首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Ribonucleic acids from barley leaves   总被引:1,自引:1,他引:0  
1. The total RNA and the RNA present in 27000g pellet (probably composed of chloroplasts, nuclei and mitochondria) and in 27000g supernatant (probably composed of microsomes and soluble proteins) fractions (separated by centrifugation at 27000g of a leaf homogenate prepared in 0·5m-sucrose–0·02m-tris–HCl, pH7·6) of barley leaves were extracted by phenol–sodium lauryl sulphate and their elution profiles on Sephadex G-200 and on ECTEOLA-cellulose anion-exchanger were examined and their nucleotide compositions and the melting curves were determined. 2. The pellet and the supernatant fractions contained respectively about 55% and 20% of the total RNA, whereas 25% of the total RNA was lost during homogenization of the leaf tissue with sucrose–buffer. 3. The total RNA or the RNA from pellet or supernatant fractions, which by its behaviour on Sephadex G-200 columns was found to be predominantly of high molecular weight (i.e. of ribosomal origin), produced about 13 peaks on ECTEOLA-cellulose columns. The RNA species in the pellet and supernatant fractions probably resembled each other in molecular size or secondary structure or both. However, they were present in relatively different amounts in these fractions. 4. The Tm (i.e. the temperature at which 50% of the maximal increase in extinction had occurred) of total RNA and of RNA from pellet fraction was 64·5° whereas Tm of RNA from the supernatant fraction was 73°. The total RNA and the RNA from pellet fraction also resembled each other in nucleotide composition, and the RNA from the supernatant fraction in accordance with its high Tm had a high GMP+CMP content.  相似文献   

3.
Despite considerable interest and investigations on cationic lipid–DNA complexes, reports on lipid–RNA interaction are very limited. In contrast to lipid–DNA complexes where lipid binding induces partial B to A and B to C conformational changes, lipid–tRNA complexation preserves tRNA folded state. This study is the first attempt to investigate the binding of cationic lipid with transfer RNA and the effect of lipid complexation on tRNA aggregation and condensation. We examine the interaction of tRNA with cholesterol (Chol), 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), dioctadecyldimethylammoniumbromide (DDAB) and dioleoylphosphatidylethanolamine (DOPE), at physiological condition, using constant tRNA concentration and various lipid contents. FTIR, UV-visible, CD spectroscopic methods and atomic force microscopy (AFM) were used to analyze lipid binding site, the binding constant and the effects of lipid interaction on tRNA stability, conformation and condensation. Structural analysis showed lipid–tRNA interactions with G–C and A–U base pairs as well as the backbone phosphate group with overall binding constants of KChol = 5.94 (± 0.8) × 104 M–1, KDDAB = 8.33 (± 0.90) × 105 M–1, KDOTAP = 1.05 (± 0.30) × 105 M–1 and KDOPE = 2.75 (± 0.50) × 104 M–1. The order of stability of lipid–tRNA complexation is DDAB > DOTAP > Chol > DOPE. Hydrophobic interactions between lipid aliphatic tails and tRNA were observed. RNA remains in A-family structure, while biopolymer aggregation and condensation occurred at high lipid concentrations.  相似文献   

4.
The ribonucleoprotein (RNP) form of archaeal RNase P comprises one catalytic RNA and five protein cofactors. To catalyze Mg2+-dependent cleavage of the 5′ leader from pre-tRNAs, the catalytic (C) and specificity (S) domains of the RNase P RNA (RPR) cooperate to recognize different parts of the pre-tRNA. While ∼250–500 mM Mg2+ renders the archaeal RPR active without RNase P proteins (RPPs), addition of all RPPs lowers the Mg2+ requirement to ∼10–20 mM and improves the rate and fidelity of cleavage. To understand the Mg2+- and RPP-dependent structural changes that increase activity, we used pre-tRNA cleavage and ensemble FRET assays to characterize inter-domain interactions in Pyrococcus furiosus (Pfu) RPR, either alone or with RPPs ± pre-tRNA. Following splint ligation to doubly label the RPR (Cy3-RPRC domain and Cy5-RPRS domain), we used native mass spectrometry to verify the final product. We found that FRET correlates closely with activity, the Pfu RPR and RNase P holoenzyme (RPR + 5 RPPs) traverse different Mg2+-dependent paths to converge on similar functional states, and binding of the pre-tRNA by the holoenzyme influences Mg2+ cooperativity. Our findings highlight how Mg2+ and proteins in multi-subunit RNPs together favor RNA conformations in a dynamic ensemble for functional gains.  相似文献   

5.
Characterization of the thermodynamics of DNA– drug interactions is a very useful part in rational drug design. Isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC) and UV melting experiments have been used to analyze the multivalent (intercalation plus minor groove) binding of the antitumor antibiotic chartreusin to DNA. Using DNA UV melting studies in the presence of the ligand and the binding enthalpy determined by ITC, we determined that the binding constant for the interaction was 3.6 × 105 M–1 at 20°C, in a solution containing 18 mM Na+. The DNA–drug interaction was enthalpy driven, with a ΔHb of –7.07 kcal/mol at 20°C. Binding enthalpies were determined by ITC in the 20–35°C range and used to calculate a binding-induced change in heat capacity (ΔCp) of –391 cal/mol K. We have obtained a detailed thermodynamic profile for the interaction of this multivalent drug, which makes possible a dissection of ΔGobs into the component free energy terms. The hydrophobic transfer of the chartreusin chromophore from the solution to the DNA intercalating site is the main contributor to the free energy of binding.  相似文献   

6.
Presently, photo-mediated optimized synthesis of SNPs (CS-AgNPs) was carried out with the help of aqueous extracts of coconut (Cocos nucifera) outer shell fibre. Green synthesis of CS-AgNPs was undertaken under laboratory light conditions and characterized by several standard techniques such as UV–visible spectrophotometer (UV–Vis), X-ray diffraction pattern (XRD), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM) images and energy dispersive spectroscopy (EDX). UV–Vis spectra displayed a surface plasmon resonance peak at 468 nm equivalent to CS-AgNPs, and the FT-IR spectra confirmed the association of biological molecules from the extract in the synthesis process. The SEM image data confirmed the round and circular nature of CS-AgNPs. The EDX data presented the elemental configuration with a solid peak at 3 KeV that matched with the Ag. The synthesized CS-AgNPs exhibited substantial cytotoxicity potential against the HepG2 cells with (effective concentration (IC50) value of 15.28 µg/ml along with robust antioxidant potential, with respect to its 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging (IC50 of 96.39 µg/ml) and reducing assay (IC0.5 of 209.96 µg/ml). The CS-AgNPs demonstrated encouraging antimicrobial potential against four different pathogenic bacteria and one Candida sp. with inhibition zone diameter ranged between 8.87 and 13.07 mm. Overall, the existing investigation suggested that CS-AgNPs can be an attractive, cost-effective, and environment-friendly candidate for its possible uses in the food, cosmetics, and therapeutic fields.  相似文献   

7.
8.
The HIV-1 type dimerization initiation signal (DIS) loop was used as a starting point for the analysis of the stability of Watson–Crick (WC) base pairs in a tertiary structure context. We used ultraviolet melting to determine thermodynamic parameters for loop–loop tertiary interactions and compared them with regular secondary structure RNA helices of the same sequences. In 1 M Na+ the loop–loop interaction of a HIV-1 DIS type pairing is 4 kcal/mol more stable than its sequence in an equivalent regular and isolated RNA helix. This difference is constant and sequence independent, suggesting that the rules governing the stability of WC base pairs in the secondary structure context are also valid for WC base pairs in the tertiary structure context. Moreover, the effect of ion concentration on the stability of loop–loop tertiary interactions differs considerably from that of regular RNA helices. The stabilization by Na+ and Mg2+ is significantly greater if the base pairing occurs within the context of a loop–loop interaction. The dependence of the structural stability on salt concentration was defined via the slope of a Tm/log [ion] plot. The short base-paired helices are stabilized by 8°C/log [Mg2+] or 11°C/log [Na+], whereas base-paired helices forming tertiary loop–loop interactions are stabilized by 16°C/log [Mg2+] and 26°C/log [Na+]. The different dependence on ionic strength that is observed might reflect the contribution of specific divalent ion binding to the preformation of the hairpin loops poised for the tertiary kissing loop–loop contacts.  相似文献   

9.
Piperazinylalkyl ester prodrugs (4a–5d) of 6-methoxy-2-naphthylacetic acid (6-MNA) (1) were synthesized and evaluated in vitro for the purpose of percutaneous drug delivery. These ionizable prodrugs exhibited varying aqueous solubilities and lipophilicities depending on the pH of the medium. The prodrugs (4a–5c) showed higher aqueous solubility and similar lipophilicity at pH 5.0 and lower aqueous solubility and higher lipophilicity at pH 7.4 in comparison to 6-MNA. The chemical and enzymatic hydrolyses of the prodrugs was investigated in aqueous buffer solutions (pH 5.0 and 7.4) and in 80% human serum (pH 7.4) at 37°C. The prodrugs showed moderate chemical stability (t1/2 = 6–60 h) but got readily hydrolyzed enzymatically to 6-MNA with half-life ranging from 10–60 min. In the in vitro permeation study using rat skin, the flux of 6-MNA and the prodrugs was determined in aqueous buffers of pH 5.0 and 7.4. The prodrug (5b) showed 7.9- and 11.2-fold enhancement in skin permeation compared to 6-MNA (1) at pH 5.0 and 7.4, respectively. It was concluded that the parent NSAIDs having favorable pharmacokinetic and pharmacodynamic properties coupled with increased skin permeability of their prodrugs could give better options for the treatment of rheumatic diseases.

Electronic supplementary material

The online version of this article (doi:10.1208/s12249-014-0240-6) contains supplementary material, which is available to authorized users.KEY WORDS: 6-MNA, NSAID, piperazinylalkylester, prodrug, skin permeation  相似文献   

10.
Suspensions of the yeast Saccharomyces cerevisiae gave reproducible rates of O2 uptake over a period of 6 months. The relation of rate of consumption of O2 to temperature was tested over a wide range of temperatures, and the constant in the formulation of the relationship is found to be reproducible. The values of this constant (µ) have been obtained for five separate series of experiments by three methods of estimation. The variability of µ has the following magnitudes: the average deviation of a single determination expressed as per cent of the mean is ±2 per cent in the range 30–15°, and ±0.8 per cent in the range 15–3°C. This constancy of metabolic activity measured as a function of temperature can then be utilized for more precise investigations of processes controlling the velocity of oxidations of substrates, and of respiratory systems controlled by intracellular respiratory pigments. The data plotted according to the Arrhemus equation give average values of the constant µ as follows: for the range 35–30°, µ = 8,290; 30–15°, µ = 12,440 ±290; 15–3°, µ = 19,530 ±154. The critical temperatures are at 29.0° and 15.7°C. A close similarity exists between these temperature characteristics (µ) and values in the series usually obtained for respiratory activities in other organisms. This fact supports the view that a common system of processes controls the velocities of physiological activities in yeast and in other organisms.  相似文献   

11.
12.
Human GPKOW [G-patch (glycine-rich) domain and KOW (Kyrpides, Ouzounis and Woese) domain] protein contains a G-patch domain and two KOW domains, and is a homologue of Arabidopsis MOS2 and Saccharomyces Spp2 protein. GPKOW is found in the human spliceosome, but its role in pre-mRNA splicing remains to be elucidated. In this report, we showed that GPKOW interacted directly with the DHX16/hPRP2 and with RNA. Immuno-depletion of GPKOW from HeLa nuclear extracts resulted in an inactive spliceosome that still bound DHX16. Adding back recombinant GPKOW restored splicing to the depleted extract. In vivo, overexpression of GPKOW partially suppressed the splicing defect observed in dominant-negative DHX16 mutant expressing cells. Mutations at the G-patch domain greatly diminished the GPKOW–DHX16 interaction; however, the mutant was active in splicing and was able to suppress splicing defect. Mutations at the KOW1 domain slightly altered the GPKOW–RNA interaction, but the mutant was less functional in vitro and in vivo. Our results indicated that GPKOW can functionally impact DHX16 but that interaction between the proteins is not required for this activity.  相似文献   

13.
Owing to a striking, and most likely fortuitous, structural and sequence similarity with the bacterial 16 S ribosomal A site, the RNA kissing-loop complex formed by the HIV-1 genomic RNA dimerization initiation site (DIS) specifically binds 4,5-disubstituted 2-deoxystreptamine (2-DOS) aminoglycoside antibiotics. We used chemical probing, molecular modeling, isothermal titration calorimetry (ITC) and UV melting to investigate aminoglycoside binding to the DIS loop–loop complex. We showed that apramycin, an aminoglycoside containing a bicyclic moiety, also binds the DIS, but in a different way than 4,5-disubstituted 2-DOS aminoglycosides. The determination of thermodynamic parameters for various aminoglycosides revealed the role of the different rings in the drug–RNA interaction. Surprisingly, we found that the affinity of lividomycin and neomycin for the DIS (Kd ~ 30 nM) is significantly higher than that obtained in the same experimental conditions for their natural target, the bacterial A site (Kd ~ 1.6 µM). In good agreement with their respective affinity, aminoglycoside increase the melting temperature of the loop–loop interaction and also block the conversion from kissing-loop complex to extended duplex. Taken together, our data might be useful for selecting new molecules with improved specificity and affinity toward the HIV-1 DIS RNA.  相似文献   

14.
Fuchs endothelial corneal dystrophy (FECD) is an inherited degenerative disease that affects the internal endothelial cell monolayer of the cornea and can result in corneal edema and vision loss in severe cases. FECD affects ∼5% of middle-aged Caucasians in the United States and accounts for >14,000 corneal transplantations annually. Among the several genes and loci associated with FECD, the strongest association is with an intronic (CTG·CAG)n trinucleotide repeat expansion in the TCF4 gene, which is found in the majority of affected patients. Corneal endothelial cells from FECD patients harbor a poly(CUG)n RNA that can be visualized as RNA foci containing this condensed RNA and associated proteins. Similar to myotonic dystrophy type 1, the poly(CUG)n RNA co-localizes with and sequesters the mRNA-splicing factor MBNL1, leading to missplicing of essential MBNL1-regulated mRNAs. Such foci and missplicing are not observed in similar cells from FECD patients who lack the repeat expansion. RNA-Seq splicing data from the corneal endothelia of FECD patients and controls reveal hundreds of differential alternative splicing events. These include events previously characterized in the context of myotonic dystrophy type 1 and epithelial-to-mesenchymal transition, as well as splicing changes in genes related to proposed mechanisms of FECD pathogenesis. We report the first instance of RNA toxicity and missplicing in a common non-neurological/neuromuscular disease associated with a repeat expansion. The FECD patient population with this (CTG·CAG)n trinucleotide repeat expansion exceeds that of the combined number of patients in all other microsatellite expansion disorders.  相似文献   

15.
Pseudomonas aeruginosa (P. aeruginosa) is a highly pathogenic bacteria involved in numerous diseases among which, are urinary tract infections (UTIs). The pyocyanin secreted as a virulence factor by this bacterium has many beneficial applications but its high cost remains an obstacle for its widespread use. In this study, a total of fifty urine isolates were identified as P. aeruginosa. All strains produced pyocyanin pigment with a range of 1.3–31 µg/ml. The highest producer clinical strain P21 and the standard strain PA14 were used in optimization of pyocyanin production. Among tested media, king’s A fluid medium resulted in the highest yield of pyocyanin pigment followed by nutrient broth. Growth at 37 °C was superior in pyocyanin production than growth at 30 °C. Both shaking and longer incubation periods (3–4 days) improved pyocyanin production. The pyocyanin yield was indifferent upon growth of P21 at both pH 7 and pH 8. In conclusion, the optimum conditions for pyocyanin production are to use King’s A fluid medium of pH 7 and incubate the inoculated medium at 37 °C with shaking at 200 rpm for a period of three to four days.  相似文献   

16.
Simulations of two distinct systems, one a planar bilayer, the other the inverse hexagonal phase, indicate consistent mechanical properties and curvature preferences, with single DOPE leaflets having a spontaneous curvature, R0 = −26 Å (experimentally ∼–29.2 Å) and DOPC leaflets preferring to be approximately flat (R0= –65 Å, experimentally ∼–87.3 Å). Additionally, a well-defined pivotal plane, where a DOPE leaflet bends at constant area, has been determined to be near the glycerol region of the lipid, consistent with the experimentally predicted plane. By examining the curvature frustration of both high and low curvature, the transferability of experimentally determined bending constants is supported. The techniques herein can be applied to predict the effect of biologically active molecules on the mechanical properties of lipid bilayers under well-controlled conditions.  相似文献   

17.
In previous papers of this series the temperature-dependent Raman spectra of poly(dA)·poly(dT) and poly(dA–dT)·poly(dA–dT) were used to characterize structurally the melting and premelting transitions in DNAs containing consecutive A·T and alternating A·T/T·A base pairs. Here, we describe procedures for obtaining thermodynamic parameters from the Raman data. The method exploits base-specific and backbone-specific Raman markers to determine separate thermodynamic contributions of A, T and deoxyribosyl-phosphate moieties to premelting and melting transitions. Key findings include the following: (i) Both poly(dA)·poly(dT) and poly(dA–dT)· poly(dA–dT) exhibit robust premelting transitions, due predominantly to backbone conformational changes. (ii) The significant van’t Hoff premelting enthalpies of poly(dA)·poly(dT) [ΔHvHpm = 18.0 ± 1.6 kcal·mol–1 (kilocalories per mole cooperative unit)] and poly(dA–dT)·poly(dA–dT) (ΔHvHpm = 13.4 ± 2.5 kcal·mol–1) differ by an amount (~4.6 kcal·mol–1) estimated as the contribution from three-centered inter-base hydrogen bonding in (dA)n·(dT)n tracts. (iii) The overall stacking free energy of poly(dA)· poly(dT) [–6.88 kcal·molbp–1 (kilocalories per mole base pair)] is greater than that of poly(dA–dT)· poly(dA–dT) (–6.31 kcal·molbp–1). (iv) The difference between stacking free energies of A and T is significant in poly(dA)·poly(dT) (ΔΔGst = 0.8 ± 0.3 kcal· molbp–1), but marginal in poly(dA–dT)·poly(dA–dT) (ΔΔGst = 0.3 ± 0.3 kcal·molbp–1). (v) In poly(dA)· poly(dT), the van’t Hoff parameters for melting of A (ΔHvHA = 407 ± 23 kcal·mol–1, ΔSvHA = 1166 ± 67 cal·°K–1·mol–1, ΔGvH(25°C)A = 60.0 ± 3.2 kcal·mol–1) are clearly distinguished from those of T (ΔHvHT = 185 ± 38 kcal·mol–1, ΔSvHT = 516 ± 109 cal·°K–1·mol–1, ΔGvH(25°C)T = 27.1 ± 5.5 kcal·mol–1). (vi) Similar relative differences are observed in poly(dA–dT)· poly(dA–dT) (ΔHvHA = 333 ± 54 kcal·mol–1, ΔSvHA = 961 ± 157 cal·°K–1·mol–1, ΔGvH(25°C)A = 45.0 ± 7.6 kcal· mol–1; ΔHvHT = 213 ± 30 kcal·mol–1, ΔSvHT = 617 ± 86 cal·°K–1·mol–1, ΔGvH(25°C)T = 29.3 ± 4.9 kcal·mol–1). The methodology employed here distinguishes thermodynamic contributions of base stacking, base pairing and backbone conformational ordering in the molecular mechanism of double-helical B DNA formation.  相似文献   

18.
Valeriana jatamansi Jones and Hedychium spicatum Ham-ex-Smith are important medicinal herbs of the Himalayan region, which are highly demanded by pharmaceutical industries. Climatic variability especially increasing temperature and water deficit affects the growth and productivity of these species. In addition, increased temperature and water deficit may trigger the biosynthesis of medicinally important bioactive metabolites, which influence the quality of raw plant material and finished products. Therefore, V. jatamansi and H. spicatum plants were undertaken and subjected to different levels of drought (no irrigation), heat (35 °C), and combined stresses for investigating their physiological and metabolic responses. Both the treatments (individually and in combination) reduced relative water content, photosynthesis, carboxylation efficiency, chlorophyll content, while increased intracellular CO2, malondialdehyde and H2O2 content in both the species. Transpiration and stomatal conductance increased under heat and reduced under drought stress as compared to control. Water use efficiency was found to be increased under drought, while reduced under heat stress. Protein, proline, carotenoid content and antioxidant enzymes activities (superoxide dismutase, peroxidise, catalase) initially increased and thereafter decreased during late stages of stress. Exposure of plants to combined stress was more detrimental than individual stress. In V. jatamansi, exposure to drought stress significantly (p < 0.05) increased valerenic acid content in all plant parts (1.0–6.9 fold) with maximum increase after 20 days of exposure, while under heat stress, valerenic acid content increased (1.0–1.2 fold) in belowground part of V. jatamansi, and decreased (1.1–1.3 fold) in aerial part as compared to control. In H. spicatum, exposure of individual heat stress for 25–30 days and combined stress for 5–15 days significantly (p < 0.05) increased linalool content to 6.2–6.5 fold and 8.3–19.6 fold, respectively, as compared to control. Higher accumulation of bioactive compounds after exposure to mild stress provides encouraging prospects for enhancing pharmaceutical properties of these Himalayan herbs.Supplementary Information The online version contains supplementary material available at 10.1007/s12298-021-01027-w.  相似文献   

19.
多聚谷氨酰胺(PolyQ)疾病,是一类由编码蛋白质的基因中CAG三核苷酸重复序列的异常延伸所引发的神经退行性疾病.CAG三核苷酸重复序列导致所编码蛋白质的PolyQ序列的异常延伸,使蛋白质发生错误折叠和积聚,并在细胞内形成包涵体.包涵体的形成是神经退行性疾病的一个重要特征.PolyQ蛋白在积聚过程中,可以将细胞内与其特异相互作用的蛋白质或RNA募集到包涵体中.被募集的其他蛋白质或RNA不仅自身的可溶性组分减少,而且由于被"挟持"到包涵体中其在细胞内的有效组分也相应地减少,从而影响其正常的生物功能.根据特异相互作用的模式,我们将募集作用分为以下几种类型:蛋白质(含Poly Q蛋白)的共积聚;特定结构域或模体介导的募集作用(包括泛素等修饰介导的募集作用);RNA介导的募集作用;以及对分子伴侣蛋白的募集作用.PolyQ延伸蛋白的积聚和对其他组分的募集可能是引发细胞毒性和神经退行性病变的重要原因.  相似文献   

20.
Domain of Unknown Function 89 (DUF89) proteins are metal-dependent phosphohydrolases. Exemplary DUF89 enzymes differ in their metal and phosphosubstrate preferences. Here, we interrogated the activities and structures of two DUF89 paralogs from fission yeast—Duf89 and Duf8901. We find that Duf89 and Duf8901 are cobalt/nickel-dependent phosphohydrolases adept at hydrolyzing p-nitrophenylphosphate and PPi. Crystal structures of metal-free Duf89 and Co2+-bound Duf8901 disclosed two enzyme conformations that differed with respect to the position of a three-helix module, which is either oriented away from the active site in Duf89 or forms a lid over the active site in Duf8901. Lid closure results in a 16 Å movement of Duf8901 Asp195, vis-à-vis Asp199 in Duf89, that brings Asp195 into contact with an octahedrally coordinated cobalt. Reaction of Duf8901 with BeCl2 and NaF in the presence of divalent cations Co2+, Ni2+, or Zn2+ generated covalent Duf8901-(Asp248)–beryllium trifluoride (BeF3)•Co2+, Duf8901-(Asp248)–BeF3•Ni2+, or Duf8901-(Asp248)–BeF3•Zn2+ adducts, the structures of which suggest a two-step catalytic mechanism via formation and hydrolysis of an enzyme-(aspartyl)–phosphate intermediate. Alanine mutations of Duf8901 Asp248, Asn249, Lys401, Asp286, and Asp195 that interact with BeF3•Co2+ squelched p-nitrophenylphosphatase activity. A 1.8 Å structure of a Duf8901-(Asp248)–AlF4–OH2•Co2+ transition-state mimetic suggests an associative mechanism in which Asp195 and Asp363 orient and activate the water nucleophile. Whereas deletion of the duf89 gene elicited a phenotype in which expression of phosphate homeostasis gene pho1 was derepressed, deleting duf8901 did not, thereby hinting that the DUF89 paralogs have distinct functional repertoires in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号