首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 878 毫秒
1.
Neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis have been termed protein misfolding disorders that are characterized by the neuronal accumulation of protein aggregates. Manipulation of the cellular stress-response involving induction of heat shock proteins (Hsps) in differentiated neurons offers a therapeutic strategy to counter conformational changes in neuronal proteins that trigger pathogenic cascades resulting in neurodegenerative diseases. Hsps are protein repair agents that provide a line of defense against misfolded, aggregation-prone proteins. These proteins are not induced in differentiated neurons by conventional heat shock. We have found that celastrol, a quinine methide triterpene, induced expression of a wider set of Hsps, including Hsp70B', in differentiated human neurons grown in tissue culture compared to cultured rodent neuronal cells. Hence the beneficial effect of celastrol against human neurodegenerative diseases may exceed its potential in rodent models of these diseases.  相似文献   

2.
Many members of the heat shock protein family act in unison to refold or degrade misfolded proteins. Some heat shock proteins also directly interfere with apoptosis. These homeostatic functions are especially important in proteinopathic neurodegenerative diseases, in which specific proteins misfold, aggregate, and kill cells through proteotoxic stress. Heat shock protein levels may be increased or decreased in these disorders, with the direction of the response depending on the individual heat shock protein, the disease, cell type, and brain region. Aging is also associated with an accrual of proteotoxic stress and modulates expression of several heat shock proteins. We speculate that the increase in some heat shock proteins in neurodegenerative conditions may be partly responsible for the slow progression of these disorders, whereas the increase in some heat shock proteins with aging may help delay senescence. The protective nature of many heat shock proteins in experimental models of neurodegeneration supports these hypotheses. Furthermore, some heat shock proteins appear to be expressed at higher levels in longer-lived species. However, increases in heat shock proteins may be insufficient to override overwhelming proteotoxic stress or reverse the course of these conditions, because the expression of several other heat shock proteins and endogenous defense systems is lowered. In this review we describe a number of stress-induced changes in heat shock proteins as a function of age and neurodegenerative pathology, with an emphasis on the heat shock protein 70 (Hsp70) family and the two most common proteinopathic disorders of the brain, Alzheimer’s and Parkinson’s disease.  相似文献   

3.
Heat shock proteins (Hsps) are a set of highly conserved proteins involved in cellular repair and protective mechanisms. They counter protein misfolding and aggregation that are characteristic features of neurodegenerative diseases. Hsps act co-operatively in disaggregation/refolding machines that assemble at sites of protein misfolding and aggregation. Members of the DNAJ (Hsp40) family act as “holdases” that detect and bind misfolded proteins, while members of the HSPA (Hsp70) family act as “foldases” that refold proteins to biologically active states. HSPH1 (Hsp105α) is an important additional member of the mammalian disaggregation/refolding machine that acts as a disaggregase to promote the dissociation of aggregated proteins. Components of a disaggregation/refolding machine were targeted to nuclear speckles after thermal stress in differentiated human neuronal SH-SY5Y cells, namely: HSPA1A (Hsp70-1), DNAJB1 (Hsp40-1), DNAJA1 (Hsp40-4), and HSPH1 (Hsp105α). Nuclear speckles are rich in RNA splicing factors, and heat shock disrupts RNA splicing which recovers after stressful stimuli. Interestingly, constitutively expressed HSPA8 (Hsc70) was also targeted to nuclear speckles after heat shock with elements of a disaggregation/refolding machine. Hence, neurons have the potential to rapidly assemble a disaggregation/refolding machine after cellular stress using constitutively expressed Hsc70 without the time lag needed for synthesis of stress-inducible Hsp70. Constitutive Hsc70 is abundant in neurons in the mammalian brain and has been proposed to play a role in pre-protecting neurons from cellular stress.  相似文献   

4.
Abstract An isoprotein of enolase from the yeast Saccharomyces cerevisiae was reported to be a heat shock protein. The possible role of the C. albicans enolase as a heat shock protein was therefore investigated. The de novo synthesis of C. albicans enolase protein and mRNA did not increase during heat stress, but remained constitutively expressed. Amino acid similarity to the heat shock proteins suggests that although the C. albicans enolase is not a classical heat shock protein, it may be a memberof a group of constitutively expressed, structurally related proteins, the heat shock cognate proteins.  相似文献   

5.
Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis (ALS) are ‘protein misfolding disorders’ of the mature nervous system that are characterized by the accumulation of protein aggregates and selective cell loss. Different brain regions are impacted, with Alzheimer’s affecting cells in the cerebral cortex, Parkinson’s targeting dopaminergic cells in the substantia nigra and ALS causing degeneration of cells in the spinal cord. These diseases differ widely in frequency in the human population. Alzheimer’s is more frequent than Parkinson’s and ALS. Heat shock proteins (Hsps) are ‘protein repair agents’ that provide a line of defense against misfolded, aggregation-prone proteins. We have suggested that differing levels of constitutively expressed Hsps (Hsc70 and Hsp27) in neural cell populations confer a variable buffering capacity against ‘protein misfolding disorders’ that correlates with the relative frequencies of these neurodegenerative diseases. The high relative frequency of Alzheimer’s may due to low levels of Hsc70 and Hsp27 in affected cell populations that results in a reduced defense capacity against protein misfolding. Here, we demonstrate that celastrol, but not classical heat shock treatment, is effective in inducing a set of neuroprotective Hsps in cultures derived from cerebral cortices, including Hsp70, Hsp27 and Hsp32. This set of Hsps is induced by celastrol at ‘days in vitro’ (DIV) 13 when cultured cortical cells reached maturity. The inducibility of a set of neuroprotective Hsps in mature cortical cultures at DIV13 suggests that celastrol is a potential agent to counter Alzheimer’s disease, a neurodegenerative ‘protein misfolding disorder’ of the adult brain that targets cells in the cerebral cortex.  相似文献   

6.
Clusterin, a protein chaperone found at high levels in physiological fluids, is expressed in nervous tissue and upregulated in several neurological diseases. To assess relevance to amyotrophic lateral sclerosis (ALS) and other motor neuron disorders, clusterin expression was evaluated using long-term dissociated cultures of murine spinal cord and SOD1G93A transgenic mice, a model of familial ALS. Motor neurons and astrocytes constitutively expressed nuclear and cytoplasmic forms of clusterin, and secreted clusterin accumulated in culture media. Although clusterin can be stress inducible, heat shock failed to increase levels in these neural cell compartments despite robust upregulation of stress-inducible Hsp70 (HspA1) in non-neuronal cells. In common with HSPs, clusterin was upregulated by treatment with the Hsp90 inhibitor, geldanamycin, and thus could contribute to the neuroprotection previously identified for such compounds in disease models. Clusterin expression was not altered in cultured motor neurons expressing SOD1G93A by gene transfer or in presymptomatic SOD1G93A transgenic mice; however, clusterin immunolabeling was weakly increased in lumbar spinal cord of overtly symptomatic mice. More striking, mutant SOD1 inclusions, a pathological hallmark, were strongly labeled by anti-clusterin. Since secreted, as well as intracellular, mutant SOD1 contributes to toxicity, the extracellular chaperoning property of clusterin could be important for folding and clearance of SOD1 and other misfolded proteins in the extracellular space. Evaluation of chaperone-based therapies should include evaluation of clusterin as well as HSPs, using experimental models that replicate the control mechanisms operant in the cells and tissue of interest.  相似文献   

7.
8.
Mutations in copper/zinc superoxide dismutase (SOD1) account for 10-20% of a familial form of amyotrophic lateral sclerosis (ALS). A common feature of SOD1 mutants is abnormal aggregation of the aberrant SOD1 in neurons and glia. We now report that in ALS transgenic mouse models the constitutively expressed heat shock protein 70 (Hsp70) is mislocalized into aggregates together with mutant SOD1 and ubiquitin. Forcing increased synthesis of Hsp70 ameliorates both aggregate formation and toxicity in primary motor neurons in culture. However, chronic increase in an inducible form of Hsp70 to about 10-fold its normal level is shown here not to affect disease course or pathology developed in mice from accumulation of any of three familial ALS causing SOD1 mutants with different underlying biochemical characteristics. Therefore, increasing Hsp70 to a level that is protective in mouse models of acute ischemic insult and selected neurodegenerative disorders is not sufficient to ameliorate mutant SOD1-mediated toxicity.  相似文献   

9.
Heat shock proteins are ubiquitously expressed intracellular proteins and act as molecular chaperones in processes like protein folding and protein trafficking between different intracellular compartments. They are induced during stress conditions like oxidative stress, nutritional deficiencies and radiation. They are released into extracellular compartment during necrosis. However, recent research findings highlights that, they are not solely present in cytoplasm, but also released into extracellular compartment during normal conditions and even in the absence of necrosis. When present in extracellular compartment, they have been shown to perform various functions like antigen presentation, intercellular signaling and induction of pro-inflammatory cytokines. Heat shock proteins represents as dominant microbial antigens during infection. The phylogenetic similarity between prokaryotic and eukaryotic heat shock proteins has led to proposition that, microbial heat shock proteins can induce self reactivity to host heat shock proteins and result in autoimmune diseases. The self-reactivity of heat shock proteins protects host against disease by controlling induction and release of pro-inflammatory cytokines. However, antibodies to self heat shock proteins haven been implicated in pathogenesis of autoimmune diseases like arthritis and atherosclerosis. Some heat shock proteins are potent inducers of innate and adaptive immunity. They activate dendritic cells and natural killer cells through toll-like receptors, CD14 and CD91. They play an important role in MHC-antigen processing and presentation. These immune effector functions of heat shock proteins are being exploited them as therapeutic agents as well as therapeutic targets for various infectious diseases and cancers.  相似文献   

10.
TorsinA, a protein with homology to yeast heat shock protein104, has previously been demonstrated to colocalize with alpha-synuclein in Lewy bodies, the pathological hallmark of Parkinson's disease. Heat shock proteins are a family of chaperones that are both constitutively expressed and induced by stressors, and that serve essential functions for protein refolding and/or degradation. Here, we demonstrate that, like torsinA, specific molecular chaperone heat shock proteins colocalize with alpha-synuclein in Lewy bodies. In addition, using a cellular model of alpha-synuclein aggregation, we demonstrate that torsinA and specific heat shock protein molecular chaperones colocalize with alpha-synuclein immunopositive inclusions. Further, overexpression of torsinA and specific heat shock proteins suppress alpha-synuclein aggregation in this cellular model, whereas mutant torsinA has no effect. These data suggest that torsinA has chaperone-like activity and that the disease-associated GAG deletion mutant has a loss-of-function phenotype. Moreover, these data support a role for chaperone proteins, including torsinA and heat shock proteins, in cellular responses to neurodegenerative inclusions.  相似文献   

11.
12.
To better understand how diatoms are capable of responding to environmental stress, protein expression during heat treatment of a thermo-intolerant ( Phaeodactylum tricornutum ) and thermo-tolerant ( Chaetoceros muelleri ) diatom (Chrysophyta) was investigated. The stress response is a universal and conserved mechanism of cell survival to unfavorable conditions. Typically, a 10 to 15° C temperature elevation above cell growth optimal causes constitutively expressed proteins to decrease and heat shock proteins (HSPs) to increase. HSPs are categorized by molecular weight among five classes with each apparently specialized for a particular function that enhances cell survival. One-dimensional SDS-PAGE of diatoms subjected to heat treatment revealed that P. tricornutum exhibited a typical stress response, but C. muelleri did not exhibit a characteristic response even at a greatly elevated temperature (50° C). This result was confirmed by total soluble protein assays. Chaetoceros muelleri may contain higher basal levels of HSPs than P. tricornutum allowing C. muelleri to better tolerate elevated temperatures. Western blot analysis using pea HSP70 (70 kDa) antisera of heat-treated P. tricornutum and C. muelleri validated the hypothesis that thermo-tolerant cells contain higher levels of constitutively expressed HSPs. Two-dimensional gel electrophoresis of heat-treated cells indicate that the small HSPs (17–30 kDa) played a role in the stress response similar to that found in vascular plants. Ongoing work is focused on the manipulation of the stress response through over-expression of key hsp genes.  相似文献   

13.
Previously we reported that eight proteins were reproducibly induced in postimplantation rat embryos exposed to a brief heat shock (43°C, 15 min). The major heat-inducible rat embryo protein has now been identified as heat shock protein 72 (Hsp 72). In addition, the induction of Hsp 72 is temporally correlated with induction of thermotolerance. One of the other rat embryo proteins previously shown to be induced by elevated temperature is a heat shock protein of approximately 27 kilodaltons (Hsp 27). In this report we show that this protein is recognized by an antibody directed against a conserved peptide sequence of Hsp 27. Unlike Hsp 72, Hsp 27 is constitutively expressed in the rat embryo in the absence of any thermal stress; however, the level of Hsp 27 is increased approximately 2–3-fold after thermal stress (43°C, 10 min). Immunohistochemical analysis revealed that the constitutively expressed Hsp 27 is localized primarily to cells of the heart, cells that are uniquely resistant to the cytotoxic effects of hyperthermia. After thermal stress, Hsp 27 is expressed in all tissues of the embryo. Finally, our data show that Hsp 27 exists in the rat embryo as three major isoforms indicative of different phosphorylation states. Furthermore, most Hsp 27 in the heart is phosphorylated, whereas in the rest of the embryo, nonphosphorylated Hsp 27 predominates. After thermal stress, levels of phosphorylated isoforms increase dramatically in nonheart tissues of the embryo. Together, these results suggest that Hsp 27 may play a role in the development of thermotolerance in the postimplantation mammalian embryo. © 1996 Wiley-Liss, Inc.  相似文献   

14.
For many years, heat shock or stress proteins have been regarded as intracellular molecules that have a range of housekeeping and cytoprotective functions, only being released into the extracellular environment in pathological situations such as necrotic cell death. However, evidence is now accumulating to indicate that, under certain circumstances, these proteins can be released from cells in the absence of cellular necrosis, and that extracellular heat shock proteins have a range of immunoregulatory activities. The capacity of heat shock proteins to induce pro-inflammatory responses, together with the phylogenetic similarity between prokaryotic and eukaryotic heat shock proteins, has led to the proposition that these proteins provide a link between infection and autoimmune disease. Indeed, both elevated levels of antibodies to heat shock proteins and an enhanced immune reactivity to heat shock proteins have been noted in a variety of pathogenic disease states. However, further evaluation of heat shock protein reactivity in autoimmune disease and after transplantation has shown that, rather than promoting disease, reactivity to self-heat shock proteins can downregulate the disease process. It might be that self-reactivity to heat shock proteins is a physiological response that regulates the development and progression of pro-inflammatory immunity to these ubiquitously expressed molecules. The evolving evidence that heat shock proteins are present in the extracellular environment, that reactivity to heat shock proteins does not necessarily reflect adverse, pro-inflammatory responses and that the promotion of reactivity to self-heat shock proteins can downregulate pathogenic processes all suggest a potential role for heat shock proteins as therapeutic agents, rather than as therapeutic targets.  相似文献   

15.
Small heat shock proteins (sHSPs) are the most abundant stress proteins in plants. Usually not expressed under permissive conditions, they can accumulate to more than 2% of the total cellular protein content during heat stress. At present several points of evidence indicate that these proteins act as molecular chaperones by keeping partially denatured proteins in a folding-competent state. In plants sHSPs are encoded by a multigene family, which can be segregated into several classes according to their subcellular position and/or sequence homology. Curiously, two different classes appear in the cytoplasm. Their specific role during heat shock remains elusive. Here we present some evidence that both classes of sHSPs enhance recovery of reporter protein activity in the presence of HSP70. Applying peptide arrays prepared by SPOT synthesis and in situ analysis by confocal laser scanning microscopy, we could further show that the two classes of sHSP are attached to each other and are able to interact with non-native proteins both in vivo and in vitro. Although both of the sHSPs act similarly as molecular chaperones, immunohistochemistry experiments support the hypothesis that the two have different cellular functions in the development of heat-induced cytoplasmic heat shock granules under elevated temperatures. Daniela Wagner Deceased 24 Feburary 2004.  相似文献   

16.
In response to a conditioning stress, the expression of a set of molecular chaperones called heat shock proteins is increased. In neurons, stress-induced and constitutively expressed molecular chaperones protect against damage induced by ischemia and neurodegenerative diseases, however the molecular basis of this protection is not known. Here we have investigated the crosstalk between stress-induced chaperones and cysteine string protein (CSPα). CSPα is a constitutively expressed synaptic vesicle protein bearing a J domain and a cysteine rich “string” region that has been implicated in the long term functional integrity of synaptic transmission and the defense against neurodegeneration. We have shown previously that the CSPα chaperone complex increases isoproterenol-mediated signaling by stimulating GDP/GTP exchange of Gαs. In this report we demonstrate that in response to heat shock or treatment with the Hsp90 inhibitor geldanamycin, the J protein Hsp40 becomes a major component of the CSPα complex. Association of Hsp40 with CSPα decreases CSPα-CSPα dimerization and enhances the CSPα-induced increase in steady state GTP hydrolysis of Gαs. This newly identified CSPα-Hsp40 association reveals a previously undescribed coupling of J proteins. In view of the crucial importance of stress-induced chaperones in the protection against cell death, our data attribute a role for Hsp40 crosstalk with CSPα in neuroprotection.  相似文献   

17.
An examination of heat-induced expression of proteins in tissues from adult and embryonic liver in rats shows that albumin, which is constitutively expressed in adult liver and is not synthesized in embryos before 16 days of gestation, appears in liver cells at earlier stages of development upon heat shock. On the basis of available evidence for the expression of heat shock proteins at distinct stages of development and on the basis of our findings, it may be argued that there could be common molecular events taking place during development and as a result of heat shock. We suggest also that one of the consequences of heat shock could be an internal change of pH within the cell which, in turn, might trigger alterations in gene expression.  相似文献   

18.
19.
J V Anderson  Q B Li  D W Haskell    C L Guy 《Plant physiology》1994,104(4):1359-1370
The 70-kD heat-shock proteins (HSP70s) are encoded by a multigene family in eukaryotes. In plants, the 70-kD heat-shock cognate (HSC70) proteins are located in organellar and cytosolic compartments of cells in most tissues. Previous work has indicated that HSC70 proteins of spinach (Spinacia oleracea) are actively synthesized during cold-acclimating conditions. We have isolated, sequenced, and characterized cDNA and genomic clones for the endoplasmic reticulum (ER) luminal HSC70 protein (immunoglobulin heavy chain-binding protein; BiP) of spinach. The spinach ER-luminal HSC70 is a constitutively expressed gene consisting of eight exons. Spinach BiP mRNA appears to be up-regulated during cold acclimation but is not expressed during water stress or heat shock. In contrast to the differential regulation of mRNA, the ER-luminal HSC70 protein levels remain constant in response to various environmental stresses. Two other members of the spinach 70-kD heat-shock (HS70) multigene family also show differential expression in response to a variety of environmental stresses. A constitutively expressed cytosolic HSC70 protein in spinach appears also to be up-regulated in response to both cold-acclimating and heat-shock treatments. Spinach also contains a cold-shock-induced HS70 gene that is not expressed during heat shock or water stress. Since HSP70s are considered to be involved with the chaperoning and folding of proteins, the data further support the concept that they may be important for maintaining cellular homeostasis and proper protein biogenesis during cold acclimation of spinach.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号