首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B L Bass  H Weintraub 《Cell》1988,55(6):1089-1098
An activity that unwinds double-stranded RNA has been reported to exist in several organisms. We have analyzed the RNA intermediates and final products of the unwinding reaction. Although the RNA becomes sensitive to single strand-specific ribonucleases during the reaction, the duplex is never completely unwound. Furthermore, the base pairing properties of the RNA are permanently altered; the reacted RNA cannot rehybridize to form the original duplex. We demonstrate that during the reaction many, but not all, of the adenosine residues are converted to inosine residues, and we propose that the covalent modification is responsible for the irreversible change in base pairing properties. Possible biological roles for the unwinding/modifying activity, as well as its relevance to antisense RNA experiments, are discussed.  相似文献   

2.
Substrate specificity of the dsRNA unwinding/modifying activity.   总被引:13,自引:3,他引:10       下载免费PDF全文
  相似文献   

3.
A G Polson  B L Bass 《The EMBO journal》1994,13(23):5701-5711
Double-stranded RNA adenosine deaminase (dsRAD), previously called the double-stranded RNA (dsRNA) unwinding/modifying activity, modifies adenosines to inosines within dsRNA. We used ribonuclease U2 and a mutant of ribonuclease T1 to map the sites of modification in several RNA duplexes. We found that dsRAD had a 5' neighbor preference (A = U > C > G) but no apparent 3' neighbor preference. Further, the proximity of the strand termini affected whether an adenosine was modified. Most importantly, dsRAD exhibited selectivity, modifying a minimal number of adenosines in short dsRNAs. Our results suggest that the specific editing of glutamate receptor subunit B mRNA could be performed in vivo by dsRAD without the aid of specificity factors, and support the hypothesis that dsRAD is responsible for hypermutations in certain RNA viruses.  相似文献   

4.
A double-stranded RNA unwinding and modifying activity was found to be present in a wide range of tissues and cell types. The level of activity did not vary significantly with respect to the state of cell differentiation, cell cycle, or transformation. Thus, the unwinding and modifying activity, localized in the nucleus in somatic cells and capable of converting many adenosine residues to inosine, appears to be one of the housekeeping genes.  相似文献   

5.
Unwinding of double-stranded RNA by nuclear helicases can lead to modification of adenosine-residues, resulting in inosine. During initiation of protein synthesis the 5' untranslated region of an mRNA is unwound by eukaryotic initiation factors (eIF) -4A and -4B. In this work we investigated the possible nucleotide modification after unwinding by eIF-4A and eIF-4B of in vitro synthesized, labeled RNA. The products of unwinding were analyzed by gel-electrophoresis and, after nuclease digestion, by thin layer chromatography of the mononucleotides. Crude protein fractions unwound the duplex RNA and converted part of the AMP-residues into IMP-residues. However, unwinding by purified factors was not linked to this conversion, the deamination of AMP residues. Concluding, unwinding of RNA during initiation of protein synthesis does not lead to conversion of adenosine into inosine.  相似文献   

6.
7.
The non-structural protein 13 (nsp13) of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) is a helicase that separates double-stranded RNA (dsRNA) or DNA (dsDNA) with a 5' → 3' polarity, using the energy of nucleotide hydrolysis. We determined the minimal mechanism of helicase function by nsp13. We showed a clear unwinding lag with increasing length of the double-stranded region of the nucleic acid, suggesting the presence of intermediates in the unwinding process. To elucidate the nature of the intermediates we carried out transient kinetic analysis of the nsp13 helicase activity. We demonstrated that the enzyme unwinds nucleic acid in discrete steps of 9.3 base-pairs (bp) each, with a catalytic rate of 30 steps per second. Therefore the net unwinding rate is ~280 base-pairs per second. We also showed that nsp12, the SARS-CoV RNA-dependent RNA polymerase (RdRp), enhances (2-fold) the catalytic efficiency of nsp13 by increasing the step size of nucleic acid (RNA/RNA or DNA/DNA) unwinding. This effect is specific for SARS-CoV nsp12, as no change in nsp13 activity was observed when foot-and-mouth-disease virus RdRp was used in place of nsp12. Our data provide experimental evidence that nsp13 and nsp12 can function in a concerted manner to improve the efficiency of viral replication and enhance our understanding of nsp13 function during SARS-CoV RNA synthesis.  相似文献   

8.
Follicular cells of the silkmoth Bombyx mori contain an enzymatic activity that modifies RNA duplexes in vitro. The modifying activity converts adenosine residues into inosine in duplex but not single-stranded RNA and mediates the partial unwinding of the complement strands. Because of the modification, the RNA loses its ability to form perfect duplexes with its complement upon reannealing in vitro. The modifying enzyme is localized in the cytoplasm of follicular cells and its activity is modulated in a developmentally regulated manner. In contrast, follicular nuclei contain an activity that inhibits the modification and unwinding of duplex RNA. The modifying activity is also present in the cytoplasm of unfertilized oocytes and its accumulation during oogenesis parallels that of the follicular cells. Examination of an established silkmoth cell line of ovarian origin revealed that, in contrast to the situation with follicular cells, the modifying activity has an exclusive nuclear localization. The cytoplasmic fraction of these cells is not only devoid of modifying activity but, as is the case with the nuclear fraction of follicular cells, contains an activity that inhibits duplex RNA modification and unwinding. We conclude that the modification promoting and inhibiting activities are not restricted to a single cell type and that their compartmentalization is developmentally regulated.  相似文献   

9.
Helicases unwind dsDNA during replication, repair and recombination in an ATP-dependent reaction. The mechanism for helicase activity can be studied using oligonucleotide substrates to measure formation of single-stranded (ss) DNA from double-stranded (ds) DNA. This assay provides an 'all-or-nothing' readout because partially unwound intermediates are not detected. We have determined conditions under which an intermediate in the reaction cycle of Dda helicase can be detected by trapping a partially unwound substrate. The appearance of this intermediate supports a model in which each ssDNA product interacts with the helicase after unwinding has occurred. Kinetic analysis indicates that the intermediate appears during a slow step in the reaction cycle that is flanked by faster steps for unwinding. These observations demonstrate a complex mechanism containing nonuniform steps for a monomeric helicase. The potential biological significance of such a mechanism is discussed.  相似文献   

10.
11.
RNA helicase A (RHA), a DExD/H box protein, plays critical roles in a wide variety of cellular or viral functions. RHA contains a conserved core helicase domain that is flanked by five other domains. Two double-stranded RNA binding domains (dsRBD1 and dsRBD2) are at the N-terminus, whereas HA2 (helicase associated 2), OB-fold (oligonucleotide- or oligosaccharide-binding fold), and RGG (repeats of arginine and glycine–glycine residues) domains are at the C-terminus. The role of these domains in the helicase activity of RHA is still elusive due to the difficulty of obtaining enzymatically active mutant RHA. Here, we purified a series of mutant RHAs containing deletions in either N-terminus or C-terminus. Analysis of these mutant RHAs reveals that the dsRBDs are not required for RNA unwinding, but can enhance the helicase activity by promoting the binding of RHA to substrate RNA. In contrast, deletion of C-terminal domains including RGG, OB-fold, and HA2 does not significantly affect the binding of RHA to substrate RNA. However, HA2 is essential for the RNA unwinding by RHA whereas the RGG and OB-fold are dispensable. The results indicate that the core helicase domain alone is not enough for RHA to execute the unwinding activity.  相似文献   

12.
This work identifies the combination of enzymatic transfer and click labeling as an efficient method for the site-specific tagging of RNA molecules for biophysical studies. A double-activated analog of the ubiquitous co-substrate S-adenosyl-l-methionine was employed to enzymatically transfer a five carbon chain containing a terminal alkynyl moiety onto RNA. The tRNA:methyltransferase Trm1 transferred the extended alkynyl moiety to its natural target, the N2 of guanosine 26 in tRNA(Phe). LC/MS and LC/MS/MS techniques were used to detect and characterize the modified nucleoside as well as its cycloaddition product with a fluorescent azide. The latter resulted from a labeling reaction via Cu(I)-catalyzed azide-alkyne 1,3-cycloaddition click chemistry, producing site-specifically labeled RNA whose suitability for single molecule fluorescence experiments was verified in fluorescence correlation spectroscopy experiments.  相似文献   

13.
Eukaryotic initiation factor (eIF) 4A is the archetypal member of the DEAD box family of RNA helicases and is proposed to unwind structures in the 5'-untranslated region of mRNA to facilitate binding of the 40 S ribosomal subunit. The helicase activity of eIF4A has been further characterized with respect to substrate specificity and directionality. Results confirm that the initial rate and amplitude of duplex unwinding by eIF4A is dependent on the overall stability, rather than the length or sequence, of the duplex substrate. eIF4A helicase activity is minimally dependent on the length of the single-stranded region adjacent to the double-stranded region of the substrate. Interestingly, eIF4A is able to unwind blunt-ended duplexes. eIF4A helicase activity is also affected by substitution of 2'-OH (RNA) groups with 2'-H (DNA) or 2'-methoxyethyl groups. These observations, taken together with results from competitive inhibition experiments, suggest that eIF4A may interact directly with double-stranded RNA, and recognition of helicase substrates occurs via chemical and/or structural features of the duplex. These results allow for refinement of a previously proposed model for the mechanism of action of eIF4A helicase activity.  相似文献   

14.
Flaviviral NS3 is a multifunctional protein displaying N-terminal protease activity in addition to C-terminal helicase, nucleoside 5'-triphosphatase (NTPase), and 5'-terminal RNA triphosphatase (RTPase) activities. NS3 is held to support the separation of RNA daughter and template strands during viral replication. In addition, NS3 assists the initiation of replication by unwinding the RNA secondary structure in the 3' non-translated region (NTR). We report here the three-dimensional structure (at 3.1 A resolution) of the NS3 helicase domain (residues 186-619; NS3:186-619) from Kunjin virus, an Australian variant of the West Nile virus. As for homologous helicases, NS3:186-619 is composed of three domains, two of which are structurally related and held to host the NTPase and RTPase active sites. The third domain (C-terminal) is involved in RNA binding/recognition. The NS3:186-619 construct occurs as a dimer in solution and in the crystals. We show that NS3:186-619 displays both ATPase and RTPase activities, that it can unwind a double-stranded RNA substrate, being however inactive on a double-stranded DNA substrate. Analysis of different constructs shows that full length NS3 displays increased helicase activity, suggesting that the protease domain plays an assisting role in the RNA unwinding process. The structural interaction between the helicase and protease domain has been assessed using small angle X-ray scattering on full length NS3, disclosing that the protease and helicase domains build a rather elongated molecular assembly differing from that observed in the NS3 protein from hepatitis C virus.  相似文献   

15.
Vaccinia virus RNA helicase (NPH-II) catalyzes nucleoside triphosphate-dependent unwinding of duplex RNAs containing a single-stranded 3' RNA tail. In this study, we examine the structural features of the nucleic acid substrate that are important for helicase activity. Strand displacement was affected by the length of the 3' tail. Whereas NPH-II efficiently unwound double-stranded RNA substrates with 19- or 11-nucleotide (nt) 3' tails, shortening the 3' tail to 4 nt reduced unwinding by an order of magnitude. Processivity of the helicase was inferred from its ability to unwind a tailed RNA substrate containing a 96-bp duplex region. NPH-II exhibited profound asymmetry in displacing hybrid duplexes composed of DNA and RNA strands. A 34-bp RNA-DNA hybrid with a 19-nt 3' RNA tail was unwound catalytically, whereas a 34-bp DNA-RNA hybrid containing a 19-nt 3' DNA tail was 2 orders of magnitude less effective as a helicase substrate. NPH-II was incapable of displacing a 34-bp double-stranded DNA substrate of identical sequence. 3'-Tailed DNA molecules with 24- or 19-bp duplex regions were also inert as helicase substrates. On the basis of current models for RNA-DNA hybrid structures, we suggest the following explanation for these findings. (i) Unwinding of duplex nucleic acids by NPH-II is optimal when the polynucleotide strand of the duplex along which the enzyme translocates has adopted an A-form secondary structure, and (ii) a B-form secondary structure impedes protein translocation through DNA duplexes.  相似文献   

16.
A-to-I RNA editing is a ubiquitous and crucial molecular mechanism able to convert adenosines into inosines (then read as guanosines by several intracellular proteins/enzymes) within RNA molecules, changing the genomic information. The A-to-I deaminase enzymes (ADARs), which modify the adenosine, can alter the splicing and translation machineries, the double-stranded RNA structures and the binding affinity between RNA and RNA-binding proteins. ADAR activity is an essential mechanism in mammals and altered editing has been associated with several human diseases. Many efforts are now being concentrated on modifying ADAR activity in vivo in an attempt to correct RNA editing dysfunction. Concomitantly, ongoing studies aim to show the way that the ADAR deaminase domain can be used as a possible new tool, an intracellular Trojan horse, for the correction of heritage diseases not related to RNA editing events.  相似文献   

17.
A new technique has been applied to the study of the RNA secondary structure unwinding activity of the eukaryotic initiation factors (eIFs) 4F, 4A, and 4B. Secondary structures were generated at the 5' ends of reovirus and globin mRNA molecules by hybridization with 32P-labeled cDNA molecules 15 nucleotide residues long. The dissociation of the labeled cDNAs from the mRNAs was assayed by a gel filtration chromatography procedure which separates the free cDNAs from mRNAs and mRNA/cDNA hybrids. When the three factors were tested alone, only eIF-4F stimulated dissociation of hybrids. The combination of eIF-4A plus eIF-4B also exhibited a strong hybrid dissociating activity, which was markedly temperature dependent. Under optimum conditions, up to 90% of the hybrid structures are disrupted in 60 min. These results demonstrate for the first time that stable double-stranded regions can be melted and dissociated by eIFs. They also characterize more precisely the first step in the structure unwinding reaction.  相似文献   

18.
Sulfhydryl groups of Escherichia coli DNA-dependent RNA polymerase were chemically modified with alkylating and mercuric-containing compounds. Iodoacetic acid and iodoacetamide were shown not to affect the enzymatic activity, whereas N-ethylmaleimide and mercuric-containing compounds completely inhibit the RNA synthesis. RNA polymerase modified with mercuric ions looses the ability of binding with promoter--containing DNA fragments. Moreover, mercuric ions inhibit the RNA elongation stage. Suggestion is made the Cys residues of RNA polymerase play a key role in double-stranded DNA unwinding. It is shown that SH-groups of beta- and beta'-subunits participate in the binding with double-stranded fragments of DNA.  相似文献   

19.
5-Bromo-UTP was found to replace UTP efficiently as a substrate for the virion-associated double-stranded RNA replicase of Penicilliumstoloniferum virus PsV-S. The double-stranded RNA product of the replication reaction with 5-bromo-UTP as a substrate gave in equilibrium caesium sulphate density gradient centrifugation a single band with a buoyant density of 1.647 g/ml, consistent with that of a hybrid double-stranded RNA consisting of one brominated and one unbrominated strand. After the reaction none of the original unbrominated double-stranded RNA (buoyant density 1.606 g/ml) could be detected. It is concluded that replication of double-stranded RNA in virions of PsV-S takes place by a semi-conservative mechanism.  相似文献   

20.
Members of the DExH/D family of proteins, a subset of helicase superfamily 2 (SF2), are involved in virtually all aspects of RNA metabolism. NPH-II, a prototypical member of this protein family, exhibits robust RNA helicase activity in vitro. Using a series of modified substrates to explore the unwinding mechanism of NPH-II, we observed that the helicase tracks exclusively on the loading strand, where it requires covalent continuity and specifically recognizes the ribose-phosphate backbone. NPH-II unwinding was unaffected by lesions and nicks on the top strand, which has a minimal role in substrate recognition. NPH-II required physical continuity of phosphodiester linkages on the loading strand, although abasic regions were tolerated. These findings suggest that SF2 helicases are mechanistically distinct from other helicase families that can tolerate breaks in the loading strand and for which bases are the primary recognition determinant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号