首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucose dysregulation is strongly correlated with cancer development, and cancer is prevalent in patients with Type 2 diabetes (T2D). We aimed to elucidate the mechanism underlying autophagy in response to glucose dysregulation in human bladder cancer (BC). 220 BC patients were included in this retrospective study. The expression of YAP1, TAZ and AMPK, EMT-associated markers, and autophagy marker proteins was analysed by immunohistochemistry, western blotting, and quantitative real-time PCR (qPCR). Further, T24 and UMUC-3 BC cells were cultured in media with different glucose concentrations, and the expression of YAP1, TAZ, AMPK and EMT-associated markers, and autophagy marker proteins was analysed by western blotting and qPCR. Autophagy was observed by immunofluorescence and electron microscopy. BC cell viability was tested using MTT assays. A xenograft nude mouse model of diabetes was used to evaluate tumour growth, metastasis and survival. A poorer pathologic grade and tumour-node-metastasis stage were observed in patients with BC with comorbid T2D than in others with BC. YAP1 and TAZ were upregulated in BC samples from patients with T2D. Mechanistically, high glucose (HG) promoted BC progression both in vitro and in vivo and inhibited autophagy. Specifically, various autophagy marker proteins and AMPK were negatively regulated under HG conditions and correlated with YAP1 and TAZ expression. These results demonstrate that HG inhibits autophagy and promotes cancer development in BC. YAP1/TAZ/AMPK signalling plays a crucial role in regulating glucose dysregulation during autophagy. Targeting these effectors exhibits therapeutic significance and can serve as prognostic markers in BC patients with T2D.  相似文献   

2.
The proliferation of vascular smooth muscle cells may perform a crucial role in the pathogenesis of diabetic vascular disease. AMPK additionally exerts several salutary effects on vascular function and improves vascular abnormalities. The current study sought to determine whether sodium tanshinone IIA silate (STS) has an inhibitory effect on vascular smooth muscle cell (VSMC) proliferation and migration under high glucose conditions mimicking diabetes without dyslipidemia, and establish the underlying mechanism. In this study, STS promoted the phosphorylation of AMP-activated protein kinase (AMPK) at T172 in VSMCs. VSMC proliferation was enhanced under high glucose (25 mM glucose, HG) versus normal glucose conditions (5.5 mM glucose, NG), and this increase was inhibited significantly by STS treatment. We utilized western blotting analysis to evaluate the effects of STS on cell-cycle regulatory proteins and found that STS increased the expression of p53 and the Cdk inhibitor, p21, subsequent decreased the expression of cell cycle-associated protein, cyclin D1. We further observed that STS arrested cell cycle progression at the G0/G1 phase. Additionally, expression and enzymatic activity of MMP-2, translocation of NF-κB, as well as VSMC migration were suppressed in the presence of STS. Notably, Compound C (CC), a specific inhibitor of AMPK, as well as AMPK siRNA blocked STS-mediated inhibition of VSMC proliferation and migration. We further evaluated its potential for activating AMPK in aortas in animal models of type 2 diabetes and found that Oral administration of STS for 10 days resulted in activation of AMPK in aortas from ob/ob or db/db mice. In conclusion, STS inhibits high glucose-induced VSMC proliferation and migration, possibly through AMPK activation. The growth suppression effect may be attributable to activation of AMPK-p53-p21 signaling, and the inhibitory effect on migration to the AMPK/NF-κB signaling axis.  相似文献   

3.
Diabetes and high glucose (HG) increase the generation of NADPH oxidase-derived reactive oxygen species and induce apoptosis of glomerular epithelial cells (podocytes). Loss of podocytes contributes to albuminuria, a major risk factor for progression of kidney disease. Here, we show that HG inactivates AMP-activated protein kinase (AMPK), up-regulates Nox4, enhances NADPH oxidase activity, and induces podocyte apoptosis. Activation of AMPK blocked HG-induced expression of Nox4, NADPH oxidase activity, and apoptosis. We also identified the tumor suppressor protein p53 as a mediator of podocyte apoptosis in cells exposed to HG. Inactivation of AMPK by HG up-regulated the expression and phosphorylation of p53, and p53 acted downstream of Nox4. To investigate the mechanism of podocyte apoptosis in vivo, we used OVE26 mice, a model of type 1 diabetes. Glomeruli isolated from these mice showed decreased phosphorylation of AMPK and enhanced expression of Nox4 and p53. Pharmacologic activation of AMPK by 5-aminoimidazole-4-carboxamide-1-riboside in OVE26 mice attenuated Nox4 and p53 expression. Administration of 5-aminoimidazole-4-carboxamide-1-riboside also prevented renal hypertrophy, glomerular basement thickening, foot process effacement, and podocyte loss, resulting in marked reduction in albuminuria. Our results uncover a novel function of AMPK that integrates metabolic input to Nox4 and provide new insight for activation of p53 to induce podocyte apoptosis. The data indicate the potential therapeutic utility of AMPK activators to block Nox4 and reactive oxygen species generation and to reduce urinary albumin excretion in type 1 diabetes.  相似文献   

4.
Macroautophagy/autophagy is increasingly recognized as an important regulator of myocardial ischemia-reperfusion (MI-R) injury. However, whether and how diabetes may alter autophagy in response to MI-R remains unknown. Deficiency of ADIPOQ, a cardioprotective molecule, markedly increases MI-R injury. However, the role of diabetic hypoadiponectinemia in cardiac autophagy alteration after MI-R is unclear. Utilizing normal control (NC), high-fat-diet-induced diabetes, and Adipoq knockout (adipoq?/?) mice, we demonstrated that autophagosome formation was modestly inhibited and autophagosome clearance was markedly impaired in the diabetic heart subjected to MI-R. adipoq?/? largely reproduced the phenotypic alterations observed in the ischemic-reperfused diabetic heart. Treatment of diabetic and adipoq?/? mice with AdipoRon, a novel ADIPOR (adiponectin receptor) agonist, stimulated autophagosome formation, markedly increased autophagosome clearance, reduced infarct size, and improved cardiac function (P < 0.01 vs vehicle). Mechanistically, AdipoRon caused significant phosphorylation of AMPK-BECN1 (Ser93/Thr119)-class III PtdIns3K (Ser164) and enhanced lysosome protein LAMP2 expression both in vivo and in isolated adult cardiomyocytes. Pharmacological AMPK inhibition or genetic Prkaa2 mutation abolished AdipoRon-induced BECN1 (Ser93/Thr119)-PtdIns3K (Ser164) phosphorylation and AdipoRon-stimulated autophagosome formation. However, AdipoRon-induced LAMP2 expression, AdipoRon-stimulated autophagosome clearance, and AdipoRon-suppressed superoxide generation were not affected by AMPK inhibition. Treatment with MnTMPyP (a superoxide scavenger) increased LAMP2 expression and stimulated autophagosome clearance in simulated ischemic-reperfused cardiomyocytes. However, no additive effect between AdipoRon and MnTMPyP was observed. Collectively, these results demonstrate that hypoadiponectinemia impairs autophagic flux, contributing to enhanced MI-R injury in the diabetic state. ADIPOR activation restores AMPK-mediated autophagosome formation and antioxidant-mediated autophagosome clearance, representing a novel intervention effective against MI-R injury in diabetic conditions.  相似文献   

5.
Podocytes have foot processes that comprise an important cellular layer of the glomerular barrier involved in regulating glomerular permeability. The disturbance of podocyte function plays a central role in the development of proteinuria in diabetic nephropathy. AMP-activated protein kinase (AMPK), a key regulator of glucose and fatty acid metabolism, plays a major role in obesity and type 2 diabetes. Accumulating evidence suggests that TRPC6 channels are crucial mediators of calcium transport in podocytes, and these channels are involved in disturbing the glomerular filtration barrier in diabetes.Metformin is an anti-diabetic drug widely used for treating patients with type 2 diabetes. Recent studies have suggested that the therapeutic effect of metformin might be mediated by AMPK. The precise function of metformin on cellular function and intracellular signaling in podocytes under diabetic conditions is not fully understood.In this study, we demonstrated that metformin normalized TRPC6 expression via AMPKα1 activation in podocytes exposed to high glucose concentrations. A quantitative analysis showed that metformin increased the colocalization of TRPC6 and AMPKα1 subunits from 42% to 61% in standard glucose (SG) medium and from 29% to 52% in high glucose (HG) medium. AMPK activation was also necessary for maintaining appropriate levels of Rho-family small GTPase activity in HG conditions. Moreover, metformin through AMPK activation remodeled cytoskeleton dynamics, and consequently, reduced filtration barrier permeability in diabetic conditions.  相似文献   

6.
Endothelial dysfunction is a hallmark of increased vascular inflammation, dyslipidemia, and the development of atherosclerosis in diabetes. Previous studies have reported lower levels of Mn2+ in the plasma and lymphocytes of diabetic patients and in the heart and aortic tissue of patients with atherosclerosis. This study examines the hypothesis that Mn2+ supplementation can reduce the markers/risk factors of endothelial dysfunction in type 2 diabetes. Human umbilical vein endothelial cells (HUVECs) were cultured with or without Mn2+ supplementation and then exposed to high glucose (HG, 25 mm) to mimic diabetic conditions. Mn2+ supplementation caused a reduction in monocyte adhesion to HUVECs treated with HG or MCP-1. Mn2+ also inhibited ROS levels, MCP-1 secretion, and ICAM-1 up-regulation in HUVECs treated with HG. Silencing studies using siRNA against MnSOD showed that similar results were observed in MnSOD knockdown HUVECs following Mn2+ supplementation, suggesting that the effect of manganese on monocyte adhesion to endothelial cells is mediated by ROS and ICAM-1, but not MnSOD. To validate the relevance of our findings in vivo, Zucker diabetic fatty rats were gavaged daily with water (placebo) or MnCl2 (16 mg/kg of body weight) for 7 weeks. When compared with placebo, Mn2+-supplemented rats showed lower blood levels of ICAM-1 (17%, p < 0.04), cholesterol (25%, p < 0.05), and MCP-1 (28%, p = 0.25). These in vitro and in vivo studies demonstrate that Mn2+ supplementation can down-regulate ICAM-1 expression and ROS independently of MnSOD, leading to a decrease in monocyte adhesion to endothelial cells, and therefore can lower the risk of endothelial dysfunction in diabetes.  相似文献   

7.
Dose-dependent lipid accumulation was induced by glucose in HepG2 cells. GlcN also exerted a promotory effect on lipid accumulation in HepG2 cells under normal glucose conditions (NG, 5 mM) and liver of normal fed zebrafish larvae. High glucose (HG, 25 mM)-induced lipid accumulation was suppressed by l-glutamine-d-fructose 6-phosphate amidotransferase inhibitors. ER stress inhibitors did not suppress HG or GlcN-mediated lipid accumulation. HG and GlcN stimulated protein expression, DNA binding and O-GlcNAcylation of carbohydrate-responsive element-binding protein (ChREBP). Furthermore, both HG and GlcN increased nuclear sterol regulatory element-binding protein-1 (SREBP-1) levels in HepG2 cells. In contrast to its stimulatory effect under NG, GlcN suppressed lipid accumulation in HepG2 cells under HG conditions. Similarly, GlcN suppressed lipid accumulation in livers of overfed zebrafish. In addition, GlcN activity on DNA binding and O-GlcNAcylation of ChREBP was stimulatory under NG and inhibitory under HG conditions. Moreover, GlcN enhanced ChREBP, SREBP-1c, ACC, FAS, L-PK and SCD-1 mRNA expression under NG but inhibited HG-induced upregulation in HepG2 cells. The O-GlcNAc transferase inhibitor, alloxan, reduced lipid accumulation by HG or GlcN while the O-GlcNAcase inhibitor, PUGNAc, enhanced lipid accumulation in HepG2 cells and liver of zebrafish larvae. GlcN-induced lipid accumulation was inhibited by the AMPK activator, AICAR. Phosphorylation of AMPK (p-AMPK) was suppressed by GlcN under NG while increased by GlcN under HG. PUGNAc downregulated p-AMPK while alloxan restored GlcN- or HG-induced p-AMPK inhibition. Our results collectively suggest that GlcN regulates lipogenesis by sensing the glucose or energy states of normal and excess fuel through AMPK modulation.  相似文献   

8.
AMP-activated protein kinase (AMPK) is an energy-sensing enzyme that is implicated as a key factor in controlling whole body homeostasis, including fatty acid oxidation and glucose uptake. We report that a synthetic structural isomer of dihydrocapsiate, isodihydrocapsiate (8-methylnonanoic acid 3-hydroxy-4-methoxy benzyl ester) improves type 2 diabetes by activating AMPK through the LKB1 pathway. In L6 myotube cells, phosphorylation of AMPK and acetyl-CoA carboxylase (ACC) and glucose uptake were significantly increased, whereas these effects were attenuated by an AMPK inhibitor, compound C. In addition, increased phosphorylation of AMPK and ACC by isodihydrocapsiate was significantly reduced by radicicol, an LKB1 destabilizer, suggesting that increased glucose uptake in L6 cells with isodihydrocapsiate treatment is predominantly accomplished by a LKB1-mediated AMPK activation pathway. Oral administration of isodihydrocapsiate to diabetic (db/db) mice reduced blood glucose levels by 40% after a 4-week treatment period. Our results support the development of isodihydrocapsiate as a potential therapeutic agent to target AMPK in type 2 diabetes.  相似文献   

9.
Patients suffering from diabetes mellitus (DM) are at a severe risk of atherothrombosis. Early growth response (Egr)‐1 is well characterized as a central mediator in vascular pathophysiology. We tested whether valsartan independent of Ang II type 1 receptor (AT1R) can reduce tissue factor (TF) and toll‐like receptor (TLR)‐2 and ‐4 by regulating Egr‐1 in THP‐1 cells and aorta in streptozotocin‐induced diabetic mice. High glucose (HG, 15 mM) increased expressions of Egr‐1, TF, TLR‐2 and ‐4 which were significantly reduced by valsartan. HG increased Egr‐1 expression by activation of PKC and ERK1/2 in THP‐1 cells. Valsartan increased AMPK phosphorylation in a concentration and time‐dependent manner via activation of LKB1. Valsartan inhibited Egr‐1 without activation of PKC or ERK1/2. The reduced expression of Egr‐1 by valsartan was reversed by either silencing Egr‐1, or compound C, or DN‐AMPK‐transfected cells. Valsartan inhibited binding of NF‐κB and Egr‐1 to TF promoter in HG condition. Furthermore, valsartan reduced inflammatory cytokine (TNF‐α, IL‐6 and IL‐1β) production and NF‐κB activity in HG‐activated THP‐1 cells. Interestingly, these effects of valsartan were not affected by either silencing AT1R in THP‐1 cells or CHO cells, which were devoid of AT1R. Importantly, administration of valsartan (20 mg/kg, i.p) for 8 weeks significantly reduced plasma TF activity, expression of Egr‐1, TLR‐2, ‐4 and TF in thoracic aorta and improved glucose tolerance of streptozotocin‐induced diabetic mice. Taken together, we concluded that valsartan may reduce atherothrombosis in diabetic conditions through AMPK/Egr‐1 regulation.  相似文献   

10.
The aims of the present study were to investigate, in diabetes mellitus (DM), the mechanism of NOX4 up-regulation, its link with 5′ adenosine monophosphate-activated protein kinase (AMPK) inactivation and transforming growth factor (TGF) ß-1 signaling in determining the accumulation of kidney extracellular matrix (ECM), and the possible action of cocoa enriched with polyphenols (CH) in these events. After 16 weeks of DM, spontaneously hypertensive rats showed increased kidney TGFβ-1 levels and expression of phosphorylated smad2, collagen IV and fibronectin in parallel with elevated NOX4 expression and reduced phosphorylated AMPK. CH treatment in diabetic rats prevented all of these abnormalities. In immortalized human mesangial cells exposed to high glucose (HG), or TGFβ-1, CH, nicotinamide adenine dinucleotide phosphate blocker, or silencing NOX4 ameliorated enhanced phosphorylated smad2 and collagen IV. Reduction in phosphorylated AMPK induced by HG or TGFβ-1 was ameliorated by CH or activation of AMPK, which reduced phosphorylation of smad2 and collagen IV via reduction in NOX4 expression. The effects of CH were abolished by AMPK blockade. These results suggest that inactivation in AMPK leads to NOX4 up-regulation, activation of TGFβ-1 signaling and increased ECM accumulation. Additionally, increased TGF-ß1 per se leads to the amplification of ECM production by reducing AMPK and promoting the activation of NOX4. It is suggested that the activation of AMPK by CH followed by reduction in NOX4/TGFβ-1 signaling may have a therapeutic potential in diabetic nephropathy.  相似文献   

11.
We have previously shown that one of the potential mediators of the deleterious effects of high glucose on extracellular matrix protein (ECM) expression in renal mesangial cells is its metabolic flux through the hexosamine biosynthesis pathway (HBP). Here, we investigate further whether the hexosamines induce oxidative stress, cell-cycle arrest and ECM expression using SV-40-transformed rat mesangial (MES) cells and whether the anti-oxidant alpha-lipoic acid will reverse some of these effects. Culturing renal MES cells with high glucose (HG, 25 mM) or glucosamine (GlcN, 1.5 mM) for 48 h stimulates laminin gamma1 subunit expression significantly approximately 1.5 +/- 0.2- and 1.9 +/- 0.3-fold, respectively, when compared to low glucose (LG, 5 mM). Similarly, HG and GlcN increase the level of G0/G1 cell-cycle progression factor cyclin D1 significantly approximately 1.7 +/- 0.2- and 1.4 +/- 0.04-fold, respectively, versus LG (p < 0.01 for both). Azaserine, an inhibitor of glutamine:fruc-6-PO(4) amidotransferase (GFAT) in the HBP, blocks the HG-induced expression of laminin gamma1 and cyclin D1, but not GlcN's effect because it exerts its metabolic function distal to GFAT. HG and GlcN also elevate reactive oxygen species (ROS) generation, pro-apoptotic caspase-3 activity, and lead to mesangial cell death as revealed by TUNEL and Live/Dead assays. FACS analysis of cell-cycle progression shows that the cells are arrested at G1 phase; however, they undergo cell growth and hypertrophy as the RNA/DNA ratio is significantly (p < 0.05) increased in HG or GlcN-treated cells relative to LG. The anti-oxidant alpha-lipoic acid (150 microM) reverses ROS generation and mesangial cell death induced by HG and GlcN. Alpha-lipoic acid also reduces HG and GlcN-induced laminin gamma1 and cyclin D1 expression in MES cells. In addition, induction of diabetes in rats by streptozotocin (STZ) increases both laminin gamma1 and cyclin D1 expression in the renal cortex and treatment of the diabetic rats with alpha-lipoic acid (400 mg kg(-1) body weight) reduces the level of both proteins significantly (p < 0.05) when compared to untreated diabetic rats. These results support the hypothesis that the hexosamine pathway mediates mesangial cell oxidative stress, ECM expression and apoptosis. Anti-oxidant alpha-lipoic acid reverses the effects of high glucose, hexosamine and diabetes on oxidative stress and ECM expression in mesangial cells and rat kidney.  相似文献   

12.
Hyperglycemia increases the production of reactive oxygen species (ROS). NAD(P)H oxidase, producing superoxide anion, is the main source of ROS in diabetic podocytes and their production contributes to the development of diabetic nephropathy. We have investigated the effect of an antidiabetic drug, metformin on the production of superoxide anion in cultured podocytes and attempted to elucidate underlying mechanisms.The experiments were performed in normal (NG, 5.6 mM) and high (HG, 30 mM) glucose concentration. Overall ROS production was measured by fluorescence of a DCF probe. Activity of NAD(P)H oxidase was measured by chemiluminescence method. The AMP-dependent kinase (AMPK) activity was determined by immunobloting, measuring the ratio of phosphorylated AMPK to total AMPK. Glucose accumulation was measured using 2-deoxy-[1,2-3H]-glucose.ROS production increased by about 27% (187 ± 8 vs. 238 ± 9 arbitrary units AU, P < 0.01) in HG. Metformin (2 mM, 2 h) markedly reduced ROS production by 45% in NG and 60% in HG. Metformin decreased NAD(P)H oxidase activity in NG (36%) and HG (86%). AMPK activity was increased by metformin in NG and HG (from 0.58 ± 0.07 to. 0.99 ± 0.06, and from 0.53 ± 0.03 to 0.64 ± 0.03; P < 0.05). The effects of metformin on the activities of NAD(P)H oxidase and AMPK were abolished in the presence of AMPK inhibitor, compound C.We have shown that metformin decreases production of ROS through reduction of NAD(P)H oxidase activity. We also have demonstrated relationship between activity of NAD(P)H oxidase and AMPK.  相似文献   

13.
Diabetes (DB) is a risk factor for osteoarthritis progression. High glucose (HG) is one of the key pathological features of DB and has been demonstrated to induce apoptosis and senescence in chondrocytes. Autophagy is an endogenous mechanism that can protect cells against apoptosis and senescence. The effects of HG on autophagy in cells including chondrocytes have been studied; however, the results have been inconsistent. The current study aimed to elucidate the underlying mechanisms, which could be associated with the contrasting outcomes. The present study revealed that HG can induce apoptosis and senescence in chondrocytes, in addition to regulating autophagy dynamically. The present study demonstrated that HG can cause oxidative stress in chondrocytes and suppress the AMPK pathway in a dose-dependent manner. Elimination of oxidative stress by Acetylcysteine, also called N-acetyl cysteine (NAC), downregulated autophagy and alleviated HG-stimulated apoptosis and senescence, while activation of the AMPK signaling pathway by AICAR not only upregulated autophagy but also alleviated HG-stimulated apoptosis and senescence. A combined treatment of NAC and AICAR was superior to treatment with either NAC or AICAR. The study has demonstrated that HG can suppress autophagy through the AMPK pathway and induce autophagy via oxidative stress in chondrocytes.Subject terms: Autophagy, Bone, Endocrine system and metabolic diseases  相似文献   

14.
Hydrogen (H2) acts as a therapeutic antioxidant. However, there are few reports on H2 function in other capacities in diabetes mellitus (DM). Therefore, in this study, we investigated the role of H2 in glucose transport by studying cultured mouse C2C12 cells and human hepatoma Hep-G2 cells in vitro, in addition to three types of diabetic mice [Streptozotocin (STZ)-induced type 1 diabetic mice, high-fat diet-induced type 2 diabetic mice, and genetically diabetic db/db mice] in vivo. The results show that H2 promoted 2-[14C]-deoxy-d-glucose (2-DG) uptake into C2C12 cells via the translocation of glucose transporter Glut4 through activation of phosphatidylinositol-3-OH kinase (PI3K), protein kinase C (PKC), and AMP-activated protein kinase (AMPK), although it did not stimulate the translocation of Glut2 in Hep G2 cells. H2 significantly increased skeletal muscle membrane Glut4 expression and markedly improved glycemic control in STZ-induced type 1 diabetic mice after chronic intraperitoneal (i.p.) and oral (p.o.) administration. However, long-term p.o. administration of H2 had least effect on the obese and non-insulin-dependent type 2 diabetes mouse models. Our study demonstrates that H2 exerts metabolic effects similar to those of insulin and may be a novel therapeutic alternative to insulin in type 1 diabetes mellitus that can be administered orally.  相似文献   

15.
5′ AMP-activated protein kinase (AMPK), insulin receptors and transporters are distorted in diabetes mellitus. In this study, the effect of Panax ginseng was assessed on glucose manipulating enzymes activities and gene expression of AMPK, IRA and GLUT2 in streptozotocin-induced diabetic male rats. Forty male albino rats were randomly divided to four groups 10 rats of each, group I, normal control group (received saline orally); group II, normal rats received 200 mg/kg of Panax ginseng orally; group III, Streptozotocin (STZ) –induced diabetic rats and group IV, STZ-induced diabetic rats received 200 mg/kg of Panax ginseng orally. The duration of experiment was 30 days. Results showed the ability of Panax ginseng to induce a significant decrease in the blood glucose and increase in the serum insulin levels, hepatic glucokinase (GK), and glycogen synthase (GS) activities with a modulation of lipid profile besides high expression levels of AMPK, insulin receptor A (IRA), glucose transporting protein-2 (GLUT-2) in liver of diabetic rats. In conclusion, the obtained results point to the ability of Panax ginseng to improve the glucose metabolism in diabetic models.  相似文献   

16.
Exercise can increase skeletal muscle sensitivity to insulin, improve insulin resistance and regulate glucose homeostasis in rat models of type 2 diabetes. However, the potential mechanism remains poorly understood. In this study, we established a male Sprague–Dawley rat model of type 2 diabetes, with insulin resistance and β cell dysfunction, which was induced by a high-fat diet and low-dose streptozotocin to replicate the pathogenesis and metabolic characteristics of type 2 diabetes in humans. We also investigated the possible mechanism by which chronic and acute exercise improves metabolism, and the phosphorylation and expression of components of AMP-activated protein kinase (AMPK) and downstream components of phosphatidylinositol 3-kinase (PI3K) signaling pathways in the soleus. As a result, blood glucose, triglyceride, total cholesterol, and free fatty acid were significantly increased, whereas insulin level progressively declined in diabetic rats. Interestingly, chronic and acute exercise reduced blood glucose, increased phosphorylation and expression of AMPKα1/2 and the isoforms AMPKα1 and AMPKα2, and decreased phosphorylation and expression of AMPK substrate, acetyl CoA carboxylase (ACC). Chronic exercise upregulated phosphorylation and expression of AMPK upstream kinase, LKB1. But acute exercise only increased LKB1 expression. In particular, exercise reversed the changes in protein kinase C (PKC)ζ/λ phosphorylation, and PKCζ phosphorylation and expression. Additionally, exercise also increased protein kinase B (PKB)/Akt1, Akt2 and GLUT4 expression, but AS160 protein expression was unchanged. Chronic exercise elevated Akt (Thr308) and (Ser473) and AS160 phosphorylation. Finally, we found that exercise increased peroxisome proliferator-activated receptor-γ coactivator 1 (PGC1) mRNA expression in the soleus of diabetic rats. These results indicate that both chronic and acute exercise influence the phosphorylation and expression of components of the AMPK and downstream to PIK3 (aPKC, Akt), and improve GLUT4 trafficking in skeletal muscle. These data help explain the mechanism how exercise regulates glucose homeostasis in diabetic rats.  相似文献   

17.
Exposure of renal cells to high glucose (HG) during diabetes has been recently proposed to be involved in renal injury. In the present study, we investigated a potential mechanism by which AICAR treatment regulates the DNA repair enzyme, 8-oxoG-DNA glycosylase (OGG1) in renal proximal tubular mouse cells exposed to HG and in kidney of db/db mice. Cells treated with HG for 2 days show inhibition in OGG1 promoter activity as well as OGG1 and Nrf2 protein expression. In addition, activation of AMPK by AICAR resulted in an increase raptor phosphorylation at Ser792 and leads to increase the promoter activity of OGG1 through upregulation of Nrf2. Downregulation of AMPK by DN-AMPK and raptor and Nrf2 by siRNA resulted in significant decease in promoter activity and protein expression of OGG1. On the other hand, downregulation of Akt by DN-Akt and rictor by siRNA resulted in significant increase in promoter activity and protein expression of Nrf2 and OGG1. Moreover, gel shift analysis shows reduction of Nrf2 binding to OGG1 promoter in cells treated with HG while cells treated with AICAR reversed the effect of HG. Furthermore, db/db mice treated with AICAR show significant increased in AMPK and raptor phosphroylation as well as OGG1 and Nrf2 protein expression that associated with significant decrease in oxidative DNA damage (8-oxodG) compared to non-treated mice. In summary, our data provide a novel protective mechanism by which AICAR prevents renal cell damage in diabetes and the consequence complications of hyperglycemia with a specific focus on nephropathy.  相似文献   

18.
《PloS one》2013,8(12)
Modulation of mitochondrial function through inhibiting respiratory complex I activates a key sensor of cellular energy status, the 5''-AMP-activated protein kinase (AMPK). Activation of AMPK results in the mobilization of nutrient uptake and catabolism for mitochondrial ATP generation to restore energy homeostasis. How these nutrient pathways are affected in the presence of a potent modulator of mitochondrial function and the role of AMPK activation in these effects remain unclear. We have identified a molecule, named R419, that activates AMPK in vitro via complex I inhibition at much lower concentrations than metformin (IC50 100 nM vs 27 mM, respectively). R419 potently increased myocyte glucose uptake that was dependent on AMPK activation, while its ability to suppress hepatic glucose production in vitro was not. In addition, R419 treatment of mouse primary hepatocytes increased fatty acid oxidation and inhibited lipogenesis in an AMPK-dependent fashion. We have performed an extensive metabolic characterization of its effects in the db/db mouse diabetes model. In vivo metabolite profiling of R419-treated db/db mice showed a clear upregulation of fatty acid oxidation and catabolism of branched chain amino acids. Additionally, analyses performed using both 13C-palmitate and 13C-glucose tracers revealed that R419 induces complete oxidation of both glucose and palmitate to CO2 in skeletal muscle, liver, and adipose tissue, confirming that the compound increases mitochondrial function in vivo. Taken together, our results show that R419 is a potent inhibitor of complex I and modulates mitochondrial function in vitro and in diabetic animals in vivo. R419 may serve as a valuable molecular tool for investigating the impact of modulating mitochondrial function on nutrient metabolism in multiple tissues and on glucose and lipid homeostasis in diabetic animal models.  相似文献   

19.
20.
Skeletal muscle is the major site for glucose disposal, the impairment of which closely associates with the glucose intolerance in diabetic patients. Diabetes-related ankyrin repeat protein (DARP/Ankrd23) is a member of muscle ankyrin repeat proteins, whose expression is enhanced in the skeletal muscle under diabetic conditions; however, its role in energy metabolism remains poorly understood. Here we report a novel role of DARP in the regulation of glucose homeostasis through modulating AMP-activated protein kinase (AMPK) activity. DARP is highly preferentially expressed in skeletal muscle, and its expression was substantially upregulated during myotube differentiation of C2C12 myoblasts. Interestingly, DARP-/- mice demonstrated better glucose tolerance despite similar body weight, while their insulin sensitivity did not differ from that in wildtype mice. We found that phosphorylation of AMPK, which mediates insulin-independent glucose uptake, in skeletal muscle was significantly enhanced in DARP-/- mice compared to that in wildtype mice. Gene silencing of DARP in C2C12 myotubes enhanced AMPK phosphorylation, whereas overexpression of DARP in C2C12 myoblasts reduced it. Moreover, DARP-silencing increased glucose uptake and oxidation in myotubes, which was abrogated by the treatment with AICAR, an AMPK activator. Of note, improved glucose tolerance in DARP-/- mice was abolished when mice were treated with AICAR. Mechanistically, gene silencing of DARP enhanced protein expression of LKB1 that is a major upstream kinase for AMPK in myotubes in vitro and the skeletal muscle in vivo. Together with the altered expression under diabetic conditions, our data strongly suggest that DARP plays an important role in the regulation of glucose homeostasis under physiological and pathological conditions, and thus DARP is a new therapeutic target for the treatment of diabetes mellitus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号