首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
KARRIKIN INSENSITIVE2 (KAI2) was first identified as a receptor of karrikins, smoke-derived germination stimulants. KAI2 is also considered a receptor of an unidentified endogenous molecule called the KAI2 ligand. Upon KAI2 activation, signals are transmitted through the degradation of D53/SMXL proteins via MAX2-dependent ubiquitination. Although components in the KAI2-dependent signaling pathway, namely MpKAI2A and MpKAI2B, MpMAX2, and MpSMXL, exist in the genome of the liverwort Marchantia polymorpha, their functions remain unknown. Here, we show that early thallus growth is retarded and gemma dormancy in the dark is suppressed in Mpkai2a and Mpmax2 loss-of-function mutants. These defects are counteracted in Mpkai2a Mpsmxl and Mpmax2 Mpsmxl double mutants indicating that MpKAI2A, MpMAX2, and MpSMXL act in the same genetic pathway. Introduction of MpSMXLd53, in which a domain required for degradation is mutated, into wild-type plants mimicks Mpkai2a and Mpmax2 plants. In addition, the detection of citrine fluorescence in Nicotiana benthamiana cells transiently expressing a SMXL-Citrine fusion protein requires treatment with MG132, a proteasome inhibitor. These findings imply that MpSMXL is subjected to degradation, and that the degradation of MpSMXL is crucial for MpKAI2A-dependent signaling in M. polymorpha. Therefore, we claim that the basic mechanisms in the KAI2-dependent signaling pathway are conserved in M. polymorpha.

Functions of genes in the KARRIKIN INSENSITIVE2-dependent signaling pathway are conserved in the liverwort Marchantia polymorpha and control early development of the thallus.  相似文献   

2.
3.
Plants precisely coordinate the balance between cell proliferation and differentiation to ensure the continuous development. In Arabidopsis thaliana, members of glycogen synthase kinase 3 (GSK3) family, which are highly conserved serine/threonine protein kinases among eukaryotes, play important roles in regulating cell proliferation and differentiation during various developmental processes. However, functional roles of GSK3s in the plant lineages except angiosperms remain to be elucidated. Here, we utilized a model liverwort, Marchantia polymorpha, for studies of GSK3, because it has a single GSK3-like kinase, MpGSK. When M. polymorpha was treated with a chemical compound, bikinin, which is known as a specific inhibitor for GSK3-like kinases, growth and morphologies were altered with an expansion of the meristematic region. Similarly, Mpgsk loss-of-function mutants accumulated undifferentiated cell mass with no differentiated tissues. By contrast, overexpression of MpGSK reduced the size of the meristem region. These results suggest that MpGSK plays important roles as a regulator for the balance between cell differentiation and proliferation in M. polymorpha.  相似文献   

4.
5.
The genome of the phytophagous two-spotted spider mite Tetranychus urticae was recently sequenced, representing the first complete chelicerate genome, but also the first genome of a highly polyphagous agricultural pest. Genome analysis revealed the presence of an unexpected high number of cases of putative horizontal gene transfers, including a gene that encodes a cyanase or cyanate lyase. In this study we show by recombinant expression that the T. urticae cyanase remained functionally active after horizontal gene transfer and has a high affinity for cyanate. Cyanases were also detected in other plant parasitic spider mites species such as Tetranychus evansi and Panonychus citri, suggesting that an ancient gene transfer occurred before the diversification within the Tetranychidae family. To investigate the potential role of cyanase in the evolution of plant parasitic spider mites, we studied cyanase expression patterns in T. urticae in relation to host plant range and cyanogenesis, a common plant defense mechanism. Spider mites can alter cyanase expression levels after transfer to several new host plants, including the cyanogenic Phaseolus lunatus. However, the role of cyanase is probably not restricted to cyanide response, but likely to the plant nutritional quality as a whole. We finally discuss potential interactions between cyanase activity and pyrimidine and amino acid synthesis.  相似文献   

6.

Background

Plants have inducible defenses to combat attacking organisms. Hence, some herbivores have adapted to suppress these defenses. Suppression of plant defenses has been shown to benefit herbivores by boosting their growth and reproductive performance.

Results

We observed in field-grown tomatoes that spider mites (Tetranychus urticae) establish larger colonies on plants already infested with the tomato russet mite (Aculops lycopersici). Using laboratory assays, we observed that spider mites have a much higher reproductive performance on russet mite-infested plants, similar to their performance on the jasmonic acid (JA)-biosynthesis mutant def-1. Hence, we tested if russet mites suppress JA-responses thereby facilitating spider mites. We found that russet mites manipulate defenses: they induce those mediated by salicylic acid (SA) but suppress those mediated by JA which would otherwise hinder growth. This suppression of JA-defenses occurs downstream of JA-accumulation and is independent from its natural antagonist SA. In contrast, spider mites induced both JA- and SA-responses while plants infested with the two mite species together display strongly reduced JA-responses, yet a doubled SA-response. The spider mite-induced JA-response in the presence of russet mites was restored on transgenic tomatoes unable to accumulate SA (nahG), but russet mites alone still did not induce JA-responses on nahG plants. Thus, indirect facilitation of spider mites by russet mites depends on the antagonistic action of SA on JA while suppression of JA-defenses by russet mites does not. Furthermore, russet mite-induced SA-responses inhibited secondary infection by Pseudomonas syringae (Pst) while not affecting the mite itself. Finally, while facilitating spider mites, russet mites experience reduced population growth.

Conclusions

Our results show that the benefits of suppressing plant defenses may diminish within communities with natural competitors. We show that suppression of defenses via the JA-SA antagonism can be a consequence, rather than the cause, of a primary suppression event and that its overall effect is determined by the presence of competing herbivores and the distinct palette of defenses these induce. Thus, whether or not host-defense manipulation improves an herbivore’s fitness depends on interactions with other herbivores via induced-host defenses, implicating bidirectional causation of community structure of herbivores sharing a plant.
  相似文献   

7.
8.
Cis‐(+)‐12‐oxo‐phytodienoic acid (OPDA) is likely to play signaling roles in plant defense that do not depend on its further conversion to the phytohormone jasmonic acid. To elucidate the role of OPDA in Solanum lycopersicum (tomato) plant defense, we have silenced the 12‐oxophytodienoate reductase 3 (OPR3) gene. Two independent transgenic tomato lines (SiOPR3‐1 and SiOPR3‐2) showed significantly reduced OPR3 expression upon infection with the necrotrophic pathogen Botrytis cinerea. Moreover, SiOPR3 plants are more susceptible to this pathogen, and this susceptibility is accompanied by a significant decrease in OPDA levels and by the production of JA‐Ile being almost abolished. OPR3 silencing also leads to a major reduction in the expression of other genes of the jasmonic acid (JA) synthesis and signaling pathways after infection. These results confirm that in tomato plants, as in Arabidopsis, OPR3 determines OPDA availability for JA biosynthesis. In addition, we show that an intact JA biosynthetic pathway is required for proper callose deposition, as its pathogen‐induced accumulation is reduced in SiOPR3 plants. Interestingly, OPDA, but not JA, treatment restored basal resistance to B. cinerea and induced callose deposition in SiOPR3‐1 and SiOPR3‐2 transgenic plants. These results provide clear evidence that OPDA by itself plays a major role in the basal defense of tomato plants against this necrotrophic pathogen.  相似文献   

9.
Populations of spider mites often reach high levels on urban plants. In many cases, insecticide applications targeting other herbivores trigger outbreaks of spider mites. Recently, elevated populations of spider mites on a diversity of plants in urban landscapes have been associated with applications of imidacloprid, a neonicotinoid insecticide. Imidacloprid has also been linked to increased fecundity in two species of spider mites. In this study, we evaluated the indirect (plant-mediated) and direct impact of imidacloprid on fecundity and longevity of Eurytetranychus buxi Garman (Acari: Tetranychidae), feeding on boxwoods, Buxus sempervirens L. Moreover, we compared the abundance of E. buxi on imidacloprid-treated and untreated boxwoods in the landscape and a greenhouse to determine if changes in the fecundity of mites exposed to imidacloprid were linked to outbreaks of E. buxi. We found that females consuming imidacloprid-treated plants laid more eggs than females feeding on untreated boxwoods, while their longevity remained unchanged. Fecundity was not affected, however, when spider mites were directly sprayed with imidacloprid and consumed foliage of untreated boxwoods. Furthermore, populations of E. buxi were greater on boxwoods treated with imidacloprid in the landscape and greenhouse. On landscape boxwoods, elevated populations of E. buxi persisted into a second year. We also observed general lack of predators of spider mites on treated and untreated boxwoods in the field suggesting that imidacloprid’s eruptive effect on E. buxi stems more from indirect changes in plant quality than from a loss of top-down regulation from E. buxi’s natural enemies.  相似文献   

10.
11.
Lotus Japonicus has an indirect defense mechanism against spider mites, Tetranychus urticae, we investigated the responses of predatory mites, Phytoseiulus persimilis, to volatile compounds released from T. urticae-infested L. japonicus in a Y-tube olfactometer. Plants infested with spider mites attracted more P. persimilis than did clean air. Uninfested plants and artificially damaged plants did not attract P. persimilis. When infested by spider mites, L. japonicus plants started emitting (Z)-3-hexenyl acetate, (E)-4,8-dimethyl-1,3,7-nonatriene, germacrene d, 1-octen-3-ol and methyl salicylate (MeSA). These compounds were considered to be T. urticae-induced plant volatile compounds. When three L. japonicus mutants deficient in nodule organogenesis were infested by the spider mites, they all attracted P. persimilis. However, two of the infested mutants emitted blends of induced volatile compounds that were qualitatively different from those emitted from infested wild type L. japonicus. Received 8 August 2000/ Accepted in revised form 12 October 2000  相似文献   

12.
Symbiotic root micro-organisms such as arbuscular mycorrhizal fungi commonly change morphological, physiological and biochemical traits of their host plants and may thus influence the interaction of aboveground plant parts with herbivores and their natural enemies. While quite a few studies tested the effects of mycorrhiza on life history traits, such as growth, development and reproduction, of aboveground herbivores, information on possible effects of mycorrhiza on host plant choice of herbivores via constitutive and/or induced plant volatiles is lacking. Here we assessed whether symbiosis of the mycorrhizal fungus Glomus mosseae with common bean plants Phaseolus vulgaris influences the response of the two-spotted spider mite Tetranychus urticae to volatiles of plants that were clean or infested with spider mites. Mycorrhiza-naïve and -experienced spider mites, reared on mycorrhizal or non-mycorrhizal bean plants for several days before the experiments, were subjected to Y-tube olfactometer choice tests. Experienced but not naïve spider mites distinguished between constitutive volatiles of clean non-mycorrhizal and mycorrhizal plants, preferring the latter. Neither naïve nor experienced spider mites distinguished between spider mite-induced volatiles of mycorrhizal and non-mycorrhizal plants. Learning the odor of clean mycorrhizal plants, resulting in a subsequent preference for these odors, is adaptive because mycorrhizal plants are more favorable host plants for fitness of the spider mites than are non-mycorrhizal plants.  相似文献   

13.
To investigate the relative contributions of bottom-up (plant condition) and top-down (predatory mites) factors on the dynamics of the two-spotted spider mite (Tetranychus urticae), a series of experiments were conducted in which spider mites and predatory mites were released on bean plants. Plants inoculated with 2, 4, 8, 16, and 32 adult female T. urticae were either left untreated or were inoculated with 3 or 5 adult female predators (Phytoseiulus persimilis) one week after the introduction of spider mites. Plant area, densities of T. urticae and P. persimilis, and plant injury were assessed by weekly sampling. Data were analysed by a combination of statistical methods and a tri-trophic mechanistic simulation model partly parameterised from the current experiments and partly from previous data. The results showed a clear effect of predators on the density of spider mites and on the plant injury they cause. Plant injury increased with the initial number of spider mites and decreased with the initial number of predators. Extinction of T. urticae, followed by extinction of P. persimilis, was the most likely outcome for most initial combinations of prey and predators. Eggs constituted a relatively smaller part of the prey population as plant injury increased and of the predator population as prey density decreased. We did not find statistical evidence of P. persimilis having preference for feeding on T. urticae eggs. The simulation model demonstrated that bottom-up and top-down factors interact synergistically to reduce the density of spider mites. This may have important implications for biological control of spider mites by means of predatory mites.  相似文献   

14.
Spider mites (Tetranychidae sp.) are widely occurring arthropod pests on cultivated plants. Feeding by the two‐spotted spider mite T. urticae, a generalist herbivore, induces a defense response in plants that mainly depends on the phytohormones jasmonic acid and salicylic acid (SA). On tomato (Solanum lycopersicum), however, certain genotypes of T. urticae and the specialist species T. evansi were found to suppress these defenses. This phenomenon occurs downstream of phytohormone accumulation via an unknown mechanism. We investigated if spider mites possess effector‐like proteins in their saliva that can account for this defense suppression. First we performed an in silico prediction of the T. urticae and the T. evansi secretomes, and subsequently generated a short list of candidate effectors based on additional selection criteria such as life stage‐specific expression and salivary gland expression via whole mount in situ hybridization. We picked the top five most promising protein families and then expressed representatives in Nicotiana benthamiana using Agrobacterium tumefaciens transient expression assays to assess their effect on plant defenses. Four proteins from two families suppressed defenses downstream of the phytohormone SA. Furthermore, T. urticae performance on N. benthamiana improved in response to transient expression of three of these proteins and this improvement was similar to that of mites feeding on the tomato SA accumulation mutant nahG. Our results suggest that both generalist and specialist plant‐eating mite species are sensitive to SA defenses but secrete proteins via their saliva to reduce the negative effects of these defenses.  相似文献   

15.
It has been shown that many natural enemies of herbivorous arthropods use herbivore induced plant volatiles (HIPVs) to locate their prey. Herbivores can also exploit cues emitted by plants infested with heterospecifics or conspecifics. A study was conducted to test whether green bean HIPVs as well as odours emitted directly by spider mites influenced the orientation behaviour of the predatory mirid bug, Macrolophus caliginosus and its prey, Tetranychus urticae in a Y-tube olfactometer. Our results show that both spider mites and M. caliginosus preferred spider mite infested green bean plants to uninfested plants. For M. caliginosus this response was mediated by HIPVs whereas for T. urticae it was mediated through a composite response to both HIPVs and odours emitted directly by the conspecifics (and their associated products). The results may be of use in practical biocontrol situations, through e.g., plant breeding for improved HIPV production, conditioning of mass-reared predators to appropriate cues, and employment of “push–pull-strategies” by using HIPVs.  相似文献   

16.
The moss Physcomitrella patens (P. patens) is a useful model to study abiotic stress responses since it is highly tolerant to drought, salt and osmotic stress. However, very little is known about the defense mechanisms activated in this moss after pathogen assault. In this study, we show that P. patens activated multiple and similar responses against Pythium irregulare and Pythium debaryanum, including the reinforcement of the cell wall, induction of the defense genes CHS, LOX and PAL, and accumulation of the signaling molecules jasmonic acid (JA) and its precursor 12-oxo-phytodienoic acid (OPDA). However, theses responses were not sufficient and infection could not be prevented leading to hyphae colonization of moss tissues and plant decay. Pythium infection induced reactive oxygen species production and caused cell death of moss tissues. Taken together, these data indicate that Pythium infection activates in P. patens common responses to those previously characterized in flowering plants. Microscopic analysis also revealed intracellular relocation of chloroplasts in Pythium-infected tissues toward the infection site. In addition, OPDA, JA and its methyl ester methyl jasmonate induced the expression of PAL. Our results show for the first time JA and OPDA accumulation in a moss and suggest that this defense pathway is functional and has been maintained during the evolution of plants. Authors Juan Pablo Oliver and Alexandra Castro contributed equally to this work.  相似文献   

17.
The predatory mite, Phytoseiulus persimilis is an important biological control agent of herbivorous spider mites. This species is also intensively used in the study of tritrophic effects of plant volatiles in interactions involving plants, herbivores, and their natural enemies. Recently, a novel pathogenic bacterium, Acaricomes phytoseiuli, has been isolated from adult P. persimilis females. This pathogen causes a characteristic disease syndrome with dramatic changes in longevity, fecundity, and behavior. Healthy P. persimilis use spider mite-induced volatiles to locate prey patches. Infection with A. phytoseiuli strongly reduces the attraction to herbivore-induced plant volatiles. The loss of response to herbivore-induced plant volatiles along with the other disease symptoms can have a serious impact on the success of biological control of spider mites. In this study, we have developed a molecular tool (PCR) to detect the pathogenic bacterium in individual predatory mites. PCR primers specific for A. phytoseiuli were developed based on 16S ribosomal DNA of the bacterium. The PCR test was validated with DNA extracted from predatory mites that had been exposed to A. phytoseiuli. A survey on different P. persimilis populations as well as other predatory mite species from several companies that rear predatory mites for biological control revealed that the disease is widespread in Europe and is restricted to P. persimilis. The possibility that the predatory mites get infected via their prey Tetranychus urticae could be eliminated since the PCR test run on prey gave a negative result.  相似文献   

18.
Spider mites are serious pests on many economically important plant species, because they may reduce plant productivity and, at high mite densities, overexploit and even kill the host plants. We have conducted a series of greenhouse experiments to quantify the effects of two-spotted spider mites (Tetranychus urticae) on host plants (Phaseolusvulgaris). The average amount of chlorophyll per cm2 leaf area was used as a measure of plant condition. It was shown that chlorophyll concentration decreases with plant age and intensity of spider mite feeding. Damage caused by spider mites was assessed visually, using the Leaf Damage Index (LDI) defined by, and a mathematical relationship between the visual measurements and the amount of chlorophyll/cm2 was fitted to data. The relationship may serve as a short-cut to estimate overall plant injury, expressed as the relative loss of chlorophyll/cm2 leaf area caused by spider mites (D). D takes values between 0 (no injury) and 1 (all leaves dead). A highly significant positive relationship between the instantaneous spider mite density and D was found, even though D is expected to reflect the cumulated density of mites (mite-days). A model of plant growth incorporating information about plant age and D predicts that plant area has a maximum when plant age is about 60 days, and that plant area decreases exponentially with an increase in D. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Choh Y  Kugimiya S  Takabayashi J 《Oecologia》2006,147(3):455-460
We found that intact lima bean plants increased the secretion of extrafloral nectar (EFN) after exposure to Tetranychus urticae-induced plant volatiles. Predatory mites, Phytoseiulus persimilis, dispersed more slowly from an exposed intact plant than from a control plant (plant exposed to volatiles from intact conspecific). The predators also dispersed more slowly from those plants that were provided with extra EFN than from untreated plants. We further show that EFN was a potential alternative food source for P. persimilis. From these results, we concluded that increased EFN was involved in the slow dispersal of P. persimilis from the plants exposed to herbivore-induced plant volatiles. Our data suggest that the increase of EFN in an HIPV-exposed intact plant could be an induced indirect defense against spider mites.  相似文献   

20.
We have identified and characterized two Arabidopsis long coiled-coil proteins PAMP-INDUCED COILED-COIL (PICC) and PICC-LIKE (PICL). PICC (147 kDa) and PICL (87 kDa) are paralogs that consist predominantly of a long coiled-coil domain (expanded in PICC), with a predicted transmembrane domain at the immediate C-terminus. Orthologs of PICC and PICL were found exclusively in vascular plants. PICC and PICL GFP fusion proteins are anchored to the cytoplasmic surface of the endoplasmic reticulum (ER) membrane by a C-terminal transmembrane domain and a short tail domain, via a tail-anchoring mechanism. T-DNA-insertion mutants of PICC and PICL as well as the double mutant show an increased sensitivity to the plant abiotic stress hormone abscisic acid (ABA) in a post-germination growth response. PICC, but not PICL gene expression is induced by the bacterial pathogen-associated molecular pattern (PAMP) flg22. T-DNA insertion alleles of PICC, but not PICL, show increased susceptibility to the non-virulent strain P. syringae pv. tomato DC3000 hrcC, but not to the virulent strain P. syringae pv. tomato DC3000. This suggests that PICC mutants are compromised in PAMP-triggered immunity (PTI). The data presented here provide first evidence for the involvement of a plant long coiled-coil protein in a plant defense response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号