首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Sour is one of the fundamental taste modalities that enable taste perception in animals. Chemoreceptors embedded in taste organs are pivotal to discriminate between different chemicals to ensure survival. Animals generally prefer slightly acidic food and avoid highly acidic alternatives. We recently proposed that all acids are aversive at high concentrations, a response that is mediated by low pH as well as specific anions in Drosophila melanogaster. Particularly, some carboxylic acids such as glycolic acid, citric acid, and lactic acid are highly attractive to Drosophila compared with acetic acid. The present study determined that attractive carboxylic acids were mediated by broadly expressed Ir25a and Ir76b, as demonstrated by a candidate mutant library screen. The mutant deficits were completely recovered via wild-type cDNA expression in sweet-sensing gustatory receptor neurons. Furthermore, sweet gustatory receptors such as Gr5a, Gr61a, and Gr64a-f modulate attractive responses. These genetic defects were confirmed using binary food choice assays as well as electrophysiology in the labellum. Taken together, our findings demonstrate that at least two different kinds of receptors are required to discriminate attractive carboxylic acids from other acids.  相似文献   

3.
BACKGROUND: Discrimination between edible and contaminated foods is crucial for the survival of animals. In Drosophila, a family of gustatory receptors (GRs) expressed in taste neurons is thought to mediate the recognition of sugars and bitter compounds, thereby controlling feeding behavior. RESULTS: We have characterized in detail the expression of eight Gr genes in the labial palps, the fly's main taste organ. These genes fall into two distinct groups: seven of them, including Gr66a, are expressed in 22 or fewer taste neurons in each labial palp. Additional experiments show that many of these genes are coexpressed in partially overlapping sets of neurons. In contrast, Gr5a, which encodes a receptor for trehalose, is expressed in a distinct and larger set of taste neurons associated with most chemosensory sensilla, including taste pegs. Mapping the axonal targets of cells expressing Gr66a and Gr5a reveals distinct projection patterns for these two groups of neurons in the brain. Moreover, tetanus toxin-mediated inactivation of Gr66a- or Gr5a-expressing cells shows that these two sets of neurons mediate distinct taste modalities-the perception of bitter (caffeine) and sweet (trehalose) taste, respectively. CONCLUSION: Discrimination between two taste modalities-sweet and bitter-requires specific sets of gustatory receptor neurons that express different Gr genes. Unlike the Drosophila olfactory system, where each neuron expresses a single olfactory receptor gene, taste neurons can express multiple receptors and do so in a complex Gr gene code that is unique for small sets of neurons.  相似文献   

4.
Recovery from weight loss after stress is important for all organisms, although the recovery mechanisms are not fully understood. We are working to clarify these mechanisms. Here, we recorded enhanced feeding activity of Drosophila melanogaster larvae from 2 to 4 h after heat stress at 35°C for 1 h. During the post‐stress period, expression levels of sweet taste gustatory receptor genes (Grs), Gr5a, Gr43a, Gr64a, and Gr64f, were elevated, whereas bitter taste Grs, Gr66a, and Gr33a, were decreased in expression and expression of a non‐typical taste receptor Gr, Gr68a, was unchanged. Similar upregulation of Gr5a and downregulation of Gr66a was recorded after cold stress at 4°C. Expression levels of tropomyosin and ATP synthase ß subunit were significantly increased in larval mouth parts around 3 to 5 h after the heat stress. We infer that up‐regulation of post‐stress larval feeding activity, and weight recovery, is mediated by increasing capacity for mouth part muscular movements and changes in taste sensing physiology. We propose that Drosophila larvae, and likely insects generally, express an efficient mechanism to recover from weight loss during post‐stress periods.  相似文献   

5.
BACKGROUND: Taste is an important sensory modality in most animals. In Drosophila, taste is perceived by gustatory neurons located in sensilla distributed on several different appendages throughout the body of the animal. Here we show that the gustatory receptors are encoded by a family of at least 54 genes (Gr genes), most of which are expressed exclusively in a small subset of taste sensilla located in narrowly defined regions of the fly's body. RESULTS: BLAST searches with the predicted amino acid sequences of 6 7-transmembrane-receptor genes of unknown function and 20 previously identified, putative gustatory receptor genes led to the identification of a large gene family comprising at least 54 genes. We investigated the expression of eight genes by using a Gal4 reporter gene assay and found that five of them were expressed in the gustatory system of the fly. Four genes were expressed in 1%-4% of taste sensilla, located in well-defined regions of the proboscis, the legs, or both. The fifth gene was expressed in about 20% of taste sensilla in all major gustatory organs, including the taste bristles on the anterior wing margin. Axon-tracing experiments demonstrated that neurons expressing a given Gr gene project their axons to a spatially restricted domain of the subesophageal ganglion in the fly brain. CONCLUSIONS: Our findings suggest that each taste sensillum represents a discrete, functional unit expressing at least one Gr receptor and that most Gr genes are expressed in spatially restricted domains of the gustatory system. These observations imply the potential for high taste discrimination of the Drosophila brain.  相似文献   

6.
Arthropods employ a large family of up to 100 putative taste or gustatory receptors (Grs) for the recognition of a wide range of non-volatile chemicals. In Drosophila melanogaster, a small subfamily of 8 Gr genes is thought to mediate the detection of sugars, the fly''s major nutritional source. However, the specific roles for most sugar Gr genes are not known. Here, we report the generation of a series of mutant sugar Gr knock-in alleles and several composite sugar Gr mutant strains, including a sugar blind strain, which will facilitate the characterization of this gene family. Using Ca2+ imaging experiments, we show that most gustatory receptor neurons (GRNs) of sugar blind flies (lacking all 8 sugar Gr genes) fail to respond to any sugar tested. Moreover, expression of single sugar Gr genes in most sweet GRNs of sugar-blind flies does not restore sugar responses. However, when pair-wise combinations of sugar Gr genes are introduced to sweet GRNs, responses to select sugars are restored. We also examined the cellular phenotype of flies homozygous mutant for Gr64a, a Gr gene previously reported to be a major contributor for the detection of many sugars. In contrast to these claims, we find that sweet GRNs of Gr64a homozygous mutant flies show normal responses to most sugars, and only modestly reduced responses to maltose and maltotriose. Thus, the precisely engineered genetic mutations of single Gr genes and construction of a sugar-blind strain provide powerful analytical tools for examining the roles of Drosophila and other insect sugar Gr genes in sweet taste.  相似文献   

7.
Recent years have seen long-awaited progress in understanding of the molecular mechanisms of taste perception in insects. The breakthrough came in the early 2000 with the identification of a novel family of candidate gustatory receptor (Gr) genes in the first release of the Drosophila melanogaster genome sequence. The 60 Gr genes are expressed in the subsets of gustatory neurons in the fly's taste organs and, without exception, encode heptahelical G protein-coupled receptors (GPCRs). Here I review our current knowledge about Gr genes and their products focusing on the newly emerging information regarding the function of the Gr-encoded proteins.  相似文献   

8.
For all animals, the taste sense is crucial to detect and avoid ingesting toxic molecules. Many toxins are synthesized by plants as a defense mechanism against insect predation. One example of such a natural toxic molecule is l-canavanine, a nonprotein amino acid found in the seeds of many legumes. Whether and how insects are informed that some plants contain l-canavanine remains to be elucidated. In insects, the taste sense relies on gustatory receptors forming the gustatory receptor (Gr) family. Gr proteins display highly divergent sequences, suggesting that they could cover the entire range of tastants. However, one cannot exclude the possibility of evolutionarily independent taste receptors. Here, we show that l-canavanine is not only toxic, but is also a repellent for Drosophila. Using a pharmacogenetic approach, we find that flies sense food containing this poison by the DmX receptor. DmXR is an insect orphan G-protein–coupled receptor that has partially diverged in its ligand binding pocket from the metabotropic glutamate receptor family. Blockade of DmXR function with an antagonist lowers the repulsive effect of l-canavanine. In addition, disruption of the DmXR encoding gene, called mangetout (mtt), suppresses the l-canavanine repellent effect. To avoid the ingestion of l-canavanine, DmXR expression is required in bitter-sensitive gustatory receptor neurons, where it triggers the premature retraction of the proboscis, thus leading to the end of food searching. These findings show that the DmX receptor, which does not belong to the Gr family, fulfills a gustatory function necessary to avoid eating a natural toxin.  相似文献   

9.

Background  

Perception of sugars is an invaluable ability for insects which often derive quickly accessible energy from these molecules. A distinctive subfamily of eight proteins within the gustatory receptor (Gr) family has been identified as sugar receptors (SRs) in Drosophila melanogaster (Gr5a, Gr61a, and Gr64a-f). We examined the evolution of these SRs within the 12 available Drosophila genome sequences, as well as three mosquito, two moth, and beetle, bee, and wasp genome sequences.  相似文献   

10.
Neurotrophins, neurotrophin receptors and sensory neurons are required for the development of lingual sense organs. For example, neurotrophin 3 sustains lingual somatosensory neurons. In the traditional view, sensory axons will terminate where neurotrophin expression is most pronounced. Yet, lingual somatosensory axons characteristically terminate in each filiform papilla and in each somatosensory prominence within a cluster of cells expressing the p75 neurotrophin receptor (p75NTR), rather than terminating among the adjacent cells that secrete neurotrophin 3. The p75NTR on special specialized clusters of epithelial cells may promote axonal arborization in vivo since its over-expression by fibroblasts enhances neurite outgrowth from overlying somatosensory neurons in vitro. Two classical observations have implicated gustatory neurons in the development and maintenance of mammalian taste buds—the early arrival times of embryonic innervation and the loss of taste buds after their denervation in adults. In the modern era more than a dozen experimental studies have used early denervation or neurotrophin gene mutations to evaluate mammalian gustatory organ development. Necessary for taste organ development, brain-derived neurotrophic factor sustains developing gustatory neurons. The cardinal conclusion is readily summarized: taste buds in the palate and tongue are induced by innervation. Taste buds are unstable: the death and birth of taste receptor cells relentlessly remodels synaptic connections. As receptor cells turn over, the sensory code for taste quality is probably stabilized by selective synapse formation between each type of gustatory axon and its matching taste receptor cell. We anticipate important new discoveries of molecular interactions among the epithelium, the underlying mesenchyme and gustatory innervation that build the gustatory papillae, their specialized epithelial cells, and the resulting taste buds.  相似文献   

11.
Sugar receptors in Drosophila   总被引:1,自引:0,他引:1  
The detection and discrimination of chemical compounds in potential foods are essential sensory processes when animals feed. The fruit fly Drosophila melanogaster employs 68 different gustatory receptors (GRs) for the detection of mostly nonvolatile chemicals that include sugars, a diverse group of toxic compounds present in many inedible plants and spoiled foods, and pheromones [1-6]. With the exception of a trehalose (GR5a) and a caffeine (GR66a) receptor [7-9], the functions of GRs involved in feeding are unknown. Here, we show that the Gr64 genes encode receptors for numerous sugars. We generated a fly strain that contained a deletion for all six Gr64 genes (DeltaGr64) and showed that these flies exhibit no or a significantly diminished proboscis extension reflex (PER) response when stimulated with glucose, maltose, sucrose, and several other sugars. The only considerable response was detected when Gr64 mutant flies were stimulated with fructose. Interestingly, response to trehalose is also abolished in these flies, even though they contain a functional Gr5a gene, which has been previously shown to encode a receptor for this sugar [8, 9]. This observation indicates that two or more Gr genes are necessary for trehalose detection, suggesting that GRs function as multimeric receptor complexes. Finally, we present evidence that some members of the Gr64 gene family are transcribed as a polycistronic mRNA, providing a mechanism for the coexpression of multiple sugar receptors in the same taste neurons.  相似文献   

12.
The ubiquitin–proteasome system is central to the regulation of cellular proteostasis. Nevertheless, the impact of in vivo proteasome dysfunction on the proteostasis networks and the aging processes remains poorly understood. We found that RNAi‐mediated knockdown of 20S proteasome subunits in Drosophila melanogaster resulted in larval lethality. We therefore studied the molecular effects of proteasome dysfunction in adult flies by developing a model of dose‐dependent pharmacological proteasome inhibition. Impaired proteasome function promoted several ‘old‐age’ phenotypes and markedly reduced flies' lifespan. In young somatic tissues and in gonads of all ages, loss of proteasome activity induced higher expression levels and assembly rates of proteasome subunits. Proteasome dysfunction was signaled to the proteostasis network by reactive oxygen species that originated from malfunctioning mitochondria and triggered an Nrf2‐dependent upregulation of the proteasome subunits. RNAi‐mediated Nrf2 knockdown reduced proteasome activities, flies' resistance to stress, as well as longevity. Conversely, inducible activation of Nrf2 in transgenic flies upregulated basal proteasome expression and activity independently of age and conferred resistance to proteotoxic stress. Interestingly, prolonged Nrf2 overexpression reduced longevity, indicating that excessive activation of the proteostasis pathways can be detrimental. Our in vivo studies add new knowledge on the proteotoxic stress‐related regulation of the proteostasis networks in higher metazoans. Proteasome dysfunction triggers the activation of an Nrf2‐dependent tissue‐ and age‐specific regulatory circuit aiming to adjust the cellular proteasome activity according to temporal and/or spatial proteolytic demands. Prolonged deregulation of this proteostasis circuit accelerates aging.  相似文献   

13.
《Fly》2013,7(4):189-196
Arthropods employ a large family of up to 100 putative taste or gustatory receptors (Grs) for the recognition of a wide range of non-volatile chemicals. In Drosophila melanogaster, a small subfamily of 8 Gr genes is thought to mediate the detection of sugars, the fly's major nutritional source. However, the specific roles for most sugar Gr genes are not known. Here, we report the generation of a series of mutant sugar Gr knock-in alleles and several composite sugar Gr mutant strains, including a sugar blind strain, which will facilitate the characterization of this gene family. Using Ca2+ imaging experiments, we show that most gustatory receptor neurons (GRNs) of sugar blind flies (lacking all 8 sugar Gr genes) fail to respond to any sugar tested. Moreover, expression of single sugar Gr genes in most sweet GRNs of sugar-blind flies does not restore sugar responses. However, when pair-wise combinations of sugar Gr genes are introduced to sweet GRNs, responses to select sugars are restored. We also examined the cellular phenotype of flies homozygous mutant for Gr64a, a Gr gene previously reported to be a major contributor for the detection of many sugars. In contrast to these claims, we find that sweet GRNs of Gr64a homozygous mutant flies show normal responses to most sugars, and only modestly reduced responses to maltose and maltotriose. Thus, the precisely engineered genetic mutations of single Gr genes and construction of a sugar-blind strain provide powerful analytical tools for examining the roles of Drosophila and other insect sugar Gr genes in sweet taste.  相似文献   

14.
The detection of nutrients, both in food and within the body, is crucial for the regulation of feeding behavior, growth, and metabolism. While the molecular basis for sensing food chemicals by the taste system has been firmly linked to specific taste receptors, relatively little is known about the molecular nature of the sensors that monitor nutrients internally. Recent reports of taste receptors expressed in other organ systems, foremost in the gastrointestinal tract of mammals and insects, has led to the proposition that some taste receptors may also be used as sensors of internal nutrients. Indeed, we provided direct evidence that the Drosophila gustatory receptor 43a (Gr43a) plays a critical role in sensing internal fructose levels in the fly brain. In addition to the brain and the taste system, Gr43a is also expressed in neurons of the proventricular ganglion and the uterus. Here, we discuss the multiple potential roles of Gr43a in the fly. We also provide evidence that its activation in the brain is likely mediated by the neuropeptide Corazonin. Finally, we posit that Gr43a may represent only a precedent for other taste receptors that sense internal nutrients, not only in flies but, quite possibly, in other animals, including mammals.  相似文献   

15.
Taste and olfaction are each tuned to a unique set of chemicals in the outside world, and their corresponding sensory spaces are mapped in different areas in the brain. This dichotomy matches categories of receptors detecting molecules either in the gaseous or in the liquid phase in terrestrial animals. However, in Drosophila olfactory and gustatory neurons express receptors which belong to the same family of 7-transmembrane domain proteins. Striking overlaps exist in their sequence structure and in their expression pattern, suggesting that there might be some functional commonalities between them. In this work, we tested the assumption that Drosophila olfactory receptor proteins are compatible with taste neurons by ectopically expressing an olfactory receptor (OR22a and OR83b) for which ligands are known. Using electrophysiological recordings, we show that the transformed taste neurons are excited by odor ligands as by their cognate tastants. The wiring of these neurons to the brain seems unchanged and no additional connections to the antennal lobe were detected. The odor ligands detected by the olfactory receptor acquire a new hedonic value, inducing appetitive or aversive behaviors depending on the categories of taste neurons in which they are expressed i.e. sugar- or bitter-sensing cells expressing either Gr5a or Gr66a receptors. Taste neurons expressing ectopic olfactory receptors can sense odors at close range either in the aerial phase or by contact, in a lipophilic phase. The responses of the transformed taste neurons to the odorant are similar to those obtained with tastants. The hedonic value attributed to tastants is directly linked to the taste neurons in which their receptors are expressed.  相似文献   

16.
Protein chaperones are essential in all domains of life to prevent and resolve protein misfolding during translation and proteotoxic stress. HSP70 family chaperones, including E. coli DnaK, function in stress induced protein refolding and degradation, but are dispensable for cellular viability due to redundant chaperone systems that prevent global nascent peptide insolubility. However, the function of HSP70 chaperones in mycobacteria, a genus that includes multiple human pathogens, has not been examined. We find that mycobacterial DnaK is essential for cell growth and required for native protein folding in Mycobacterium smegmatis. Loss of DnaK is accompanied by proteotoxic collapse characterized by the accumulation of insoluble newly synthesized proteins. DnaK is required for solubility of large multimodular lipid synthases, including the essential lipid synthase FASI, and DnaK loss is accompanied by disruption of membrane structure and increased cell permeability. Trigger Factor is nonessential and has a minor role in native protein folding that is only evident in the absence of DnaK. In unstressed cells, DnaK localizes to multiple, dynamic foci, but relocalizes to focal protein aggregates during stationary phase or upon expression of aggregating peptides. Mycobacterial cells restart cell growth after proteotoxic stress by isolating persistent DnaK containing protein aggregates away from daughter cells. These results reveal unanticipated essential nonredunant roles for mycobacterial DnaK in mycobacteria and indicate that DnaK defines a unique susceptibility point in the mycobacterial proteostasis network.  相似文献   

17.
A number of repellent compounds produced by plants elicit a spicy or pungent sensation in mammals . In several cases, this has been found to occur through activation of ion channels in the transient receptor potential (TRP) family . We report that isothiocyanate (ITC), the pungent ingredient of wasabi, is a repellent to the insect Drosophila melanogaster, and that the painless gene, previously known to be required for larval nociception, is required for this avoidance behavior. A painless reporter gene is expressed in gustatory receptor neurons of the labial palpus, tarsus, and wing anterior margin, but not in olfactory receptor neurons, suggesting a gustatory role. Indeed, painless expression overlaps with a variety of gustatory-receptor gene reporters. Some, such as Gr66a, are known to be expressed in neurons that mediate gustatory repulsion . painless mutants are not taste blind; they show normal aversive gustatory behavior with salt and quinine and attractive responses to sugars and capsaicin. The painless gene is an evolutionary homolog of the mammalian "wasabi receptor" TRPA1/ANKTM1 , also thought to be involved in nociception. Our results suggest that the stinging sensation of isothiocyanate is caused by activation of an evolutionarily conserved molecular pathway that is also used for nociception.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号