共查询到20条相似文献,搜索用时 15 毫秒
1.
Leslie A Mitchell Laura H McCulloch Sudarshan Pinglay Henri Berger Nazario Bosco Ran Brosh Milica Bulaji Emily Huang Megan S Hogan James A Martin Esteban O Mazzoni Teresa Davoli Matthew T Maurano Jef D Boeke 《Genetics》2021,218(1)
Design and large-scale synthesis of DNA has been applied to the functional study of viral and microbial genomes. New and expanded technology development is required to unlock the transformative potential of such bottom-up approaches to the study of larger mammalian genomes. Two major challenges include assembling and delivering long DNA sequences. Here, we describe a workflow for de novo DNA assembly and delivery that enables functional evaluation of mammalian genes on the length scale of 100 kilobase pairs (kb). The DNA assembly step is supported by an integrated robotic workcell. We demonstrate assembly of the 101 kb human HPRT1 gene in yeast from 3 kb building blocks, precision delivery of the resulting construct to mouse embryonic stem cells, and subsequent expression of the human protein from its full-length human gene in mouse cells. This workflow provides a framework for mammalian genome writing. We envision utility in producing designer variants of human genes linked to disease and their delivery and functional analysis in cell culture or animal models. 相似文献
2.
Yanting Shen Jing Liu Haiying Geng Jixiang Zhang Yucheng Liu Haikuan Zhang Shilai Xing Jianchang Du Shisong Ma Zhixi Tian 《中国科学:生命科学英文版》2018,(8)
Soybean was domesticated in China and has become one of the most important oilseed crops. Due to bottlenecks in their introduction and dissemination, soybeans from different geographic areas exhibit extensive genetic diversity. Asia is the largest soybean market; therefore, a high-quality soybean reference genome from this area is critical for soybean research and breeding.Here, we report the de novo assembly and sequence analysis of a Chinese soybean genome for "Zhonghuang 13" by a combination of SMRT, Hi-C and optical mapping data. The assembled genome size is 1.025 Gb with a contig N50 of 3.46 Mb and a scaffold N50 of 51.87 Mb. Comparisons between this genome and the previously reported reference genome(cv. Williams82) uncovered more than 250,000 structure variations. A total of 52,051 protein coding genes and 36,429 transposable elements were annotated for this genome, and a gene co-expression network including 39,967 genes was also established. This high quality Chinese soybean genome and its sequence analysis will provide valuable information for soybean improvement in the future. 相似文献
3.
《Genomics》2021,113(4):2221-2228
Centella asiatica is a herbaceous, perennial species indigenous to India and Southeast Asia. C. asiatica possesses several medicinal properties: anti-aging, anti-inflammatory, wound healing and memory enhancing. The lack of available genomics resources significantly impedes the improvement of C. asiatica varieties through molecular breeding. Here, we combined the 10× Genomics linked-read technology and the long-range HiC technique to obtain the genome assembly. The final assembly contained nine pseudomolecules, corresponding to the haploid chromosome number in C. asiatica. These nine chromosomes covered 402,536,584 bases or 93.6% of the 430-Mb assembly. Comparative genomics analyses based on single-copy orthologous genes showed that C. asiatica and the common ancestor of Coriandrum sativum (coriander) and Daucus carota (carrot) diverged about 48 million years ago. This assembly provides a valuable reference genome for future molecular studies, varietal development through marker-assisted breeding and comparative genomics studies in C. asiatica. 相似文献
4.
Marcus M. Soliai Susan E. Meyer Joshua A. Udall David E. Elzinga Russell A. Hermansen Paul M. Bodily Aaron A. Hart Craig E. Coleman 《PloS one》2014,9(1)
Pyrenophora semeniperda (anamorph Drechslera campulata) is a necrotrophic fungal seed pathogen that has a wide host range within the Poaceae. One of its hosts is cheatgrass (Bromus tectorum), a species exotic to the United States that has invaded natural ecosystems of the Intermountain West. As a natural pathogen of cheatgrass, P. semeniperda has potential as a biocontrol agent due to its effectiveness at killing seeds within the seed bank; however, few genetic resources exist for the fungus. Here, the genome of P. semeniperda isolate assembled from sequence reads of 454 pyrosequencing is presented. The total assembly is 32.5 Mb and includes 11,453 gene models encoding putative proteins larger than 24 amino acids. The models represent a variety of putative genes that are involved in pathogenic pathways typically found in necrotrophic fungi. In addition, extensive rearrangements, including inter- and intrachromosomal rearrangements, were found when the P. semeniperda genome was compared to P. tritici-repentis, a related fungal species. 相似文献
5.
6.
Xingguang Dong Zheng Wang Luming Tian Ying Zhang Dan Qi Hongliang Huo Jiayu Xu Zhe Li Rui Liao Miao Shi Safdar Ali Wahocho Chao Liu Simeng Zhang Zhixi Tian Yufen Cao 《Plant biotechnology journal》2020,18(2):581-595
China is the origin and evolutionary centre of Oriental pears. Pyrus betuleafolia is a wild species native to China and distributed in the northern region, and it is widely used as rootstock. Here, we report the de novo assembly of the genome of P. betuleafolia‐Shanxi Duli using an integrated strategy that combines PacBio sequencing, BioNano mapping and chromosome conformation capture (Hi‐C) sequencing. The genome assembly size was 532.7 Mb, with a contig N50 of 1.57 Mb. A total of 59 552 protein‐coding genes and 247.4 Mb of repetitive sequences were annotated for this genome. The expansion genes in P. betuleafolia were significantly enriched in secondary metabolism, which may account for the organism's considerable environmental adaptability. An alignment analysis of orthologous genes showed that fruit size, sugar metabolism and transport, and photosynthetic efficiency were positively selected in Oriental pear during domestication. A total of 573 nucleotide‐binding site (NBS)‐type resistance gene analogues (RGAs) were identified in the P. betuleafolia genome, 150 of which are TIR‐NBS‐LRR (TNL)‐type genes, which represented the greatest number of TNL‐type genes among the published Rosaceae genomes and explained the strong disease resistance of this wild species. The study of flavour metabolism‐related genes showed that the anthocyanidin reductase (ANR) metabolic pathway affected the astringency of pear fruit and that sorbitol transporter (SOT) transmembrane transport may be the main factor affecting the accumulation of soluble organic matter. This high‐quality P. betuleafolia genome provides a valuable resource for the utilization of wild pear in fundamental pear studies and breeding. 相似文献
7.
8.
9.
全基因组复制在动植物中普遍存在, 被认为是促进物种进化的重要动力之一。作为蕨类植物的单种科物种, 翼盖蕨(Didymochlaena trancatula)是真水龙骨类I的基部类群, 在蕨类中具有独特的演化地位。本研究基于高通量测序, 通过同义替换率(Ks)分析、相对定年分析揭示翼盖蕨的全基因组复制发生情况。Ks分析表明, 翼盖蕨至少经历了两次全基因组复制事件, 其中一次发生于59-62 million years ago (Mya), 另一次发生于90-94 Mya, 这两次全基因组复制事件分别和白垩纪第三纪的Cretaceous-Tertiary (C-T)大灭绝事件以及翼盖蕨的物种分化时间相吻合。进一步对两次全基因组复制保留的基因进行功能注释和富集分析, 结果显示与转录及代谢调控相关的基因优势被保留。翼盖蕨的全基因组复制事件可能促进了该物种的分化及其对极端环境的适应性。 相似文献
10.
《Fungal Ecology》2017
Cercospora leaf spot caused by Cercospora beticola is a significant threat to the production of sugar and table beet worldwide. A de novo genome assembly of C. beticola was used to develop eight polymorphic and reproducible microsatellite markers for population genetic analyses. These markers were used, along with five previously described microsatellite loci to genotype two C. beticola populations from table beet fields in New York, USA. High allelic and genotypic diversity and low population differentiation were found between fields. Linkage disequilibrium of loci after clone-correction of datasets was attributed to the presence of two distinct clonal lineages within the populations. Linkage equilibrium of loci in one of the clusters supported the presence of sexual reproduction. The draft de novo genome assembly will help elucidate the reproductive system of C. beticola through investigating evidence of recombination in the C. beticola genome. 相似文献
11.
Carl A. Morrow Eugene Valkov Anna Stamp Eve W. L. Chow I. Russel Lee Ania Wronski Simon J. Williams Justine M. Hill Julianne T. Djordjevic Ulrike Kappler Bostjan Kobe James A. Fraser 《PLoS pathogens》2012,8(10)
We have investigated the potential of the GTP synthesis pathways as chemotherapeutic targets in the human pathogen Cryptococcus neoformans, a common cause of fatal fungal meningoencephalitis. We find that de novo GTP biosynthesis, but not the alternate salvage pathway, is critical to cryptococcal dissemination and survival in vivo. Loss of inosine monophosphate dehydrogenase (IMPDH) in the de novo pathway results in slow growth and virulence factor defects, while loss of the cognate phosphoribosyltransferase in the salvage pathway yielded no phenotypes. Further, the Cryptococcus species complex displays variable sensitivity to the IMPDH inhibitor mycophenolic acid, and we uncover a rare drug-resistant subtype of C. gattii that suggests an adaptive response to microbial IMPDH inhibitors in its environmental niche. We report the structural and functional characterization of IMPDH from Cryptococcus, revealing insights into the basis for drug resistance and suggesting strategies for the development of fungal-specific inhibitors. The crystal structure reveals the position of the IMPDH moveable flap and catalytic arginine in the open conformation for the first time, plus unique, exploitable differences in the highly conserved active site. Treatment with mycophenolic acid led to significantly increased survival times in a nematode model, validating de novo GTP biosynthesis as an antifungal target in Cryptococcus. 相似文献
12.
The DNA origami method has brought nanometer-precision fabrication to molecular biology labs, offering myriads of potential applications in the fields of synthetic biology, medicine, molecular computation, etc. Advancing the method further requires controlling self-assembly down to the atomic scale. Here we demonstrate a computational method that allows the equilibrium structure of a large, complex DNA origami object to be determined to atomic resolution. Through direct comparison with the results of cryo-electron microscopy, we demonstrate de novo reconstruction of a 4.7 megadalton pointer structure by means of fully atomistic molecular dynamics simulations. Furthermore, we show that elastic network-guided simulations performed without solvent can yield similar accuracy at a fraction of the computational cost, making this method an attractive approach for prototyping and validation of self-assembled DNA nanostructures. 相似文献
13.
Qian Zhou Xinyu Guo Yang Huang Haoyang Gao Hao Xu Shanshan Liu Weiwei Zheng Tianshi Zhang Changxu Tian Chunhua Zhu Haoran Lin Songlin Chen 《Molecular ecology resources》2020,20(5):1403-1413
The leopard coral grouper, Plectropomus leopardus, belonging to the family Epinephelinae, is a carnivorous coral reef fish widely distributed in tropical and subtropical waters of the Indo‐Pacific. Due to its appealing body appearance and delicious taste, P. leopardus has become a popular commercial fish for aquaculture in many countries. However, the lack of genomic and molecular resources for P. leopardus has hindered study of its biology and genomic breeding programmes. Here we report the de novo sequencing and assembly of the P. leopardus genome using a combination of 10 × Genomics, high‐throughput chromosome conformation capture (Hi‐C) and PacBio long‐read sequencing technologies. The genome assembly has a total length of 881.55 Mb with a scaffold N50 of 34.15 Mb, consisting of 24 pseudochromosome scaffolds. busco analysis showed that 97.2% of the conserved single‐copy genes were retrieved, indicating the assembly was almost entire. We predicted 25,248 protein‐coding genes, among which 96.5% were functionally annotated. Comparative genomic analyses revealed that gene family expansions in P. leopardus were associated with immune‐related pathways. In addition, we identified 5,178,453 single nucleotide polymorphisms based on genome resequencing of 54 individuals. The P. leopardus genome and genomic variation data provide valuable genomic resources for studies of its genetics, evolution and biology. In particular, it is expected to benefit the development of genomic breeding programmes in the farming industry. 相似文献
14.
15.
Songfeng Yu Feng Gao Jun Yu Sheng Yan Jian Wu Min Zhang Weilin Wang Shusen Zheng 《PloS one》2014,9(1)
Background
De novo cancers are a growing problem that has become one of the leading causes of late mortality after liver transplantation. The incidences and risk factors varied among literatures and fewer concerned the Eastern population.Aims
The aim of this study was to examine the incidence and clinical features of de novo cancers after liver transplantation in a single Chinese center.Methods
569 patients who received liver transplantation and survived for more than 3 months in a single Chinese center were retrospectively reviewed.Results
A total of 18 de novo cancers were diagnosed in 17 recipients (13 male and 4 female) after a mean of 41±26 months, with an overall incidence of 3.2%, which was lower than that in Western people. Of these, 8 (3.32%) cases were from 241 recipients with malignant liver diseases before transplant, while 10 (3.05%) cases were from 328 recipients with benign diseases. The incidence rates were comparable, p = 0.86. Furthermore, 2 cases developed in 1 year, 5 cases in 3 years and 11 cases over 3 years. The most frequent cancers developed after liver transplantation were similar to those in the general Chinese population but had much higher incidence rates.Conclusions
Liver transplant recipients were at increased risk for developing de novo cancers. The incidence rates and pattern of de novo cancers in Chinese population are different from Western people due to racial and social factors. Pre-transplant malignant condition had no relationship to de novo cancer. Exact risk factors need further studies. 相似文献16.
De novo assembly of the zucchini genome reveals a whole‐genome duplication associated with the origin of the Cucurbita genus 下载免费PDF全文
Aureliano Bombarely Peio Ziarsolo Cristina Esteras Carlos Martí‐Gómez María Ferriol Pedro Gómez Manuel Jamilena Lukas Mueller Belén Picó Joaquín Cañizares 《Plant biotechnology journal》2018,16(6):1161-1171
17.
18.
Ramya Rangan Andrew M Watkins Jose Chacon Rachael Kretsch Wipapat Kladwang Ivan N Zheludev Jill Townley Mats Rynge Gregory Thain Rhiju Das 《Nucleic acids research》2021,49(6):3092
The rapid spread of COVID-19 is motivating development of antivirals targeting conserved SARS-CoV-2 molecular machinery. The SARS-CoV-2 genome includes conserved RNA elements that offer potential small-molecule drug targets, but most of their 3D structures have not been experimentally characterized. Here, we provide a compilation of chemical mapping data from our and other labs, secondary structure models, and 3D model ensembles based on Rosetta''s FARFAR2 algorithm for SARS-CoV-2 RNA regions including the individual stems SL1-8 in the extended 5′ UTR; the reverse complement of the 5′ UTR SL1-4; the frameshift stimulating element (FSE); and the extended pseudoknot, hypervariable region, and s2m of the 3′ UTR. For eleven of these elements (the stems in SL1–8, reverse complement of SL1–4, FSE, s2m and 3′ UTR pseudoknot), modeling convergence supports the accuracy of predicted low energy states; subsequent cryo-EM characterization of the FSE confirms modeling accuracy. To aid efforts to discover small molecule RNA binders guided by computational models, we provide a second set of similarly prepared models for RNA riboswitches that bind small molecules. Both datasets (‘FARFAR2-SARS-CoV-2’, https://github.com/DasLab/FARFAR2-SARS-CoV-2; and ‘FARFAR2-Apo-Riboswitch’, at https://github.com/DasLab/FARFAR2-Apo-Riboswitch’) include up to 400 models for each RNA element, which may facilitate drug discovery approaches targeting dynamic ensembles of RNA molecules. 相似文献
19.
Li Y Zheng H Luo R Wu H Zhu H Li R Cao H Wu B Huang S Shao H Ma H Zhang F Feng S Zhang W Du H Tian G Li J Zhang X Li S Bolund L Kristiansen K de Smith AJ Blakemore AI Coin LJ Yang H Wang J Wang J 《Nature biotechnology》2011,29(8):723-730
Here we use whole-genome de novo assembly of second-generation sequencing reads to map structural variation (SV) in an Asian genome and an African genome. Our approach identifies small- and intermediate-size homozygous variants (1-50 kb) including insertions, deletions, inversions and their precise breakpoints, and in contrast to other methods, can resolve complex rearrangements. In total, we identified 277,243 SVs ranging in length from 1-23 kb. Validation using computational and experimental methods suggests that we achieve overall <6% false-positive rate and <10% false-negative rate in genomic regions that can be assembled, which outperforms other methods. Analysis of the SVs in the genomes of 106 individuals sequenced as part of the 1000 Genomes Project suggests that SVs account for a greater fraction of the diversity between individuals than do single-nucleotide polymorphisms (SNPs). These findings demonstrate that whole-genome de novo assembly is a feasible approach to deriving more comprehensive maps of genetic variation. 相似文献
20.
D'Argenio V Petrillo M Cantiello P Naso B Cozzuto L Notomista E Paolella G Di Donato A Salvatore F 《Journal of bacteriology》2011,193(16):4296
Novosphingobium sp. strain PP1Y is a marine bacterium specifically adapted to use fuels as an energy source. We sequenced and assembled its entire genome using the Roche 454 genome sequencer system, which led to the identification of two plasmids and one megaplasmid, besides a 3.9-Mb circular chromosome. 相似文献