首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Utilization of xylooligosaccharides by selected ruminal bacteria.   总被引:5,自引:2,他引:3       下载免费PDF全文
M A Cotta 《Applied microbiology》1993,59(11):3557-3563
The ability of ruminal bacteria to utilize xylooligosaccharides was examined. Xylooligosaccharides were prepared by partially hydrolyzing oat spelt xylan in phosphoric acid. This substrate solution was added (0.2%, wt/vol) to a complex medium containing yeast extract and Trypticase that was inoculated with individual species of ruminal bacteria, and growth and utilization were monitored over time. All of the xylanolytic bacteria examined were able to utilize this oligosaccharide mixture as a growth substrate. Butyrivibrio fibrisolvens, Eubacterium ruminantium, and Ruminococcus albus used xylooligosaccharides and whole, unhydrolyzed xylan to similar extents, while Prevotella ruminicola used twice as much xylooligosaccharides as xylan (76 versus 34%). Strains of Selenomonas ruminantium were the only nonxylanolytic species that were able to grow on xylooligosaccharides. The ability of individual S. ruminantium strains to utilize xylooligosaccharides was correlated with the presence of xylosidase and arabinosidases activities.  相似文献   

2.
A total of 10 strains of rumen bacteria, Selenomonas ruminantium HD4, Megasphaera elsdenii B159, Butyrivibrio fibrisolvens A38, Streptococcus bovis JB1, Lactobacillus vitulinus GA1, Bacteroides ruminicola B14, B. ruminicola GA33, Ruminococcus albus 7, Ruminococcus flavefaciens C94, and Bacteroides succinogenes S85, were grown in energy-limiteH of the medium reservoir was lowered approximately 0.3 pH units, and the energy source concentration remaining in the culture vessel, optical density, cell mass, and pH were determined. A low pH appeared to have a detrimental effect on cell yields. Large variations were seen among strains in both the magnitude of yield depressions at lower pH values and in the pH at which the culture washed out. Lactate analysis indicated ta are discussed in relation to the effect of pH on the efficiency of protein synthesis in the rumen and rumen microbial ecology.  相似文献   

3.
AIMS: To obtain reliable transformation of a range of Butyrivibrio fibrisolvens strains and to express a Neocallimastix patriciarum xylanase gene in the recipients. METHODS AND RESULTS: Eight strains (H17c, E14, LP1309, LP1028, AR11a, OB156, LP210B and LP461A) of Bu. fibrisolvens were transformed by the Gram-positive vector pUB110. A xylanase expression/secretion cassette containing Bu. fibrisolvens promoter and signal peptide elements fused to catalytic domain II of the N. patriciarum xylanase A cDNA (xynANp) was inserted into pUB110 to create the plasmid pUBxynA. pUBxynA was used to transform seven of the Bu. fibrisolvens strains transformed by pUB110. In strain H17c pUBxynA, which produced native xylanase, 2.46 U mg-1 total xylanase activity was produced with 45% extracellular xylanase. In strain H17c pUMSX, 0.74 U mg-1 total xylanase activity was produced with 98% extracellular xylanase. H17c pUBxynA exhibited increased (28.7%) degradation of neutral detergent fibre compared with unmodified H17c; however, progressive loss of pUBxynA was observed in long-term cultivation. CONCLUSIONS: A stable transformation system was developed that was applicable for a range of Bu. fibrisolvens strains and high levels of expression of a recombinant xylanase were obtained in H17c which lead to increased fibre digestion. SIGNIFICANCE AND IMPACT OF THE STUDY: This stable transformation system with the accompanying recombinant plasmids will be a useful tool for further investigation aimed at improving ruminal fibre digestion.  相似文献   

4.
The antimicrobial activities of monensin and lasalocid against representative strains of ruminal bacteria were evaluated in medium containing three different concentrations of potassium (1.3, 7.9, or 23.3 mM). The growth of Eubacterium ruminantium was inhibited by low concentrations of ionophores (less than or equal to 0.16 mg/liter), while the strain of Streptococcus bovis tested was resistant to high concentrations of ionophores (40 mg/liter) at all potassium concentrations tested. The MICs of the ionophores for strains of Bacteroides succinogenes, Butyrivibrio fibrisolvens, Ruminococcus albus, and Ruminococcus flavefaciens and for one strain of Bacteroides ruminicola increased with increasing potassium concentrations in the medium. High concentrations of ionophores (40 mg/liter) decreased the maximum cell yields or increased the lag times or both in cultures of one strain of Bacteroides ruminicola and two strains of Selenomonas ruminantium but did not completely inhibit the growth of these organisms. Increased potassium concentrations in the medium (from 7.9 to 23.3 mM) decreased the lag times or increased the cell yields or both when these three strains were grown in ionophore-containing medium, while the activities of lasalocid and monensin against these organisms were enhanced in the medium containing low potassium concentrations (1.3 mM). The data from this study suggest that extracellular potassium concentrations may influence the antimicrobial activities of ionophores in the rumen.  相似文献   

5.
The antimicrobial activities of monensin and lasalocid against representative strains of ruminal bacteria were evaluated in medium containing three different concentrations of potassium (1.3, 7.9, or 23.3 mM). The growth of Eubacterium ruminantium was inhibited by low concentrations of ionophores (less than or equal to 0.16 mg/liter), while the strain of Streptococcus bovis tested was resistant to high concentrations of ionophores (40 mg/liter) at all potassium concentrations tested. The MICs of the ionophores for strains of Bacteroides succinogenes, Butyrivibrio fibrisolvens, Ruminococcus albus, and Ruminococcus flavefaciens and for one strain of Bacteroides ruminicola increased with increasing potassium concentrations in the medium. High concentrations of ionophores (40 mg/liter) decreased the maximum cell yields or increased the lag times or both in cultures of one strain of Bacteroides ruminicola and two strains of Selenomonas ruminantium but did not completely inhibit the growth of these organisms. Increased potassium concentrations in the medium (from 7.9 to 23.3 mM) decreased the lag times or increased the cell yields or both when these three strains were grown in ionophore-containing medium, while the activities of lasalocid and monensin against these organisms were enhanced in the medium containing low potassium concentrations (1.3 mM). The data from this study suggest that extracellular potassium concentrations may influence the antimicrobial activities of ionophores in the rumen.  相似文献   

6.
Fermentation of xylans by Butyrivibrio fibrisolvens and other ruminal bacteria   总被引:11,自引:0,他引:11  
The ability of Butyrivibrio fibrisolvens and other ruminal bacteria (6 species, 18 strains) to ferment a crude xylan from wheat straw or to ferment xylans from larchwood or oat spelts was studied. Liquid cultures were monitored for carbohydrate utilization, cell growth (protein), and fermentation acid production. B. fibrisolvens 49, H17c, AcTF2, and D1 grew almost as well on one or more of the xylans as they did on cellobiose-maltose. B. fibrisolvens 12, R28, A38, X10C34, ARD22a, and X6C61 exhibited moderate growth on xylans. Partial fermentation of xylans was observed with Bacteroides ruminicola B14, Bacteroides succinogenes S85, Ruminococcus albus 7, Ruminococcus flavefaciens C94 and FD1, and Succinivibrio dextrinosolvens 22B. All xylans tested appeared to have a small fraction of carbohydrate that supported low levels of growth of nonxylanolytic strains such as Selenomonas ruminantium HD4. Compared to growth on hexoses, the same array of fermentation acids was produced upon growth on xylans for most strains; however, reduced lactate levels were observed for B. fibrisolvens 49 and Selenomonas ruminantium HD4. Measurements of enzyme activities of B. fibrisolvens AcTF2, 49, H17c, and D1 indicated that the xylobiase activities were cell associated and that the xylanase activities were predominantly associated with the culture fluid. The pattern of expression of these enzymes varied both between strains and between the carbon sources on which the strains were grown.  相似文献   

7.
R B Hespell  R Wolf    R J Bothast 《Applied microbiology》1987,53(12):2849-2853
The ability of Butyrivibrio fibrisolvens and other ruminal bacteria (6 species, 18 strains) to ferment a crude xylan from wheat straw or to ferment xylans from larchwood or oat spelts was studied. Liquid cultures were monitored for carbohydrate utilization, cell growth (protein), and fermentation acid production. B. fibrisolvens 49, H17c, AcTF2, and D1 grew almost as well on one or more of the xylans as they did on cellobiose-maltose. B. fibrisolvens 12, R28, A38, X10C34, ARD22a, and X6C61 exhibited moderate growth on xylans. Partial fermentation of xylans was observed with Bacteroides ruminicola B14, Bacteroides succinogenes S85, Ruminococcus albus 7, Ruminococcus flavefaciens C94 and FD1, and Succinivibrio dextrinosolvens 22B. All xylans tested appeared to have a small fraction of carbohydrate that supported low levels of growth of nonxylanolytic strains such as Selenomonas ruminantium HD4. Compared to growth on hexoses, the same array of fermentation acids was produced upon growth on xylans for most strains; however, reduced lactate levels were observed for B. fibrisolvens 49 and Selenomonas ruminantium HD4. Measurements of enzyme activities of B. fibrisolvens AcTF2, 49, H17c, and D1 indicated that the xylobiase activities were cell associated and that the xylanase activities were predominantly associated with the culture fluid. The pattern of expression of these enzymes varied both between strains and between the carbon sources on which the strains were grown.  相似文献   

8.
Amylolytic activity of selected species of ruminal bacteria.   总被引:11,自引:8,他引:3       下载免费PDF全文
A variety of species of ruminal bacteria were screened for the ability to grow in starch-containing medium and produce amylase. Of those tested, the highest levels of amylase were produced by Streptococcus bovis JB1 and Ruminobacter amylophilus H18. Other strains that grew well on starch and produced amylase included Butyrivibrio fibrisolvens A38 and 49 and Bacteroides ruminicola 23 and B14. Varying the carbohydrate source provided for growth resulted in changes in the growth rate and level of amylase produced by these strains. All strains grew rapidly in starch-containing medium, and the rates of growth were generally more rapid than those observed for maltose-grown cultures. For S. bovis JB1, B. ruminicola 23 and B14, and B. fibrisolvens 49 and A38, amylase was produced when growth was on maltose or starch, but this activity was greatly reduced in glucose-grown cultures. The distribution of amylolytic activity between cellular and extracellular fractions was sometimes affected by the carbohydrate provided for growth. If S. bovis JB1 and B. fibrisolvens 49 were grown on starch, amylase was largely associated with cell pellets; however, if grown on maltose these strains produced activities that were almost entirely present in the extracellular fluid fractions. Although not as dramatic, a similar shift in the location of amylase activities was noted for the two B. ruminicola strains when grown on the same substrates. Growth on maltose or starch had little influence on either the predominantly cell-associated activity of B. fibrisolvens A38 or the activity of R. amylophilus H18, which was equally divided between cell pellet and extracellular fluid fractions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Amylolytic activity of selected species of ruminal bacteria   总被引:5,自引:0,他引:5  
A variety of species of ruminal bacteria were screened for the ability to grow in starch-containing medium and produce amylase. Of those tested, the highest levels of amylase were produced by Streptococcus bovis JB1 and Ruminobacter amylophilus H18. Other strains that grew well on starch and produced amylase included Butyrivibrio fibrisolvens A38 and 49 and Bacteroides ruminicola 23 and B14. Varying the carbohydrate source provided for growth resulted in changes in the growth rate and level of amylase produced by these strains. All strains grew rapidly in starch-containing medium, and the rates of growth were generally more rapid than those observed for maltose-grown cultures. For S. bovis JB1, B. ruminicola 23 and B14, and B. fibrisolvens 49 and A38, amylase was produced when growth was on maltose or starch, but this activity was greatly reduced in glucose-grown cultures. The distribution of amylolytic activity between cellular and extracellular fractions was sometimes affected by the carbohydrate provided for growth. If S. bovis JB1 and B. fibrisolvens 49 were grown on starch, amylase was largely associated with cell pellets; however, if grown on maltose these strains produced activities that were almost entirely present in the extracellular fluid fractions. Although not as dramatic, a similar shift in the location of amylase activities was noted for the two B. ruminicola strains when grown on the same substrates. Growth on maltose or starch had little influence on either the predominantly cell-associated activity of B. fibrisolvens A38 or the activity of R. amylophilus H18, which was equally divided between cell pellet and extracellular fluid fractions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Ruminal bacteria from axenic cultures of Ruminococcus flavefaciens FD1, Butyrivibrio fibrisolvens 49, and bacterial types from the ruminal ecosystem that were fixed with 50 mM lysine (l-lysine hydrochloride) added to glutaraldehyde had better-preserved capsules and extracellular material than bacteria fixed without lysine.  相似文献   

11.
Effect of phenolic monomers on ruminal bacteria.   总被引:11,自引:10,他引:1       下载免费PDF全文
Ruminal bacteria were subjected to a series of phenolic compounds in various concentrations to acquire fundamental information on the influence on growth and the potential limits to forage utilization by phenolic monomers. Ruminococcus albus 7, Ruminococcus flavefaciens FD-1, Butyrivibrio fibrisolvens 49, and Lachnospira multiparus D-32 were tested against 1, 5, and 10 mM concentrations of sinapic acid, syringaldehyde, syringic acid, ferulic acid, vanillin, vanillic acid, p-coumaric acid, p-hydroxybenzaldehyde, p-hydroxybenzoic acid, and hydrocinnamic acid. Responses were variable and dependent on the phenolic compound and microbial species. Compounds especially toxic (i.e., resulting in poor growth, effect on several species, dose-related response) were p-coumaric acid and p-hydroxybenzaldehyde, and adaptation to the toxins did not occur after three 24-h periods. Syringic, p-hydroxybenzoic, and hydrocinnamic acids stimulated growth of all four species and also stimulated filter paper degradation by R. flavefaciens. None of the stimulatory compounds supported microbial growth in the absence of carbohydrates. In vitro dry matter digestibility of cellulose (Solka-Floc) was not stimulated by any of the phenolic compounds (10 mM), but the cinnamic acids and benzoic aldehydes (10 mM) reduced (P less than 0.05) digestion by the mixed population in ruminal fluid. Growth of R. flavefaciens in the presence of p-hydroxybenzoic acid (10 mM) or p-coumaric acid (5 mM) resulted in recognizable alterations in cell ultrastructure. Both phenolics caused a reduction in cell size (P less than 0.05), and p-coumaric acid caused a reduction in capsular size (P less than 0.05) and produced occasional pleomorphic cells.  相似文献   

12.
Effect of phenolic monomers on ruminal bacteria   总被引:2,自引:0,他引:2  
Ruminal bacteria were subjected to a series of phenolic compounds in various concentrations to acquire fundamental information on the influence on growth and the potential limits to forage utilization by phenolic monomers. Ruminococcus albus 7, Ruminococcus flavefaciens FD-1, Butyrivibrio fibrisolvens 49, and Lachnospira multiparus D-32 were tested against 1, 5, and 10 mM concentrations of sinapic acid, syringaldehyde, syringic acid, ferulic acid, vanillin, vanillic acid, p-coumaric acid, p-hydroxybenzaldehyde, p-hydroxybenzoic acid, and hydrocinnamic acid. Responses were variable and dependent on the phenolic compound and microbial species. Compounds especially toxic (i.e., resulting in poor growth, effect on several species, dose-related response) were p-coumaric acid and p-hydroxybenzaldehyde, and adaptation to the toxins did not occur after three 24-h periods. Syringic, p-hydroxybenzoic, and hydrocinnamic acids stimulated growth of all four species and also stimulated filter paper degradation by R. flavefaciens. None of the stimulatory compounds supported microbial growth in the absence of carbohydrates. In vitro dry matter digestibility of cellulose (Solka-Floc) was not stimulated by any of the phenolic compounds (10 mM), but the cinnamic acids and benzoic aldehydes (10 mM) reduced (P less than 0.05) digestion by the mixed population in ruminal fluid. Growth of R. flavefaciens in the presence of p-hydroxybenzoic acid (10 mM) or p-coumaric acid (5 mM) resulted in recognizable alterations in cell ultrastructure. Both phenolics caused a reduction in cell size (P less than 0.05), and p-coumaric acid caused a reduction in capsular size (P less than 0.05) and produced occasional pleomorphic cells.  相似文献   

13.
Carbon Dioxide Requirement of Various Species of Rumen Bacteria   总被引:4,自引:0,他引:4       下载免费PDF全文
The carbon dioxide requirement of 32 strains of rumen bacteria, representing 11 different species, was studied in detail. Increasing concentrations of CO(2) were added as NaHCO(3) to a specially prepared CO(2)-free medium which was tubed and inoculated under nitrogen. Prior depletion of CO(2) in the inoculum was found to affect the level of requirement; however, the complexity and buffering capacity of the medium did not appear to be involved. An absolute requirement for CO(2) was observed for eight strains of Bacteroides ruminicola, three strains of Bacteroides succinogenes, four strains of Ruminococcus flavefaciens, two strains of Lachnospira multiparus, one strain of Succinimonas amylolytica, and two strains of Butyrivibrio fibrisolvens. Inconsistent growth responses were obtained in CO(2)-free media with one strain each of B. fibrisolvens, Ruminococcus albus, and Selenomonas ruminantium. Growth of six additional strains of B. fibrisolvens, and single strains of Eubacterium ruminantium and Succinivibrio dextrinosolvens was markedly increased or stimulated by increasing concentrations of CO(2). Peptostreptococcus elsdenii B159 was the only organism tested which appeared to have no requirement, either absolute or partial, for CO(2). Higher concentrations of CO(2) were required for the initiation of growth, as well as for optimal growth, by those species which produce succinic acid as one of their primary end products.  相似文献   

14.
Abstract Samples of rumen ingesta from two rumen-fistulated dairy cows fed grass silage-based diets were examined for numbers and types of bacteria that developed colonies on rumen fluid-agar media designated to support the growth of (a) a wide range of species, (b) cellulolytic bacteria, (c) lactate-fermenting bacteria, (d) non-fermentative bacteria. The most numerous species was Bacteroides ruminicola followed by Butyrivibrio fibrisolvens . The most abundant cellulolytic species were Eubacterium cellulosolvens and Ruminococcus flavefaciens. Megasphaera elsdenii and Selenomonas ruminantium were important lactate fermenters but an unidentified bacterium that grew poorly on maintenance medium was by far the most numerous among bacteria isolated from lactate-containing medium. One strain remained sufficiently viable to show that it fermented lactate to propionate and acetate.  相似文献   

15.
The dominant cecal bacteria in the high-arctic Svalbard reindeer were characterized, their population densities were estimated, and cecal pH was determined in summer, when food quality and availability is good, and in winter, when it is very poor. In summer the total culturable viable bacterial population was (8.9 +/- 5.3) X 10(8) cells ml-1, whereas in winter it was (1.5 +/- 0.7) X 10(8) cells ml-1, representing a decrease to 17% of the summer population density. Of the dominant species of cultured bacteria, Butyrivibrio fibrisolvens represented 23% in summer and 18% in winter. Streptococcus bovis represented 17% in summer and 5% in winter. Bacteroides ruminicola represented 10% in summer and 26% in winter. In summer and winter, respectively, the proportion of the viable population showing the following activities was as follows: fiber digestion, 36 and 48%; cellulolysis, 10 and 6%; xylanolysis, 33 and 48%; and starch utilization, 77 and 71%. The most abundant cellulolytic species in summer was Butyrivibrio fibrisolvens, representing 62% of the total cellulolytic population, and in winter it was Ruminococcus albus, representing 80% of the total cellulolytic population. The most abundant xylanolytic species in summer was Butyrivibrio fibrisolvens, and in winter it was Bacteroides ruminicola, representing 59 and 54% of the xylanolytic isolates in summer and winter, respectively. The cecal bacterial of the Svalbard reindeer have the ability to digest starch and the major structural carbohydrates of the diet that are not digested in the rumen. The cecum in these animals has the potential to contribute very substantially to the digestion of the available plant material in both summer and winter.  相似文献   

16.
The incidence of temperate bacteriophage in a wide range of ruminal bacteria was investigated by means of induction with mitomycin C. Supernatant liquid from treated cultures was examined for phagelike particles by using transmission electron microscopy. Of 38 ruminal bacteria studied, nine organisms (23.7%) representing five genera (Eubacteria, Bacteroides, Butyrivibrio, Ruminococcus, and Streptococcus) produced phagelike particles. Filamentous particles from Butyrivibrio fibrisolvens are the first of this morphological type reported from ruminal bacteria. All of the other particles obtained possessed polyhedral heads and long, noncontractile tails (group B-type phage). The limited range of morphological types produced by mitomycin C induction cannot yet account for the much wider range of types found in ruminal contents by direct examination. The presence of viral genetic material in a significant percentage of the bacteria tested, as well as in a range of different genera, indicates that viral genetic material may be a normal constituent of the genome of appreciable numbers of ruminal bacteria.  相似文献   

17.
Six rumen bacteria were cocultured with the rumen fungus Piromyces communis and the effects on xylanolysis determined. The rate and extent of xylan utilization was enhanced in cocultures with Prevotella ruminicola or Succinivibrio dextrinosolvens. The positive effects of Suc. dextrinosolvens and Prev. ruminicola on xylanolysis by P. communis correlated with effective cross-feeding by the bacteria on arabinose and xylose released from xylan. Xylanolysis was not enhanced in cocultures of P. communis with Streptococcus bovis, Veillonella parvula or Ruminococcus flavefaciens. A comparison of fermentation product profiles and of extracellular enzyme activities showed that whereas saccharolytic species and Butyrivibrio fibrisolvens were dominant in cocultures, P. communis dominated in the culture with R. flavefaciens. Extracellular xylanase and β-xylosidase activities were not increased by cocultivation of P. communis with any of the heterotrophic bacteria.  相似文献   

18.
Inducible bacteriophages from ruminal bacteria.   总被引:5,自引:1,他引:4       下载免费PDF全文
The incidence of temperate bacteriophage in a wide range of ruminal bacteria was investigated by means of induction with mitomycin C. Supernatant liquid from treated cultures was examined for phagelike particles by using transmission electron microscopy. Of 38 ruminal bacteria studied, nine organisms (23.7%) representing five genera (Eubacteria, Bacteroides, Butyrivibrio, Ruminococcus, and Streptococcus) produced phagelike particles. Filamentous particles from Butyrivibrio fibrisolvens are the first of this morphological type reported from ruminal bacteria. All of the other particles obtained possessed polyhedral heads and long, noncontractile tails (group B-type phage). The limited range of morphological types produced by mitomycin C induction cannot yet account for the much wider range of types found in ruminal contents by direct examination. The presence of viral genetic material in a significant percentage of the bacteria tested, as well as in a range of different genera, indicates that viral genetic material may be a normal constituent of the genome of appreciable numbers of ruminal bacteria.  相似文献   

19.
The dominant cecal bacteria in the high-arctic Svalbard reindeer were characterized, their population densities were estimated, and cecal pH was determined in summer, when food quality and availability is good, and in winter, when it is very poor. In summer the total culturable viable bacterial population was (8.9 +/- 5.3) X 10(8) cells ml-1, whereas in winter it was (1.5 +/- 0.7) X 10(8) cells ml-1, representing a decrease to 17% of the summer population density. Of the dominant species of cultured bacteria, Butyrivibrio fibrisolvens represented 23% in summer and 18% in winter. Streptococcus bovis represented 17% in summer and 5% in winter. Bacteroides ruminicola represented 10% in summer and 26% in winter. In summer and winter, respectively, the proportion of the viable population showing the following activities was as follows: fiber digestion, 36 and 48%; cellulolysis, 10 and 6%; xylanolysis, 33 and 48%; and starch utilization, 77 and 71%. The most abundant cellulolytic species in summer was Butyrivibrio fibrisolvens, representing 62% of the total cellulolytic population, and in winter it was Ruminococcus albus, representing 80% of the total cellulolytic population. The most abundant xylanolytic species in summer was Butyrivibrio fibrisolvens, and in winter it was Bacteroides ruminicola, representing 59 and 54% of the xylanolytic isolates in summer and winter, respectively. The cecal bacterial of the Svalbard reindeer have the ability to digest starch and the major structural carbohydrates of the diet that are not digested in the rumen. The cecum in these animals has the potential to contribute very substantially to the digestion of the available plant material in both summer and winter.  相似文献   

20.
Growth of the ruminal bacteria Ruminococcus flavefaciens FD1, Selenomonas ruminantium HD4, and Butyrivibrio fibrisolvens 49 was limited by ester-linked feruloyl and p-coumaroyl groups. The limitation of growth on phenolic acid-carbohydrate complexes varied with individual bacteria and appeared to be influenced by ability to hydrolyze carbohydrate linkages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号