首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Heterotrimeric G proteins (αβγ) function at the cytoplasmic surface of a cell’s plasma membrane to transduce extracellular signals into cellular responses. However, numerous studies indicate that G proteins also play noncanonical roles at unique intracellular locations. Previous work has established that G protein βγ subunits (Gβγ) regulate a signaling pathway on the cytoplasmic surface of Golgi membranes that controls the exit of select protein cargo. Now, we demonstrate a novel role for Gβγ in regulating mitotic Golgi fragmentation, a key checkpoint of the cell cycle that occurs in the late G2 phase. We show that small interfering RNA–mediated depletion of Gβ1 and Gβ2 in synchronized cells causes a decrease in the number of cells with fragmented Golgi in late G2 and a delay of entry into mitosis and progression through G2/M. We also demonstrate that during G2/M Gβγ acts upstream of protein kinase D and regulates the phosphorylation of the Golgi structural protein GRASP55. Expression of Golgi-targeted GRK2ct, a Gβγ-sequestering protein used to inhibit Gβγ signaling, also causes a decrease in Golgi fragmentation and a delay in mitotic progression. These results highlight a novel role for Gβγ in regulation of Golgi structure.  相似文献   

5.
The messenger RNA of the intronless CEBPA gene is translated into distinct protein isoforms through the usage of consecutive translation initiation sites. These translational isoforms have distinct functions in the regulation of differentiation and proliferation due to the presence of different N‐terminal sequences. Here, we describe the function of an N‐terminally extended protein isoform of CCAAT enhancer‐binding protein α (C/EBPα) that is translated from an alternative non‐AUG initiation codon. We show that a basic amino‐acid motif within its N‐terminus is required for nucleolar retention and for interaction with nucleophosmin (NPM). In the nucleoli, extended‐C/EBPα occupies the ribosomal DNA (rDNA) promoter and associates with the Pol I‐specific factors u pstream‐b inding f actor 1 (UBF‐1) and SL1 to stimulate rRNA synthesis. Furthermore, during differentiation of HL‐60 cells, endogenous expression of extended‐C/EBPα is lost concomitantly with nucleolar C/EBPα immunostaining probably reflecting the reduced requirement for ribosome biogenesis in differentiated cells. Finally, overexpression of extended‐C/EBPα induces an increase in cell size. Altogether, our results suggest that control of rRNA synthesis is a novel function of C/EBPα adding to its role as key regulator of cell growth and proliferation.  相似文献   

6.
Diallyl disulfide (DADS), the main active component of the cancer fighting allyl sulfides found in garlic, has shown potential as a therapeutic agent in various cancers. Previous studies showed DADS induction of HL‐60 cell differentiation involves down‐regulation of calreticulin (CRT). Here, we investigated the mechanism of DADS‐induced differentiation of human leukaemia cells and the potential involvement of CRT and CCAAT enhancer binding protein‐α (C/EBPα). We explored the expression of CRT and C/EBPα in clinical samples (20 healthy people and 19 acute myeloid leukaemia patients) and found that CRT and C/EBPα expressions were inversely correlated. DADS induction of differentiation of HL‐60 cells resulted in down‐regulated CRT expression and elevated C/EBPα expression. In severe combined immunodeficiency mice injected with HL‐60 cells, DADS inhibited the growth of tumour tissue and decreased CRT levels and increased C/EBPα in vivo. We also found that DADS‐mediated down‐regulation of CRT and up‐regulation of C/EBPα involved enhancement of reactive oxidative species. RNA immunoprecipitation revealed that CRT bound C/EBPα mRNA, indicating its regulation of C/EBPα mRNA degradation by binding the UG‐rich element in the 3′ untranslated region of C/EBPα. In conclusion, the present study demonstrates the C/EBPα expression was correlated with CRT expression in vitro and in vivo and the molecular mechanism of DADS‐induced leukaemic cell differentiation.  相似文献   

7.
8.
Inactivation of target of rapamycin complex 1 (TORC1) signaling is considered important for the beneficial effects of caloric restriction (CR) on metabolism and health span. It is however not fully elucidated which cellular processes downstream of TORC1 are the main regulators of metabolic health. In this issue of EMBO Reports, Zidek et al 1 describe that inhibition of mammalian TORC1 (mTORC1) leads to decreased translation of CCAAT/enhancer‐binding protein β (C/EBPβ)‐liver inhibitory protein (LIP). Moreover, loss of C/EBPβ‐LIP in mice improves metabolic health, similar to the effects of CR. Zidek et al 1 thus report that reduced C/EBPβ‐LIP translation is a novel mTORC1‐regulated process that could play a major role in mediating the beneficial metabolic effects of caloric restriction.  相似文献   

9.
10.
11.
12.
Recent emerging evidences revealed that epigenetic methylation of histone and DNA regulates the lineage commitment of mesenchymal progenitor cells. This study was undertaken to delineate the actions of histone lysine demethylase 7A (KDM7A) on osteogenic and adipogenic differentiation. Kdm7a expression was up‐regulated in primary marrow stromal cells and established stromal ST2 line after adipogenic and osteogenic treatment. Silencing of endogenous Kdm7a in the cells blocked adipogenic differentiation whereas promoted osteogenic differentiation. Conversely, overexpression of wild‐type Kdm7a in the progenitor cells enhanced adipogenic differentiation whereas inhibited osteogenic differentiation. However, the effect of KDM7A on cell differentiation was largely attenuated when the point mutation was made that abolishes enzymatic activity of KDM7A. Mechanism investigations revealed that silencing of Kdm7a down‐regulated the expression of the CCAAT/enhancer binding protein α (C/EBPα) and secreted frizzled‐related protein 1 (Sfrp1). Chromatin immunoprecipitation (ChIP) assay revealed that KDM7A directly binds to the promoters of C/EBPα and Sfrp1 and removes the histone methylation marks H3K9me2 and H3K27me2. Furthermore, silencing of Kdm7a activated canonical Wnt signalling. Thereafter, activation of canonical Wnt signalling through silencing of Sfrp1 in ST2 attenuated the stimulation of adipogenic differentiation and inhibition of osteogenic differentiation by KDM7A. Our study suggests that KDM7A balances adipogenic and osteogenic differentiation from progenitor cells through epigenetic control of C/EBPα and canonical Wnt signalling and implicates that control of KDM7A action has an epigenetic perspective of curtailing metabolic disorders like osteoporosis.  相似文献   

13.
Inflammation plays an important role in the pathogenesis of Alzheimer''s disease (AD). Some evidence suggests that misfolded protein aggregates found in AD brains may have originated from the gut, but the mechanism underlying this phenomenon is not fully understood. C/EBPβ/δ‐secretase signaling in the colon was investigated in a 3xTg AD mouse model in an age‐dependent manner. We applied chronic administration of 1% dextran sodium sulfate (DSS) to trigger gut leakage or colonic injection of Aβ or Tau fibrils or AD patient brain lysates in 3xTg mice and combined it with excision/cutting of the gut–brain connecting vagus nerve (vagotomy), in order to explore the role of the gut–brain axis in the development of AD‐like pathologies and to monitor C/EBPβ/δ‐secretase signaling under those conditions. We found that C/EBPβ/δ‐secretase signaling is temporally activated in the gut of AD patients and 3xTg mice, initiating formation of Aβ and Tau fibrils that spread to the brain. DSS treatment promotes gut leakage and facilitates AD‐like pathologies in both the gut and the brain of 3xTg mice in a C/EBPβ/δ‐secretase‐dependent manner. Vagotomy selectively blunts this signaling, attenuates Aβ and Tau pathologies, and restores learning and memory. Aβ or Tau fibrils or AD patient brain lysates injected into the colon propagate from the gut into the brain via the vagus nerve, triggering AD pathology and cognitive dysfunction. The results indicate that inflammation activates C/EBPβ/δ‐secretase and initiates AD‐associated pathologies in the gut, which are subsequently transmitted to the brain via the vagus nerve.  相似文献   

14.
1. gamma-Ethylideneglutamic acid has been isolated from fruit capsules of tulip plants. 2. The assigned structure was indicated by examining the products formed after oxidation and catalytic hydrogenation and was confirmed by nuclear-magnetic-resonance spectroscopy and by synthesis of gamma-ethylglutamic acid. 3. The ability of gamma-ethylideneglutamic acid to participate in transamination and decarboxylation reactions was examined.  相似文献   

15.
16.
17.
ObjectivesMutant C/EBPα p30 (mp30), the product of C/EBPα double mutations (DM), lacks transactivation domain 1 and has C‐terminal loss‐of‐function mutation. Acute myeloid leukaemia (AML) patients harbouring C/EBPα DM could be classified as a distinct subgroup with favourable prognosis. However, the underlying mechanism remains elusive.Materials and MethodsAutophagy regulated by mp30 was detected by western blot and immunofluorescence. Immune infiltration analysis and GSEA were performed to investigate autophagic and inflammatory status of AML patients from the GSE14468 cohort. Flow cytometry was applied to analyse T cell activation.ResultsMp30 inhibited autophagy by suppressing nucleus translocation of NF‐κB. Autophagy‐associated secretion of IL‐1β was decreased in mp30‐overexpressed AML cells. Bioinformatic analysis revealed that inflammatory status was attenuated, while CD8+ T cell infiltration was upregulated in C/EBPα DM AML patients. Consistently, the proportion of CD8+CD69+ T cells in peripheral blood mononuclear cells (PBMCs) was upregulated after co‐culture with mp30 AML cell conditional culture medium. Knock‐out of IL‐1β in AML cells also enhanced CD8+ T cell activation. Accordingly, IL‐1β expression was significantly reduced in the bone marrow (BM) cells of C/EBPα DM AML patients compared to the wildtype, while the CD8+CD69+ T cell proportion was specifically elevated.ConclusionsC/EBPα DM alleviates immunosuppression of CD8+ T cells by inhibiting the autophagy‐associated secretion of IL‐1β, which elucidated that repression of autophagy‐related inflammatory response in AML patients might achieve a favourable clinical benefit.

Mp30 suppresses autophagy‐associated IL‐β secretion, which ultimately alleviates the immunosuppression of CD8+ T cells in the microenvironment, contributing to favourable prognosis of AML patients.  相似文献   

18.
Poly(ADP-ribosyl)ation (PARylation) and SUMO modification (SUMOylation) are novel post-translational modifications (PTMs) mainly induced by PARP1 and SUMO1. Growing evidence has revealed that C/EBPβ plays multiple roles in biological processes and participates in cardiovascular diseases. However, the cross-talk between C/EBPβ PARylation and SUMOylation during cardiovascular diseases is unknown. This study aims to investigate the effects of C/EBPβ PTMs on cardiac hypertrophy and its underlying mechanism. Abdominal aortic constriction (AAC) and phenylephrine (PE) were conducted to induce cardiac hypertrophy. Intramyocardial delivery of recombinant adenovirus (Ad-PARP1) was taken to induce PARP1 overexpression. In this study, we found C/EBPβ participates in PARP1-induced cardiac hypertrophy. C/EBPβ K134 residue could be both PARylated and SUMOylated individually by PARP1 and SUMO1. Moreover, the accumulation of PARylation on C/EBPβ at K134 site exhibits downregulation of C/EBPβ SUMOylation at the same site. Importantly, C/EBPβ K134 site SUMOylation could decrease C/EBPβ protein stability and participates in PARP1-induced cardiac hypertrophy. Taken together, these findings highlight the importance of the cross-talk between C/EBPβ PTMs at K134 site in determining its protein level and function, suggesting that multi-target pharmacological strategies inhibiting PARP1 and activating C/EBPβ SUMOylation would be potential for treating pathological cardiac hypertrophy.  相似文献   

19.
20.
Background: Cervical cancer is a common malignant disease in female patients accompanied by activation of autophagy in tumor cells. However, the exact regulatory factors of autophagy and its effects on the immune response remain unknown.Methods: The induction of autophagy in HeLa and SiHa cells treated with IFN-γ, tryptophan depletion, kynurenine and epacadostat was detected by western blot analysis and by an autophagy detection kit. Following co-culture with pre-treated HeLa and SiHa cells, U937 cells were analyzed by flow cytometry to detect CD80, CD86, CD163 and CD206 expression and the induction of phagocytosis.Results: IFN-γ caused a significant increase in the autophagy levels of HeLa and SiHa cells by promoting indoleamine-2,3-dioxygenase-1 (IDO1) expression. The induction of phagocytosis in HeLa and SiHa cells and the expression levels of CD80 and CD86 in U937 cells were increased significantly following treatment with recombinant human IFN-γ. This effect was associated with the induction of tumor cell autophagy. IFN-γ treatment and IDO1 overexpression promoted tryptophan depletion and kynurenine accumulation in cervical cancer cells. The latter was more potent in inducing autophagy of cervical cancer cells and promoting phagocytosis of macrophages. In vivo, IDO1 overexpression restricted tumor growth in C57 mice and enhanced the induction of phagocytosis in macrophages.Conclusions: IFN-γ promoted induction of autophagy and macrophage phagocytosis in cervical cancer cells possibly via IDO1 expression and kynurenine metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号