatized to constant temperatures of 3, 7, 10, 15, 20, 25 and 27°C; then the temperature was changed at a rate of 1°C/30min to determine the critical limits for feeding, survival over 7 days (incipient lethal temperature), or survival for 10 min or less (ultimate lethal temperature). The rate of 1°C/30min was the optimum value from preliminary experiments, using nine rates from 0.5°C/48h to 18°Ch?1. As values for adults were not significantly different between populations, they were pooled to provide arithmetic means (with 95% CL) for the thermal limits at each acclimation temperature. 3. Feeding limits increased with acclimation temperature to upper and lower mean values of 28.0 ± 0.15°C and 5.1 ± 0.55°C for adults, 25.0 ± 0.54°C and 6.1 ± 0.92°C for juveniles. Incipient lethal levels defined a tolerance zone within which stone loach survive for a considerable time; upper limits increased with acclimation temperature to reach a maximum plateau of 29.1 ± 0.18°C for adults and 29.0 ± 0.40°C for juveniles; lower limits also increased from near 0°C to 3.0 ± 0.40°C for adults and juveniles. Upper limits for the ultimate lethal level increased with acclimation temperature to a maximum plateau of 33.5°C for adults (95% CL ± 0.19) and juveniles (95% CL ± 0.40), whilst the lower limits increased from near 0°C to 2.5 ± 0.30°C. At acclimation temperatures below 20°C, upper incipient and ultimate lethal values were significantly lower for juveniles than those for adults. 4. The thermal tolerance of stone loach was higher than that of juvenile Atlantic salmon or brown trout, one or both of these species often being dominant in streams with stone loach.  相似文献   

10.
Defining the location and habitat characteristics of areas of aggregation of Atlantic shark species has been identified as an important information need for current and future management efforts. The primary objective of this project was to investigate the depths and temperatures of the waters occupied by large juvenile sandbar sharks of the northwest Atlantic population during the winter months and the overwintering localities of these animals using a fishery independent method. During the summer of 2003, 21 sandbar sharks captured in the Eastern Shore of Virginia bays and lagoons were outfitted with satellite transmitters that were programmed to detach during the following winter. The sharks occurred in significantly colder and deeper waters during the winter period than during the summer nursery period with a mean depth and temperature recorded by the transmitters during the winter period of 19.9°C and 20.8 m and a mean depth and temperature recorded during the summer period of 24.0°C and 4.3 m. Despite this decrease in temperature and increase in depth of occurrence, the sharks remained in relatively warm waters and shallow depths throughout the overwintering period. Satellite pop-off locations during the overwintering period were concentrated in central North Carolina coastal waters, where a unique combination of shallow depths and warm temperatures may contribute to the survivorship of these animals while they overwinter in these waters.  相似文献   

11.
Native Lauraceae (e.g. sassafras, redbay) in the southeastern USA are being severely impacted by laurel wilt disease, which is caused by the pathogen Raffaelea lauricola T. C. Harr., Fraedrich and Aghayeva, and its symbiotic vector, the redbay ambrosia beetle (Xyleborus glabratus Eichhoff). Cold temperatures are currently the only viable limitation to the establishment of X. glabratus in northern populations of sassafras. The observed lower lethal temperature of X. glabratus (? 10.0 °C) is warmer than its supercooling point (? 22.0 °C), indicating the beetle is a freeze intolerant and chill susceptible species. Empirically derived X. glabratus lower lethal temperature thresholds were combined with host distribution and microhabitat-corrected climate data to produce species distribution models for X. glabratus in the eastern USA. Macroclimate data (30-year mean annual minimum temperature) were corrected (? 1.2 °C) to account for thermal buffering afforded to X. glabratus while living inside sassafras trees. Only 0.1% of the current US sassafras spatial extent experiences sufficiently harsh winters (locales where mean annual minimum winter temperatures ≤ ? 6.2 °C for ≥ 12 h) to exclude X. glabratus establishment in our species distribution model. Minimum winter temperatures will likely cause some X. glabratus mortality in ~ 52% of the current spatial extent of sassafras, although current data do not allow a quantification of X. glabratus mortality in this zone. Conversely, ~ 48% of the current spatial extent of sassafras is unlikely to experience sufficiently cold winter temperatures to cause any significant impediment to X. glabratus spread or establishment. A modest climate change scenario (RCP4.5) of + 1.4 °C would result in 91% of the current spatial extent of sassafras in the eastern USA occurring where winter minimum temperatures are unlikely to cause any mortality to X. glabratus.  相似文献   

12.
1. The objective was to determine the thermal limits for feeding and survival in the bullhead, Cottus gobio, using juveniles (total length 20–30 mm, live weight 0.5–1.5 g) from one population and adults (50–70 mm, 3.5–5.5 g) from three populations. 2. Fish were acclimated to constant temperatures (3, 7, 10, 15, 20, 25 or 27 °C) and the temperature was then changed at a rate of 1 °C /30 min to determine the critical limits for feeding, survival over 7 days (incipient lethal temperature), or survival for 10 min or less (ultimate lethal temperature). The rate of 1 °C/30 min was the optimum value from preliminary experiments, using nine rates from 0.5 °C/48 h to 18 °C h?1. As values for adults were not significantly different between populations, they were pooled to provide arithmetic means (with 95% CL) for the thermal limits at each acclimation temperature. 3. Feeding limits increased with acclimation temperature to upper and lower mean values (± 95% CL) of 26.5 ± 0.16 °C and 4.2 ± 0.20 °C for adults, 26.6 ± 0.59 °C and 5.0 ± 0.55 °C for juveniles. Incipient lethal levels defined a tolerance zone within which fish survive indefinitely; upper limits increased with acclimation temperature to a plateau of 27.6 ± 0.22 °C for adults and 27.5 ± 0.47 °C for juveniles, lower limits increased from near 0 °C to 2.5 ± 0.31 °C for adults and 2.7 ± 0.47 °C for juveniles. Ultimate lethal levels increased with acclimation temperature to a plateau of 32.5 ± 0.24 °C for adults and 32.6 ± 0.46 °C for juveniles, whilst the lower limits increased from near 0 to 0.9 ± 0.29 °C. Upper feeding, incipient and ultimate lethal values were significantly lower for juveniles than those for adults at acclimation temperatures < 20, < 20 and < 15 °C, respectively. 4. The thermal tolerance of bullheads was slightly lower than that of stone loach, similar to that of juvenile Atlantic salmon and higher than that of brown trout; the thermal limits for feeding were much wider than those for salmon or trout.  相似文献   

13.
Water hyacinth [Eichhornia crassipes (Mart.) Solms (Pontederiaceae)] is the most damaging aquatic weed in South Africa, where five arthropod biological control agents have been released against it. The most recent introduction of Eccritotarsus catarinensis (Carvalho) (Heteroptera: Miridae) has failed to establish permanent populations at a number of sites in South Africa where water hyacinth is a problem. Cold winter temperatures at these sites are assumed to be the reason for these establishment failures. This assumption was tested by investigating the thermal physiology of the mirid, then incorporating these data into various predictive distribution models. Degree‐day models predict 3–14 generations per year at different localities in South Africa, and five generations at a Johannesburg site where the mirid failed to overwinter. The inability to develop sufficiently rapidly during winter months may hinder overwintering of this insect, which was predicted to develop through only one generation during the winter months of April to August in Johannesburg. A CLIMEX model also showed that cold stress limits the mirid's ability to overwinter in the interior of the country, while determination of the lower lethal limit (–3.5 °C) and critical thermal minimum (1.2 ± 1.17 °C) also indicated that extreme temperatures will limit establishment at certain sites. It is concluded that E. catarinensis is limited in its distribution in South Africa by low winter temperatures.  相似文献   

14.
Hydrogen stable isotopes of animal tissues are well established tracers of migration ecology in terrestrial ecosystems. Recent research has highlighted δ2H as a potential tool in studies of aquatic ecosystems, particularly as a robust tracer for quantifying the importance of allochthonous subsidies. Although the use of δ2H has clear potential, some uncertainties remain, in particular with regard to the contribution of dietary water to consumer δ2H. Here, we quantify the contribution of dietary water to δ2H in two salmonid fishes, Atlantic salmon (Salmo salar L.) and Arctic charr (Salvelinus alpinus L.), reared on diets of known isotopic composition. Furthermore, we examined the capacity of fins (adipose and caudal) to provide a non-lethal means of estimating consumer δ2H. The proportion of deuterium derived from environmental water of all tissue was substantial in both Atlantic salmon (mean = 0.43 ± 0.1 SD) and Arctic charr (mean = 0.48 ± 0.15 SD) but varied considerably between both individuals and tissue type. White muscle proved to be the least variable of the tissues analysed. Although fins proved to be a possible non-destructive substitute, a degree of caution is recommended with their use, as the proportion of dietary water contributing to the deuterium of fins was considerable more variable.  相似文献   

15.
Oceans are experiencing increasing acidification in parallel to a distinct warming trend in consequence of ongoing climate change. Rising seawater temperatures are mediating a northward shift in distribution of Atlantic cod (Gadus morhua), into the habitat of polar cod (Boreogadus saida), that is associated with retreating cold water masses. This study investigates the competitive strength of the co-occurring gadoids under ocean acidification and warming (OAW) scenarios. Therefore, we incubated specimens of both species in individual tanks for 4 months, under different control and projected temperatures (polar cod: 0, 3, 6, 8 °C, Atlantic cod: 3, 8, 12, 16 °C) and PCO2 conditions (390 and 1170 µatm) and monitored growth, feed consumption and standard metabolic rate. Our results revealed distinct temperature effects on both species. While hypercapnia by itself had no effect, combined drivers caused nonsignificant trends. The feed conversion efficiency of normocapnic polar cod was highest at 0 °C, while optimum growth performance was attained at 6 °C; the long-term upper thermal tolerance limit was reached at 8 °C. OAW caused only slight impairments in growth performance. Under normocapnic conditions, Atlantic cod consumed progressively increasing amounts of feed than individuals under hypercapnia despite maintaining similar growth rates during warming. The low feed conversion efficiency at 3 °C may relate to the lower thermal limit of Atlantic cod. In conclusion, Atlantic cod displayed increased performance in the warming Arctic such that the competitive strength of polar cod is expected to decrease under future OAW conditions.  相似文献   

16.
Differences in thermal regimes are of paramount importance in insect development. However, experiments that examine trait development under constant temperature conditions may yield less evolutionarily relevant results than those that take naturally occurring temperature fluctuations into account. We investigated the effect of different temperature regimes (constant 30 °C, constant 35 °C, fluctuating with a daily mean of 30 °C, or fluctuating with a daily mean of 35 °C) on sex-specific development time and body mass in Tribolium castaneum. Using a half-sib breeding design, we also examined whether there is any evidence for genotype-by-environment interactions (GEI) for the studied traits. In response to fluctuating temperature regimes, beetles demonstrated reaction norm patterns in which thermal fluctuations influenced traits negatively above the species’ thermal optimum but had little to no effect close to the thermal optimum. Estimated heritabilities of development time were in general low and non-significant. In case of body mass of pupae and adults, despite significant genetic variance, we did not find any GEI due to crossing of reaction norms, both between temperatures and between variability treatments. We have observed a weak tendency towards higher heritabilities of adult and pupa body mass in optimal fluctuating thermal conditions. Thus, we have not found any biasing effect of stable thermal conditions as compared to fluctuating temperatures on the breeding values of heritable body-size traits. Contrary to this we have observed a strong population-wide effect of thermal fluctuations, indicated by the significant temperature-fluctuations interaction in both adult and pupa mass.  相似文献   

17.
Cuet  P.  Pierret  C.  Cordier  E.  Atkinson  M. J. 《Coral reefs (Online)》2011,30(1):37-43

Phosphate uptake (P-uptake) into coral reef communities has been hypothesized to be mass-transfer limited. One method of demonstrating mass-transfer limitation of P-uptake is to show dependence of P-uptake on water velocity. Water velocity across reef flats varies with tides and swell; thus, we measured P-uptake over the entire reef flat on eight different days, representing a range in water velocities. P-uptake was calculated from changes in P concentration of the water column. Changes in P concentration were measured by water sampling at six sites along a 300-m cross-reef transect while simultaneously measuring water velocity. To smooth the variability in phosphate concentrations, peristaltic pumps were used to get time-integrated water samples for 4–6 h at each site. Water velocities were measured in the middle of the transect using an acoustic Doppler current profiler and were averaged to match the time-integrated water sampling. Depth-averaged cross-reef water velocities were 0.031 ± 0.013 m s−1 (mean ± SD), while the root-mean-square water velocities, accounting for oscillatory flow, averaged 3.3 times higher, 0.101 ± 0.021 m s−1 (mean ± SD). Phosphate decreased along all transects. The first-order rate constant for P-uptake (S) was 8.5 ± 2.4 m d−1 (mean ± SD) and increased linearly with root-mean-square water velocity. The Stanton number derived from oscillatory flow, the ratio of the first-order rate constant for P-uptake to the root-mean-square water velocity (S/U rms), was (9.4 ± 1.2) × 10−4 (mean ± SD). P-uptake ranged from 0.2 to 1.1 mmol P m−2 d−1, demonstrating that P-uptake is variable on short time scales and is directly related to P concentration and water velocity.

  相似文献   

18.
Black sea bass (Centropristis striata) migrations are believed to play a role in overwinter survival and connectivity between juvenile and adult populations. This study investigated oceanographic drivers of winter habitat choice and regional differences between populations of juvenile and adult black sea bass. Trends in cohort strength, as a result of juvenile survival, were also identified. Oceanographic and fisheries survey data were analyzed using generalized additive models. Among the oceanographic variables investigated, salinity was the main driver in habitat selection with an optimal range of 33–35 practical salinity units (PSU) for both juveniles and adults. Preferred temperature ranges varied between juveniles and adults, but held a similar minimum preference of >8°C. Salinity and temperature ranges also differed by regions north and south of Hudson Canyon. Shelf water volume had less of an effect than temperature or salinity, but showed an overall negative relationship with survey catch. The effect of winter conditions on juvenile abundance was also observed across state and federal survey index trends. A lack of correlation observed among surveys in the fall paired with a strong correlation in the spring identifies the winter period as a factor determining year-class strength of new recruits to the population. A rank order analysis of spring indices identified three of the largest year classes occurring during years with reduced shelf water volumes, warmer winter shelf waters, and a 34 PSU isohaline aligned farther inshore. While greater catches of black sea bass in the northwest Atlantic Ocean remain south of Hudson Canyon, the species’ range has expanded north in recent years.  相似文献   

19.
Black Redhorse (Moxostoma duquesnei) larval and juvenile habitat was characterized in the Grand River, Ontario from June to September 2007–2012. Similar to adult Black Redhorse and their congeners, larval Black Redhorse were most likely to be located in clean, clear, stable runs with low to moderate flow, over pebble, gravel and cobble substrate, mixed with sand. Areas (n?=?22) where 0+ Black Redhorse were observed and collected were 1.4?±?0.2 m from shore, with a mean water temperature of 22.0?±?0.5 °C, mean depth of 0.20?±?0.02 m and mean water velocity of 0.12?±?0.05 m/s. Larval and juvenile Black Redhorse occupied riffles, runs, pools and backwater areas; however, there was a strong preference for runs. Juvenile Black Redhorse moved upstream in the early evening and at night to overwintering areas in the Grand River in November when water temperature approached 5 °C. The persistence of Black Redhorse populations in the Grand River may be related to the presence of groundwater, which provides refuge from extreme temperature and poor water quality during the summer.  相似文献   

20.
Grey langurs (Semnopithecus spp.) occupy a variety of habitats, ranging from lowland forests and semi-desert to alpine forests. Little is known about their foraging and ranging in alpine forests, which appear to contain less food than lowland forests. We conducted a 1-year study of Himalayan grey langurs (Semnopithecus ajax) in Machiara National Park, Pakistan, where they occur at relatively high altitudes (range 2000–4733 m). We followed three groups of different sizes and compositions and examined the effects of ecological and social factors on ranging and feeding. The home-range sizes of a small bisexual group (SBG), a large bisexual group (LBG), and an all-male group (AMG) were 2.35 ± 0.92 (mean ± SD; average of four seasons), 3.28 ± 0.55, and 3.52 ± 1.00 km2, respectively, and were largest in winter for all groups. The daily path lengths of the SBG, LBG, and AMG were 1.23 ± 0.28 (mean ± SD; average of four seasons), 1.75 ± 0.34, and 1.84 ± 0.70 km, respectively; that of the LBG was longer in winter, while that of the AMG was shorter in summer. Both the home-range size and daily path length of the AMG were larger than those of the other groups, even after partialling out the effect of group size differences. The mean altitude used by the langurs and the proportion of animals seen feeding did not differ among seasons or group types. As the mean temperature increased, the altitude used by langurs significantly increased for the SBG and LBG, but not for the AMG. On the other hand, as the temperature increased, the home-range sizes significantly decreased for the SBG and AMG, but not for the LBG. Rainfall did not show any correlation with ranging or feeding in any of the groups. Our results suggested that grey langurs in Machiara National Park employ a high-cost, high-return foraging strategy in winter, and that the ranging of the AMG also reflects its reproductive strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号