首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our previous studies have shown that the HMG-CoA reductase (HCR) inhibitor (HCRI), simvastatin, kills L6 myoblasts by involving Ca2+ mobilization from the Ca2+ pool in the cells but not by influx from extracellular space. More recently, we found that HCRI induced tyrosine phosphorylation of several cellular proteins, followed by apoptotic cell death of L6 myoblasts. The present study was aimed to elucidate the molecular target(s) of these tyrosine phosphorylations induced by HCRI and demonstrated that simvastatin induces tyrosine phosphorylation of phospholipase C (PLC) gamma1. This tyrosine phosphorylation of PLC-gamma1 caused the increment of the intracellular inositol triphosphate (IP3) levels in L6 myoblasts. Pretreatment of the cells with herbimycin A, a specific inhibitor of protein tyrosine kinase, inhibited a simvastatin-induced increase in IP3 level in the cells as well as tyrosine phosphorylation of PLC-gamma1. Interestingly, pretreatment of the cells with U-73122, a specific inhibitor of PLC, prevented simvastatin-induced cell death. Thus, these results strongly suggest that simvastatin-induced tyrosine phosphorylation of PLC-gamma1 plays, at least in part, an important role for the development of simvastatin-induced cell death.  相似文献   

2.
In mammals protein tyrosine phosphorylation plays an important role in the activation of apoptosis. However, tyrosine phosphorylation associated with cell death has not been examined in plants. We monitored changes in tyrosine phosphorylation during cell death in rice (Oryza sativa L.) suspension cultures. Cell death was induced in the cell cultures by mannose treatment or by allowing the cultures to senescence. We have demonstrated that both mannose and senescence induced DNA fragmentation in rice suspension cells. In the presence of mannose, the tyrosine phosphorylation patterns of mannose treated and non-treated cell proteins are basically the same, except the tyrosine phosphorylation intensity is considerably different. In aged suspension-cultured cells, the occurrence of DNA fragmentation was detected. In addition, the tyrosine phosphorylation pattern was changed. These results suggest that protein tyrosine phosphorylation may have a role in distinct signal transduction pathways responding to mannose and senescence. The expression of a gene that encodes mitogen-activated protein kinase (MAPK), OsMAPK2, is up-regulated during mannose treatment, suggesting the possible involvement of rice MAPK in pathways associated with rice cell death induced by >d-mannose.  相似文献   

3.
Different mitogens elicit similar effects on growth and differentiation of skeletal muscle, suggesting that potential overlap exists in the signaling cascades activated by such factors. To investigate this possibility, we examined the status of STAT and ERK proteins in C2C12 myoblasts and myotubes following stimulation with bFGF or LIF. Both STAT1 and STAT3 as well as ERK1 and ERK2 proteins were detectable in extracts of myoblasts. LIF stimulation of myoblasts lead to rapid phosphorylation on tyrosine of STAT3 and of ERKs 1 and 2. Similarly, bFGF stimulation of myoblasts resulted in the tyrosine phosphorylation of STAT3. However, unlike LIF, the bFGF induced tyrosine phosphorylation of STAT3 appeared cyclical, with recurrent peaks of phosphorylation even after prolonged exposure. By contrast, STAT1 remained unphosphorylated in myoblasts treated with bFGF or LIF. In differentiated myotubes, LIF treatment resulted in the tyrosine phosphorylation of both STAT3 and STAT1, but ERK phosphorylation was not detectable, and bFGF treatment did not lead to STAT1 or STAT3 tyrosine phosphorylation. Therefore these observations suggest that disparate mitogens can activate similar downstream effectors in proliferating myoblasts. © 1996 Wiley-Liss, Inc.  相似文献   

4.
Activated T cells undergo apoptosis when the Fas-antigen (APO-1, CD95) is ligated by Fas Ligand (FasL) or agonistic anti-Fas antibodies. Repeated stimulation of T lymphocytes via the TCR/CD3-complex induces activation-induced cell death (AICD) associated with FasL surface expression. FasL binding to Fas molecules triggers the Fas-dependent death signaling cascade. Since it is still controversial whether Fas-induced cell death is associated with tyrosine kinase activity, we investigated the tyrosine kinase activation requirements in anti-Fas antibody-induced cell death and AICD in human T cell clones. We report that cell death triggered by anti-Fas antibody is not accompanied by an increase in tyrosine phosphorylation and cannot be blocked by inhibitors of protein tyrosine kinases (PTK). Under the same conditions, AICD of T cell clones is clearly associated with tyrosine kinase activation. In fact, semiquantitative RT-PCR analysis of FasL mRNA expression triggered in T cell clones via the TCR/CD3-complex revealed that tyrosine phosphorylation is required for functional FasL mRNA and surface expression.  相似文献   

5.
Cell cycle arrest is a major cellular response to DNA damage preceding the decision to repair or die. Many malignant cells have non-functional p53 rendering them more “aggressive” in nature. Arrest in p53-negative cells occurs at the G2M cell cycle checkpoint. Failure of DNA damaged cells to arrest at G2 results in entry into mitosis and potential death through aberrant mitosis and/or apoptosis. The pivotal kinase regulating the G2M checkpoint is Cdk1/cyclin B whose activity is controlled by phosphorylation. The p53-negative myeloid leukemia cell lines K562 and HL-60 were used to determine Cdk1 phosphorylation status during etoposide treatment. Cdk1 tyrosine 15 phosphorylation was associated with G2M arrest, but not with cell death. Cdk1 tyrosine 15 phosphorylation also led to suppression of nuclear cyclin B-associated Cdk1 kinase activity. However cell death, associated with broader tyrosine phosphorylation of Cdk1 was not attributed to tyrosine 15 alone. This broader phosphoryl isoform of Cdk1 was associated with cyclin A and not cyclin B. Alternative phosphorylations sites were predicted as tyrosines 4, 99 and 237 by computer analysis. No similar pattern was found on Cdk2. These findings suggest novel Cdk1 phosphorylation sites, which appear to be associated with p53-independent cell death following etoposide treatment.  相似文献   

6.
Abstract: Activation of the N -methyl- d -aspartate (NMDA) receptor has been implicated in the events leading to ischemia-induced neuronal cell death. Recent studies have indicated that the properties of the NMDA receptor channel may be regulated by tyrosine phosphorylation. We have therefore examined the effects of transient cerebral ischemia on the tyrosine phosphorylation of NMDA receptor subunits NR2A and NR2B in different regions of the rat brain. Transient (15 min) global ischemia was produced by the four-vessel occlusion procedure. The tyrosine phosphorylation of NR2A and NR2B subunits was examined by immunoprecipitation with anti-tyrosine phosphate antibodies followed by immunoblotting with antibodies specific for NR2A or NR2B, and by immunoprecipitation with subunit-specific antibodies followed by immunoblotting with anti-phosphotyrosine antibodies. Transient ischemia followed by reperfusion induced large (23–29-fold relative to sham-operated controls), rapid (within 15 min of reperfusion), and sustained (for at least 24 h) increases in the tyrosine phosphorylation of NR2A and smaller increases in that of NR2B in the hippocampus. Ischemia-induced tyrosine phosphorylation of NR2 subunits in the hippocampus was higher than that of cortical and striatal NR2 subunits. The enhanced tyrosine phosphorylation of NR2A or NR2B may contribute to alterations in NMDA receptor function or in signaling pathways in the postischemic brain and may be related to pathogenic events leading to neuronal death.  相似文献   

7.
We investigated the effect of vanadate, a tyrosine phosphatase inhibitor, on cell death induced by peroxynitrite in human neuroblastoma SH-SY5Y cells. Vanadate prevented cell death induced by 3-morpholinosydnonimine (SIN-1), a peroxynitrite donor; whereas SIN-1-induced cell death was not prevented by neither okadaic acid, an inhibitor of serine/threonine phosphatases 1 and 2A, nor cyclosporin A, an inhibitor of serine/threonine phosphatase 2B. Vanadate did not prevent cell death induced by N-ethyl-2-(1-ethyl-hydroxy-2-nitrosohydrazino)-ethanamine, a nitric oxide donor. Wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3-kinase), did not block the protective effect of vanadate, suggesting that the protective effect of vanadate is independent on PI3-kinase. Vanadate increased tyrosine phosphorylation of several proteins including the focal adhesion protein p130 Crk-associated substrate (p130(cas)). By the treatment with SIN-1, the endogenous association of p130(cas) and Crk was disrupted, and the association was restored by vanadate treatment. These results suggest that disruption of tyrosine phosphorylation signaling may be critical for peroxynitrite-induced cell death, and that vanadate prevents cell death at least in part through the enhancement in tyrosine phosphorylation of the proteins including p130(cas).  相似文献   

8.
Fibroblast growth factor (FGF) receptors (FGFRs) are structurally related receptor protein tyrosine kinases encoded by four distinct genes. Activation of FGFR-1, -2, and -3 by FGFs induces mitogenic responses in various cell types, but the mitogenic potential of FGFR-4 has not been previously explored. We have compared the properties of BaF3 murine lymphoid cells and L6 rat myoblast cells engineered to express FGFR-1 or FGFR-4. Acidic FGF binds with high affinity to and elicits tyrosine phosphorylation of FGFR-1 or FGFR-4 receptors displayed on BaF3 cells, but only FGFR-1 activation leads to cell survival and growth. FGFR-4 activation also fails to elicit detectable signals characteristic of the FGFR-1 response: tyrosine phosphorylation of SHC and extracellular signal-related kinase (ERK) proteins and induction of fos and tis11 RNA expression. The only detected response to FGFR-4 activation was weak phosphorylation of phospholipase C gamma. A chimeric receptor containing the extracellular domain of FGFR-4 and the intracellular domain of FGFR-1 confers FGF-dependent growth upon transfected BaF3 cells, demonstrating that the intracellular domains of the receptors dictate their functional capacity. Activation of FGFR-1 in transfected L6 myoblasts induced far stronger phosphorylation of phospholipase C gamma, SHC, and ERK proteins than could activation of FGFR-4 in L6 cells, and only FGFR-1 activation induced tyrosine phosphorylation of a characteristic 80-kD protein. Hence, the signaling and biological responses elicited by different FGF receptors substantially differ.  相似文献   

9.
We have previously shown that stimulation of proliferation of avian embryonic muscle cells (myoblasts) by 1alpha,25(OH)(2)-vitamin D(3) (1alpha,25(OH)(2)D(3)) is mediated by activation of the mitogen-activated protein kinase (MAPK; ERK1/2). To understand how 1alpha,25(OH)(2)D(3) up-regulates the MAPK cascade, we have investigated whether the hormone acts upstream through stimulation of Raf-1 and the signaling mechanism by which this effect might take place. Treatment of chick myoblasts with 1alpha,25(OH)(2)D(3) (1 nm) caused a fast increase of Raf-1 serine phosphorylation (1- and 3-fold over basal at 1 and 2 min, respectively), indicating activation of Raf-1 by the hormone. These effects were abolished by preincubation of cells with a specific Ras inhibitor peptide that involves Ras in 1alpha,25(OH)(2)D(3) stimulation of Raf-1. 1alpha,25(OH)(2)D(3) rapidly induced tyrosine de-phosphorylation of Ras-GTPase-activating protein, suggesting that inhibition of Ras-GTP hydrolysis is part of the mechanism by which 1alpha,25(OH)(2)D(3) activates Ras in myoblasts. The protein kinase C (PKC) inhibitors calphostin C, bisindolylmaleimide I, and Ro 318220 blocked 1alpha,25(OH)(2)D(3)-induced Raf-1 serine phosphorylation, revealing that hormone stimulation of Raf-1 also involves PKC. In addition, transfection of muscle cells with an antisense oligodeoxynucleotide against PKCalpha mRNA suppressed serine phosphorylation by 1alpha,25(OH)(2)D(3). The increase in MAPK activity and tyrosine phosphorylation caused by 1alpha,25(OH)(2)D(3) could be abolished by Ras inhibitor peptide, compound PD 98059, which prevents the activation of MEK by Raf-1, or incubation of cell lysates before 1alpha,25(OH)(2)D(3) exposure with an anti-Raf-1 antibody. In conclusion, these results demonstrate for the first time in a 1alpha,25(OH)(2)D(3) target cell that activation of Raf-1 via Ras and PKCalpha-dependent serine phosphorylation plays a central role in hormone stimulation of the MAPK-signaling pathway leading to muscle cell proliferation.  相似文献   

10.
The aim of this study was to investigate the activation of JNK1/2 signalling pathway and the respective cellular phenotype of H9c2 cardiac myoblasts during two distinct types of oxidative insult. We examined the dose- and time-dependent activation of JNK1/2 pathway by exogenous H2O2, both under transient and sustained stimulation. At 2 h of either sustained or transient treatment, maximal phosphorylation of c-Jun was observed, coincidently with the activation of nuclear JNK1/2; under sustained stress, these phosphorylation levels remained elevated above basal for up to 6 h, whereas under transient stress they declined to basal ones within 4 h of withdrawal. Furthermore, the JNK1/2 selective inhibitor SP600125 abolished the c-jun phosphorylation induced by oxidative stress. Our results using cell viability assays and light microscopy revealed that sustained H2O2 stimulation significantly and time-dependently decreased H9c2 viability, in contrast to transient stimulation; SP600125 (10 μM) abolished cell death induced by sustained as well as cell survival induced by transient oxidative stress. Hoechst staining showed an increase in DNA condensation during sustained, but not during transient stimulation. Moreover, from the antioxidants tested, catalase and superoxide dismutase prevented oxidative stress-induced cell death. Flow cytometry studies reconfirmed that sustained oxidative stress induced apoptosis, whereas transient resulted in the recovery of cardiac myoblasts within 24 h. We conclude that in H9c2 myoblasts, sustained activation of JNK1/2 signalling pathway during oxidative stimulation is followed by an apoptotic phenotype, while transient JNK1/2 activation correlates well with cell survival, suggesting a dual role of this signalling pathway in cell fate determination.  相似文献   

11.
Cell suspensionsof ileal mucosa undergo a rapid and synchronized form of programmedcell death when cultured in a simple medium at 37°C. Becausetyrosine phosphorylation of proteins plays a crucial role in the signaltransduction of many cellular processes, we examined its role inintestinal programmed cell death by use of immunoblot andimmunohistochemical methods. We observed a 50-70% reduction intyrosine phosphorylation during the initial 10 min of intestinalepithelial cell culture. We hypothesized that the inhibition of proteintyrosine phosphatases would increase protein tyrosine phosphorylationin these suspensions and decrease programmed cell death. A stronginhibitor of these phosphatases (peroxovanadate) but not a weaker one(sodium orthovanadate) abolished the DNA fragmentation/ladderingnormally seen in dying enterocytes. Peroxovanadate enhanced proteintyrosine phosphorylation of many intestinal proteins, dramaticallyincreasing the dually phosphorylated and active form ofmitogen-activated protein kinase. Immunohistochemistry revealed aparticularly high level of increased tyrosine phosphorylation in theintestinal crypts in peroxovanadate-treated mucosa. Kinetic studiesindicated that the pivotal time for protein tyrosine phosphatase inhibition occurred within 5 min of ex vivo culture, precisely whenprotein tyrosine phosphorylation declined. Our data suggest thattyrosine kinase inactivation or tyrosine phosphatase activation mayinitiate intestinal epithelial cell death.

  相似文献   

12.
Bone marrow‐derived mesenchymal stem cells (BMSCs) have great therapeutic potential for many diseases. However, the homing of BMSCs to injury sites remains a difficult problem. Recent evidence indicates that simvastatin stimulates AKT phosphorylation, and p‐AKT affects the expression of chemokine (CXC motif) receptor‐4 (CXCR4). Therefore, simvastatin may improve the expression of CXCR4 in BMSCs, and microRNAs (miRs) may participate in this process. In this study, we demonstrated that simvastatin increased both the total and the surface expression of CXCR4 in BMSCs. Stromal cell‐derived factor‐1α (SDF?1α)‐induced migration of BMSCs was also enhanced by simvastatin, and this action was inhibited by AMD 3100(a chemokine receptor antagonist for CXCR4). The PI3K/AKT pathway was activated by simvastatin in this process, and LY294002 reversed the overexpression of CXCR4 caused by simvastatin. MiR‐9 directly targeted CXCR4 in rat BMSCs, and simvastatin decreased miR‐9 expression. P‐AKT affected the expression of miR‐9; as the phosphorylation of AKT increased, miR‐9 expression decreased. In addition, LY294002 increased miR‐9 expression. Taken together, our results indicated that simvastatin improved the migration of BMSCs via the PI3K/AKT pathway. MiR‐9 also participated in this process, and the phosphorylation of AKT affected miR‐9 expression, suggesting that simvastatin might have beneficial effects in stem cell therapy.  相似文献   

13.
Mirk/Dyrk1B is a member of a conserved family of serine/threonine kinases which are activated by intramolecular tyrosine phosphorylation, and which mediate differentiation in different tissues-Mirk in skeletal muscle, Dyrk1A in the brain, etc. One role of Mirk in skeletal muscle differentiation is to block cycling myoblasts in the G0 quiescent state by modification of cell cycle regulators, while another role of Mirk is to limit apoptosis in fusing myoblasts. Amplification of the Mirk gene, upregulation of Mirk expression and/or constitutive activation of this kinase have been observed in several different types of cancer. If coupled with a stress condition such as serum starvation which induces a quiescent state, depletion of Mirk by RNA interference using either synthetic duplex RNAi's or pSilencer-encoded RNAi's have decreased colony formation of different cancer cell lines and enhanced apoptosis induced by chemotherapeutic drugs. Mirk is activated by phosphorylation by the stress-activated SAPK kinases MKK3 and MKK6. Our working hypothesis is that Mirk is activated by this pathway in response to various stresses, and then acts as a checkpoint kinase to arrest damaged tumor cells in a quiescent state and allow cellular repair. Pharmacological inhibition of Mirk may enhance the anti-tumor effect of chemotherapeutic drugs.  相似文献   

14.
Macrophages participate in several inflammatory pathologies such as sepsis and arthritis. We examined the effect of simvastatin on the LPS-induced proinflammatory macrophage RAW264.7 cells. Co-treatment of LPS and a non-toxic dose of simvastatin induced cell death in RAW264.7 cells. The cell death was accompanied by disruption of mitochondrial membrane potential (MMP), genomic DNA fragmentation, and caspase-3 activation. Surprisingly, despite caspase-dependent apoptotic cascade being completely blocked by Z-VAD-fmk, a pan-caspase inhibitor, the cell death was only partially repressed. In the presence of Z-VAD-fmk, DNA fragmentation was blocked, but DNA condensation, disruption of MMP, and nuclear translocation of apoptosis inducing factor were obvious. The cell death by simvastatin and LPS was effectively decreased by both the FPP and GGPP treatments as well as mevalonate. Our findings indicate that simvastatin triggers the cell death of LPS-treated RAW264.7 cells through both caspase-dependent and -independent apoptotic pathways, suggesting a novel mechanism of statins for the severe inflammatory disease therapy.  相似文献   

15.
The statins are a class of 3-hydroxy-3-methylglutaryl-coenzyme A-reductase inhibitors that are recognized to have pleiotropic properties. We previously reported the attenuation of LPS-induced murine acute lung injury (ALI) by simvastatin in vivo and identified relevant effects of simvastatin on endothelial cell (EC) signaling, activation, and barrier function in vitro. In particular, simvastatin induces the upregulation of integrin-β4, which in turn inhibits EC inflammatory responses via attenuation of MAPK signaling. The role of integrin-β4 in murine ALI protection by simvastatin, however, is unknown. We initially confirmed a time- and dose-dependent effect of simvastatin on increased integrin-β4 mRNA expression in human lung EC with peak protein expression evident at 16 h. Subsequently, reciprocal immunoprecipitation demonstrated an attenuation of LPS-induced integrin-β4 tyrosine phosphorylation by simvastatin (5 μM, 16 h). Increased expression of EC inflammatory cytokines [IL-6, IL-8, monocyte chemoattractant protein (MCP)-1, regulated on activation normal T cell expressed and secreted (RANTES)] by LPS (500 ng/ml, 4 h) was also significantly attenuated by simvastatin pretreatment (5 μM, 16 h), but this effect was reversed by cotreatment with an integrin-β4-blocking antibody. Finally, although simvastatin (20 mg/kg) conferred significant protection in murine ALI as evidenced by decreased bronchoalveolar lavage fluid cell counts, protein, inflammatory cytokines (IL-6, IL-1β, MCP-1, RANTES), decreased Evans blue dye albumin extravasation in lung tissue, and changes on lung histology, these effects were reversed by the integrin-β4-blocking antibody (IV, 1 mg/kg, 2 h before LPS). These findings support integrin-β4 as an important mediator of ALI protection by simvastatin and implicate signaling by integrin-β4 as a novel therapeutic target in patients with ALI.  相似文献   

16.
Our studies observed that, consistent with the literature, ischemic/hypoxic insults increased the expression of voltage-gated potassium channel (Kv) 1.2 potassium channel as well as elevating the endogenous level of vascular endothelial growth factor (VEGF) in neurons of adult rat brain following middle cerebral artery occlusion and in SH-SY5Y cells after hypoxia and glucose deprivation. Concomitantly, we also observed that ischemic injury increased the tyrosine phosphorylation of Kv 1.2 in in vivo and in vitro; the introduction of exogenous VEGF could attenuate cell death in in vitro models. Furthermore, we found that the protective effect of VEGF is mediated through its up-regulative actions on the tyrosine phosphorylation of Kv 1.2, which in turn has a direct influence on cell viability after ischemic insult. In substantiation of this result, we used anti-sense methodology to suppress the expression of endogenous VEGF, which significantly inhibited the tyrosine phosphorylation of Kv 1.2 and increased cell death elicited by ischemic/hypoxic injury. Finally, the enhancement of the tyrosine phosphorylation of the channel by VEGF in neuronal cells was significantly attenuated in the presence of wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3-K), or genestin, an inhibitor of tyrosine kinase, thus suggesting that the phosphorylation of Kv 1.2 induced by VEGF is mechanistically linked to the PI3-K pathway.  相似文献   

17.
K252a, a protein kinase inhibitor, acts as a neurotrophic factor in several neuronal cells. In this study we show that K252a enhanced the differentiation of C2C12 myoblasts as well as tyrosine phosphorylation of several focal adhesion-associated proteins including p130(Cas), focal adhesion kinase, and paxillin. The tyrosine phosphorylation of these proteins, reaching a maximum at 30 min after K252a treatment, closely correlated with the colocalization of these proteins in focal adhesion complexes and the coimmunoprecipitation of these proteins with p130(Cas). In addition, K252a stimulated longitudinal development of stress fiber-like structures and cell-matrix interaction in postmitotic myoblasts and eventually formation of well-developed myofibrils in multinucleated myotubes. Herbimycin A, a potent inhibitor of Src family kinases, and cytochalasin D, a selective disrupting-agent of actin filament, completely inhibited K252a-induced tyrosine phosphorylation as well as myoblast differentiation. Similar inhibitory effect was observed in the cells scrape loaded with a Rho inhibitor, C3 transferase, and the treatment of K252a induced a rapid translocation of Rho. These results are consistent with the model that Rho-dependent tyrosine phosphorylation of focal adhesion-associated proteins plays an important role in skeletal muscle differentiation.  相似文献   

18.
During pancreatic tumorigenesis, the equilibrium between cell survival and cell death is altered, allowing aggressive neoplasia and resistance to radiation and chemotherapy. Local oxidative stress is one mechanism regulating programmed cell death and growth and may contribute to both tumor progression and suppression. Our recent in situ immunohistochemical studies demonstrated that levels of total nitrotyrosine, a footprint of the reactive nitrogen species peroxynitrite, are elevated in human pancreatic ductal adenocarcinomas. In this study, quantitative HPLC-EC techniques demonstrated a 21- to 97-fold increase in the overall levels of nitrotyrosine of human pancreatic tumor extracts compared to normal pancreatic extracts. Western blot analysis of human pancreatic tumor extracts showed that tyrosine nitration was restricted to a few specific proteins. Immunoprecipitation coupled with Western analysis identified c-Src tyrosine kinase as a target of both tyrosine nitration and tyrosine phosphorylation. Peroxynitrite treatment of human pancreatic carcinoma cells in vitro resulted in increased tyrosine nitration and tyrosine phosphorylation of c-Src kinase, increased (>2-fold) c-Src kinase activity, and increased association between c-Src kinase and its downstream substrate cortactin. Collectively, these observations suggest that peroxynitrite-mediated tyrosine nitration and tyrosine phosphorylation of c-Src kinase may lead to enhanced tyrosine kinase signaling observed during pancreatic ductal adenocarcinoma growth and metastasis.  相似文献   

19.
Maduramicin, a polyether ionophore antibiotic derived from the bacterium Actinomadura yumaensis, is currently used as a feed additive against coccidiosis in poultry worldwide. It has been clinically observed that maduramicin can cause skeletal muscle and heart cell damage, resulting in skeletal muscle degeneration, heart failure, and even death in animals and humans, if improperly used. However, the mechanism of its toxic action in myoblasts is not well understood. Using mouse myoblasts (C2C12) and human rhabdomyosarcoma (RD and Rh30) cells as an experimental model for myoblasts, here we found that maduramicin inhibited cell proliferation and induced cell death in a concentration-dependent manner. Further studies revealed that maduramicin induced accumulation of the cells at G0/G1 phase of the cell cycle, and induced apoptosis in the cells. Concurrently, maduramicin downregulated protein expression of cyclin D1, cyclin-dependent kinases (CDK4 and CDK6), and CDC25A, and upregulated expression of the CDK inhibitors (p21Cip1 and p27Kip1), resulting in decreased phosphorylation of Rb. Maduramicin also induced expression of BAK, BAD, DR4, TRADD and TRAIL, leading to activation of caspases 8, 9 and 3 as well as cleavage of poly ADP ribose polymerase (PARP). Taken together, our results suggest that maduramicin executes its toxicity in myoblasts at least by inhibiting cell proliferation and inducing apoptotic cell death.  相似文献   

20.
A prominent tyrosine phosphorylated protein of 85 kDa (p85) was detected in highly proliferative sublines derived from the Jurkat T cell leukemia. We undertook a study to characterize the identity of this protein and its possible role in the hyperproliferative phenotypes observed. Using immunoblot and immunoprecipitation techniques, this protein was characterized as the p85 regulatory subunit of phosphatidylinositol 3-kinase. Cell proliferation and p85 tyrosine phosphorylation was not affected by tyrphostin AG-490, an inhibitor of Jak kinases, wortmannin or LY294002, inhibitors of the activity of the catalytic phosphatidylinositol 3-kinase subunit. Herbimycin-A and PPI, inhibitors of src-like protein tyrosine kinases, and genistein, a general tyrosine kinase inhibitor, inhibited p85 tyrosine phosphorylation and induced cell death in the sublines. PD98059, an inhibitor of Mek, inhibited cell growth of the sublines, but not that of the parental cells. It was concluded that tyrosine phosphorylation of p85 is associated with highly proliferative tumoral phenotypes, at least in T cell leukemias, independent of the phosphatidylinositol 3-kinase activity of the catalytic subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号