首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Among the 13 Mico species recognized by the IUCN Red List of Threatened Species, six are listed as “Data Deficient”. The geographic range of most of the Mico species has been estimated from only a few records. We report new localities and the geographic extension of Mico chrysoleucos. In addition, we confirmed the presence of the species in two distinct protected areas. We modeled the habitat suitability of M. chrysoleucos using the maximum entropy method and including new records obtained by the authors in the state of Amazonas, Brazil. From the total area of occurrence calculated for the species, 22.8% is covered by protected areas and indigenous lands. The annual mean deforestation rate estimated between 2000 and 2015 was 2.95%, and the total area deforested by 2015 was 3354 km2 or 8.6% of the total distribution limits of the species. The habitat lost between 2000 and 2015 was 3.2% (1131 km2) of the total potential distribution, while the habitat loss area legally protected was 31 km2, and the habitat loss in settlements was equal to 691 km2. Our results extend the geographic distribution of the species about 100 km farther south, with the Maracanã River being a possible geographic barrier for the species. The significantly low rate of habitat loss inside protected areas and indigenous land, when compared to unprotected areas, points out the importance of these areas to M. chrysoleucos conservation. The species is relatively wide-ranging, legally protected, and resilient to regional anthropic threats. However, the hydroelectric schemes and the improvement of the road system in southern Amazonia pose an imminent threat to the species.  相似文献   

2.
In the southwestern United States (US), the Rio Grande chub (Gila pandora) is state-listed as a fish species of greatest conservation need and federally listed as sensitive due to habitat alterations and competition with non-native fishes. Characterizing genetic diversity, genetic population structure, and effective number of breeders will assist with conservation efforts by providing a baseline of genetic metrics. Genetic relatedness within and among G. pandora populations throughout New Mexico was characterized using 11 microsatellite loci among 15 populations in three drainage basins (Rio Grande, Pecos, Canadian). Observed heterozygosity (HO) ranged from 0.71–0.87 and was similar to expected heterozygosity (0.75–0.87). Rio Ojo Caliente (Rio Grande) had the highest allelic richness (AR = 15.09), while Upper Rio Bonito (Pecos) had the lowest allelic richness (AR = 6.75). Genetic differentiation existed among all populations with the lowest genetic variation occurring within the Pecos drainage. STRUCTURE analysis revealed seven genetic clusters. Populations of G. pandora within the upper Rio Grande drainage (Rio Ojo Caliente, Rio Vallecitos, Rio Pueblo de Taos) had high levels of admixture with Q-values ranging from 0.30–0.50. In contrast, populations within the Pecos drainage (Pecos River and Upper Rio Bonito) had low levels of admixture (Q = 0.94 and 0.87, respectively). Estimates of effective number of breeders (N b ) varied from 6.1 (Pecos: Upper Rio Bonito) to 109.7 (Rio Grande: Rio Peñasco) indicating that populations in the Pecos drainage are at risk of extirpation. In the event that management actions are deemed necessary to preserve or increase genetic diversity of G. pandora, consideration must be given as to which populations are selected for translocation.  相似文献   

3.
In this article, we present the results of the first systematic surveys of golden jackals in Bosnia and Herzegovina (B&H). The population status and distribution of the golden jackal (Canis aureus) in B&H was largely unknown, and the few existing literature records mention their presence at only five localities in the country. We interviewed managers of all the hunting grounds in B&H and reviewed available jackal hunting records from 2000 to 2016. In total, we collected 212 records of legally harvested jackals. We observed an increasing trend of harvested jackals in B&H (on average 35% annual increase) during this same period. Using the acoustic (playback) method, we confirmed the presence of 80 territorial jackal groups along six transects covering 3081 km2. We estimated density to be a minimum of 0.33 groups/10 km2 in northern B&H and 0.10 groups/10 km2 in central B&H. Jackal groups were located at significantly lower altitudes with respect to available area along the transects. We present a distribution map of confirmed jackal occurrences in B&H, which indicates that the core area of jackal distribution in the country is currently located along the Sava River and its tributaries in the northern part of B&H. Jackals are sporadically present in the rest of the country, where gray wolves (Canis lupus) probably limit their presence. In total, jackal presence has been detected in 19% (109 out of 586) of 10?×?10 km grid cells covering the country. The primary factor driving the expanding population of jackals in northern B&H appears to be immigration of jackals from Croatia and Serbia.  相似文献   

4.
In the UK, four out of 18 bat species are listed on the EU Habitats Directive, including the lesser horseshoe bat (Rhinolophus hipposideros), and their population status is closely monitored by visiting known roosts. R. hipposideros predominantly form maternity roosts in buildings, but roosts are impermanent features in the landscape and their distribution changes as bats form new roosts and abandon others. Locating new roosts requires intensive surveys which are challenging and inefficient. In this study, we provide a novel model-based strategy to identify potential R. hipposideros maternity roost sites that can be used to monitor bat populations. First, we model potential maternity roost habitat using record centre data on roost locations across Wales, Great Britain. We then constrain the area identified from modelling using record centre data on locations of bats in areas with no known roosts. We used two variable selection methods and three pseudo-absence data sets (random background points, random points in buildings and target group selection of mammal records) to produce six habitat suitability models. The three pseudo-absence data sets produced different habitat suitability maps, demonstrating the influence of pseudo-absence selection on species distribution models. The six models were combined using weighted mean average to produce an ensemble model that performed better than individual models and that indicated high levels of congruence in areas predicted to have high habitat suitability for maternity roosts. Our model revealed an extensive area (6523 km2; 31% of the area of Wales) containing 18,051 buildings in suitable habitat. Using record centre data on bat activity outside commuting range from known roosts reduced the potential survey area to 133 km2 (0.6% of the area of Wales) and 207 buildings. Our modelling outputs can be used to direct volunteers and bat surveyors in more targeted and efficient searches.  相似文献   

5.
Species distribution modelling is a useful technique that provides data on factors that can influence a species range, identify high suitability areas and model future scenarios. The pine marten (Martes martes) has undergone major historical declines in abundance and distribution in Northern Ireland, similar to that which has occurred throughout its range. Currently, the species is in a phase of range expansion in Northern Ireland, in what is the least forested landscape in Europe. To assess the suitability of this environment for pine marten re-establishment, presence only distribution data combined with landcover data at a 10-km scale were used in a species distribution modelling study using Maxent. The results indicated that approximately 32% (4500 km2) of the land area of Northern Ireland had a high probability of pine marten occurrence. Pine marten distribution was positively associated with the extent of conifer forest landcover types, which also had the highest single attribute contribution to the model. Landcover types that were negatively associated with pine marten distribution included the extent of open, dwarf and urban areas.  相似文献   

6.
A key conservation biology tool is the information on the geographic distribution of species as well as the variables driving those patterns. Here, we used maximum entropy modeling, MaxEnt, to model the total potential distribution of Tapirus terrestris, classified as “Vulnerable” on the IUCN Red List of Threatened Species. In this study, we recorded 117 occurrence records and considered 18 environmental variables. The total potential distribution area covers 96,055.6 km2, meaning 12.3 % of the territory of the Peruvian Amazon, with “high potential” habitat covering 3,891.36 km2, “moderate potential” habitat covering 22,849.5 km2, and “low potential” habitat covering 69,314.7 km2. Natural Protected Areas (NPAs) shelter 32.2 % (30,966.2 km2) of the total potential distribution area of the species, being the Bahuaja Sonene and Manu National Parks, the NPAs with the largest total potential distribution, 8,220.2 km2 and 7,619.7 km2 respectively. Eventually, 67.8 % (65,089.4 km2) of the total potential distribution were identified without any type of protection category by SINANPE and its complementary categories; therefore, we consider this area as a priority for the conservation of T. terrestris in Peru.  相似文献   

7.
In many temperate ecosystems animal carcasses resultant from wildlife harvest can provide a high-quality food source for myriad facultative scavengers. We investigated scavenger use of human-provisioned ungulate carrion from a fall moose (Alces alces) hunt during 2010 and 2011 on the Gustavus Forelands, Alaska, USA. Using data from remote cameras, we (1) identified the scavenger species that used these resources and (2) evaluated their spatial and temporal responses to this seasonal resource event by indexing their activity patterns and relative order of arrival at carrion sites. We also quantified the length of time carrion persisted and estimated the amount of moose biomass provisioned to vertebrate scavengers by human hunters. Our results indicated that 11 vertebrate species (five birds and six mammals) scavenged moose carrion. We found that the common raven was the only species documented at all carrion sites and the most abundant species at moose carrion sites. As a species group, corvids [black-billed magpie (Pica hudsonia), common raven (Corvus corax); 0.1 ± 2.3 days] were the first to arrive at human-provisioned moose carrion sites, whereas ursids [brown bear (Ursus arctos), black bear (U. americanus); 1.3 ± 1.0 days] arrived after corvids but sooner than expected and canids [gray wolf (Canis lupus), coyote (C. latrans); 3.9 ± 3.0] arrived later than expected compared to our null model. On average, carrion persisted >20 days and hunters provided scavengers with a minimum of 2720 kg (82.7 kg/km2) and 1815 kg (64.8 kg/km2) of moose carrion during 2010 and 2011, respectively. Understanding how scavengers, particularly large carnivores, interact with human-provisioned moose carrion at the rural–wildland interface is essential for mitigating potential human–wildlife conflicts associated with humans subsidizing predators with a high-quality food resource.  相似文献   

8.
Historical records of Ateles chamek (black-faced black spider monkey) suggest that the species range extends further south of the known species distribution, within an ecotonal region between the Amazonia, Cerrado and Pantanal biomes in Brazil. Ecotones are zones of habitat transition with high species richness that remain undersampled as conservationists often prioritize biodiversity hotspots. Thus, distribution ranges may be inaccurately measured when species occur in ecotonal zones. We report the first precise records of A. chamek in 24 new localities surveyed in the ecotonal zone of the Upper Paraguay River Basin, and we present subgroup encounter rates in the 11 largest patches (>70 ha) along 207 km of the line transects surveyed. The new records represent an expansion of the distribution of A. chamek approximately 200 km to the south, increasing the known extent of its occurrence by 10.8%. Local tributaries may not be barriers for spider monkeys, which are able to swim and cross slow-moving rivers. However, the dry forests of the Cerrado and the flooded areas of the Pantanal, formed by grassland and scarce trees, may be habitat barriers for A. chamek. The populations living in this ecotonal zone are relatively abundant (1.1–6.67 subgroup sightings/10 km) compared to the heavily hunted continuous forests of northern Amazonia. Furthermore, these values are similar to those for other Ateles spp. inhabiting forests with low or no hunting pressure. We highlight the need for specific conservation action to protect the spider monkeys living in these landscapes, which are threatened by agriculture expansion.  相似文献   

9.
Dysoxylum malabaricum (white cedar) is an economically important tree species, endemic to the Western Ghats, India, which is the world’s most densely populated biodiversity hotspot. In this study, we used variation at ten nuclear simple sequence repeat loci to investigate genetic diversity and fine scale spatial genetic structure (FSGS) in seedlings and adults of D. malabaricum from four forest patches in the northern part of the Western Ghats. When genetic variation was compared between seedlings and adults across locations, significant differences were detected in allelic richness, observed heterozygosity, fixation index (F IS), and relatedness (P < 0.05). Reduced genetic diversity and increased relatedness at the seedling stage might be due to fragmentation and disturbance. There was no FSGS at the adult stage and FSGS was limited to shorter distance classes at the seedling stage. However, there was clear spatial genetic structure at the landscape level (<50 km), regardless of age class, due to limited gene flow between forest patches. A comparison of the distributions of size classes in the four locations with published data from a more southern area, showed that large trees (diameter at breast height, DBH, >130 cm) are present in the southern sacred forests but not in the northern forest reserves. This pattern is likely due to stronger harvesting pressure in the north compared to the south, because in the north there are no cultural taboos regulating the extraction of natural resources. The implications for forest conservation in this biodiversity hotspot are discussed.  相似文献   

10.
We evaluated short-term movements of three radio-collared binturongs in relation to food distribution in Bornean rainforests, in addition to the basic ecological information on their home-range size and diet. Mean 95% fixed kernel and 95% MCP home-range size were 4.24?±?0.79 km2 and 1.54?±?0.89 km2, respectively (mean ± SD). We recorded 13 fig Ficus species and four non-fig species as their foods. Fig trees accounted for 87.5% of the feeding sites of the three collared binturongs, and 87.9% including uncollared individuals. Our results suggested that binturongs’ short-term movements were strongly affected by food distribution, especially figs. They feed on various fig species and may remember the location and fruiting periods of fig trees. They may use the biggest fig species, F. punctata, as a fallback food when other foods are scarce. Although this is the first systematic study to describe movement and feeding habits of binturongs, further studies are needed to understand their ecology so that proper measures can be designed for their conservation.  相似文献   

11.
The spatial and bathymetric distribution of the Greenland smooth cockle, Serripes groenlandicus, in Peter the Great Bay, Sea of Japan has been studied based on the data of three dredge surveys conducted in 2010–2012. The bathymetric range of the species habitat is 20–75 m; the densest aggregations are associated with sandy silt sediments in the central part of the bay at depths of 55–60 m. The surveyed area of S. groenlandicus aggregation is 2255 km2; the total area is believed to be 3430 km2. The estimated total species biomass averages 8731 t, ranging within 8538–9831 t.  相似文献   

12.
Climate change projections in southern Africa show a drier and a warmer future climate. It is not yet clear how these changes are going to affect the suitable habitat of bush encroacher woody species in southern African savannas. Maximum Entropy niche modelling technique was used to test the extent to which climate change is likely to affect the suitable habitat of Vachellia karroo in Zimbabwe based on six Global Climate Models (GCMs) from Coupled Model Intercomparison Project Phase 5 (CMIP5) and two Representative Concentration Pathways (RCPs) for the 2070s. An overlay analysis was then performed in a Geographic Information System based on the current and future bioclimatically suitable areas for the respective GCMs and RCPs. This was done to determine the potential effect of climate change on the focal species. Results show that temperature related variables are more important in explaining the spatial distribution of V. karroo than precipitation related variables. In addition, results indicate an overall increase in the modelled suitable habitat for V. karroo by the 2070s across the GCMs and RCPs considered in this study. Specifically, the suitable habitat of V. Karroo is projected to increase by a maximum of 57,594 km2 signifying a 69% increase from the current suitable habitat (83,674 km2). The suitable areas are projected to increase in eastern, western and south eastern parts of Zimbabwe. These results imply that improved understanding of the response of woody species to a changing climate is important for managing bush encroachment in savanna ecosystems.  相似文献   

13.
Estimating animal population size is a critical task in both wildlife management and conservation biology. Precise and unbiased estimates are nonetheless mostly difficult to obtain, as estimates based on abundance over unit area are frequently inflated due to the “edge effect” bias. This may lead to the implementation of inappropriate management and conservation decisions. In an attempt to obtain an as accurate and conservative as possible picture of Eurasian otter (Lutra lutra) numbers, we combined radio tracking data from a subset of tracked individuals from an extensive project on otter ecology performed in Southern Portugal with information stemming from other data sources, including trapping, carcasses, direct observation of tagged and untagged individuals, relatedness estimates among genotyped individuals, and a minor contribution from non-invasive genetic sampling. In 158 km of water network, which covers a sampling area of 161 km2 and corresponds to the minimum convex polygon constructed around the locations of five radio-tracked females, 21 animals were estimated to exist. They included the five radio-tracked, reproducing females and six adult males. Density estimates varied from one otter per 3.71–7.80 km of river length (one adult otter per 7.09–14.36 km) to one otter per 7.67–7.93 km2 of range, depending on the method and scale of analysis. Possible biases and implications of methods used for estimating density of otters and other organisms living in linear habitats are highlighted, providing recommendations on the issue.  相似文献   

14.
Species distribution models (SDMs) provide conservationist with spatial distributions estimations of priority species. Lagothrix flavicauda (Humboldt, 1812), commonly known as the Yellow-tailed Woolly Monkey, is one of the largest primates in the New World. This species is endemic to the montane forests of northern Peru, in the departments of Amazonas, San Martín, Huánuco, Junín, La Libertad, and Loreto at elevation from1,000 to 2,800 m. It is classified as “Critically Endangered” (CR) by the International Union for Conservation of Nature (IUCN) as well as by Peruvian legislation. Furthermore, it is listed in Appendix I of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). Research on precise estimates of its potential distribution are scare. Therefore, in this study we modeled the potential distribution area of this species in Peru, the model was generated using the MaxEnt algorithm, along with 80 georeferenced occurrence records and 28 environmental variables. The total distribution (high, moderate, and low) for L. flavicauda is 29,383.3 km2, having 3,480.7 km2 as high potential distribution. In effect, 22.64 % (6,648.49 km2) of the total distribution area of L. flavicauda is found within Natural Protected Areas (NPAs), with the following categories representing the largest areas of distribution: Protected Forests (1,620.41 km2), Regional Conservation Areas (1,976.79 km2), and Private Conservation Areas (1,166.55 km2). After comparing the predicted distribution with the current NPAs system, we identified new priority areas for the conservation of the species. We, therefore, believe that this study will contribute significantly to the conservation of L. flavicauda in Peru.  相似文献   

15.
The genus Eigenmannia (Teleostei: Gymnotiformes), a widely distributed fish genus from the Neotropical region, presents very complex morphological patterns and many taxonomic problems. It is suggested that this genus harbors a species complex that is hard to differentiate using only morphological characteristics. As a result, many species of Eigenmannia may be currently gathered under a common name. With the objective of providing new tools for species characterization in this group, an analysis of the polymorphism of DNA inter-simple sequence repeats (ISSR), obtained by single primer amplification reaction (SPAR), combined with karyotype identification, was carried out in specimens sampled from populations of the Upper Paraná, São Francisco and Amazon river basins (Brazil). Specific ISSR patterns generated by primers (AAGC)4 and (GGAC)4 were found to characterize the ten cytotypes analyzed, even though the cytotypes 2n = 38 and 2n = 38 XX:XY, from the Upper Paraná basin, share some ISSR amplification patterns. The geographical distribution of all Eigenmannia specimens sampled was inferred, showing the cytotype 2n = 31/2n = 32 as the most frequent and largely distributed in the Upper Paraná basin. The cytotype 2n = 34 was reported for the first time in the genus Eigenmania, restricted to the São Francisco basin. Polymorphic ISSR patterns were also detected for each cytotype. Considering our results and the data reported previously in the literature, it is suggested that many of the forms of Eigenmannia herein analyzed might be regarded as different species. This work reinforces the importance of employing diverse approaches, such as molecular and cytogenetic characterization, to address taxonomic and evolutionary issues.  相似文献   

16.
Determining potentially suitable habitat is critical for effective species conservation and management, but can be challenging in remote or sensitive areas. An approach that combines non-intrusive spatial data collection techniques and supporting field data can lead to a better understanding of landscape-scale species distributions. Here we present two habitat suitability models, at 1 and 10 m resolutions, for the endemic wēkiu bug Nysius wekiuicola, a poorly-understood resident scavenging arthropod species present on the summit of Maunakea in Hawai‘i. Our models reveal that the wēkiu bug, restricted almost entirely to portions of cinder cones above 3500 m elevation, has a high degree of habitat specificity and represents a classically rare species. Across the 55 km2 study area, 850 ha of potentially suitable habitat were identified at the 10 percentile training threshold, with the core area located at the true summit. Our results show that elevation and surficial mineralogy were the strongest predictors of suitable habitat, with lesser contributions from aspect and slope. Climatic variables also likely influence wēkiu bug distribution patterns, but were not included in our models due to the coarseness of available climate data and high correlation between variables. Relatively minor differences between the two models, in terms of identifying the locations and amount of suitable wēkiu bug habitat, and a higher measure of performance for the 10 m resolution model, suggest that coarser resolution input variables may characterize suitable habitat more efficiently than very fine 1 m resolution data. The suitability models generated as a result of this study will be directly incorporated into conservation management and restoration goals, and can easily be adapted for other arthropod species, leading to a more holistic understanding of metacommunity dynamics at the Maunakea summit.  相似文献   

17.
Geographically referenced data on humpback dolphin (Sousa plumbea) distribution and behaviour were collected in Richards Bay, South Africa, between 1998 and 2006. Utilization distributions presented a clear pattern in the distribution of dolphin activities and use of various locations within the study area. The 50 % kernel density estimate (core area) for foraging/feeding (2.1 km2) was clustered around the harbour mouth (including the shark net installation). The core areas for resting, socialising and travelling were more widespread (>2.95 km2). A mixed effects model indicated that location (longitude and latitude), distance from shore, year and group size are important variables in predicting foraging/feeding behaviour as opposed to other behaviours. The resting core was found in the southern part of study area and socialising was less clustered. This indicates preferential use of certain areas for specific behaviours. The overlap of foraging/feeding areas with stationary fishing gear (shark nets) and boat traffic are a major concern due to the risk of human-induced incidental mortalities. Any future alteration of the coastal area of Richards Bay, particularly development in the harbour, should be considered carefully, as further intrusion into areas critical to humpback dolphins, such as their foraging grounds, will inevitably carry negative implications for this already severely impacted population.  相似文献   

18.
Understanding the movement ability and the spatial scale(s) of population genetic structure of species can together better ‘tune’ management objectives to prevent potential range contraction and population declines. We studied the Rocky Mountain Sculpin (Cottus sp.), a threatened species in Canada, to demonstrate the utility of using two complementary approaches to assess connectivity of a species. To do so, we used Passive Integrated Transponder (PIT) tags with a stationary tracking array (n?=?223) to track movement and genetic data (n?=?1,015) from nine microsatellite loci to assess genetic population structure. The PIT tag results indicated that Rocky Mountain Sculpin are sedentary; approximately 50% of individuals only moved a maximum distance of 10 meters (upstream or downstream) over a 5-month period. Genetic analyses indicated that at the spatial scale of our study area (5500 km2), watershed structure (river basins) is the main geographic feature influencing population genetic structure. We used the Bayesian clustering tool STRUCTURE, which suggested four distinct sub-populations of Rocky Mountain Sculpin in Canada. Genetic structure at finer spatial scales (within basins and sub-basins) appears to be influenced by fluvial distance (i.e., geographic distance along a river) and elevation change between sample locations (i.e., isolation-by-distance and isolation-by-environment). Combining movement and genetic analyses provides complimentary evidence of limited dispersal in Rocky Mountain Sculpin and highlights that both approaches together can provide broader insight into connectivity between populations that may ultimately help to aid future management decisions.  相似文献   

19.
Decline and fragmentation of natural habitats, such as old-growth forests, reduces their availability in the landscape. The solution to this problem for many forest-dwelling species, may be colonization of alternative habitats, such as parks, orchards or rural avenues, located in the highly fragmented agricultural landscape. Our main objective was to determine the effect of both habitat quality parameters and isolation from potential forest habitats, as primary habitats, on the occurrence of the hermit beetle (Osmoderma) in rural avenues in south-western Poland. The study was based on the results of an inventory of the species in 201 rural avenues within an area of approx. 30,000 km2. Occurrence of the hermit beetle in such alternative habitats was affected by both habitat quality parameters and connectivity with suitable forest habitats. The species occurrence in an avenue was significantly positively affected by mean tree diameter and diversity of tree species, but probability of occurrence decreased as isolation of avenue from the deciduous forest increased. Moreover, in the study area the hermit beetle seemed to avoid alleys with a large proportion of Acer platanoides, Fraxinus excelsior and Populus spp. Spatially isolated roadside avenues have limited value in the preservation of the hermit beetle in the long term conservation management of the species. Conservation plans in such habitats should therefore take into account surrounding suitable habitats.  相似文献   

20.
Presently, it is debated if regional conservation efforts can alone resolve the ecological problems that global climatic changes could bring. Biological invasion is one of such concerns. In the present study, we modeled how change in global climate and regional anthropogenic pressure can impact the distribution of invasive Lantana camara in the Upper Ganga valley of the Western Himalaya (India). The forest in the study area was stratified into 1 km2 grid and two 15 m radius plot were located in each of the forest types in the grid, for recording Lantana presence. In total, 2221 plots were sampled covering 22% of forest. We used predictors representing the climate, forest patch size, fire and natural disaster variables for modeling the species distribution using maximum entropy algorithm. We further simulated 12 future landscape scenarios based on the global trends of these parameters. The present species—environment relationship was projected to these future landscape scenarios. Lantana was presently estimated to spread in 231 km2 of the study area. It invaded larger forest patches in the sub-tropical region, and smaller disturbed forest patches in the warm and cold temperate region. Increased distribution of Lantana was projected across all the future scenarios. The study revealed how global climate changes and regional anthropogenic pressure can have a synergistic effect on the expansion of invasive species in the future. It thus questions the efficiency of conducting only regional efforts in absence of global initiative to reduce the greenhouse gases emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号