首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Yellow fever (YF) has re-emerged in the last two decades causing several outbreaks in endemic countries and spreading to new receptive regions. This changing epidemiology of YF creates new challenges for global public health efforts. Yellow fever is caused by the yellow fever virus (YFV) that circulates between humans, the mosquito vector, and non-human primates (NHP). In this systematic review and meta-analysis, we review and analyse data on the case fatality rate (CFR) and prevalence of YFV in humans, and on the prevalence of YFV in arthropods, and NHP in sub-Saharan Africa (SSA). We performed a comprehensive literature search in PubMed, Web of Science, African Journal Online, and African Index Medicus databases. We included studies reporting data on the CFR and/or prevalence of YFV. Extracted data was verified and analysed using the random effect meta-analysis. We conducted subgroup, sensitivity analysis, and publication bias analyses using the random effect meta-analysis while I2 statistic was employed to determine heterogeneity. This review was registered with PROSPERO under the identification CRD42021242444. The final meta-analysis included 55 studies. The overall case fatality rate due to YFV was 31.1% (18.3–45.4) in humans and pooled prevalence of YFV infection was 9.4% (6.9–12.2) in humans. Only five studies in West and East Africa detected the YFV in mosquito species of the genus Aedes and in Anopheles funestus. In NHP, YFV antibodies were found only in members of the Cercopithecidae family. Our analysis provides evidence on the ongoing circulation of the YFV in humans, Aedes mosquitoes and NHP in SSA. These observations highlight the ongoing transmission of the YFV and its potential to cause large outbreaks in SSA. As such, strategies such as those proposed by the WHO’s Eliminate Yellow Fever Epidemics (EYE) initiative are urgently needed to control and prevent yellow fever outbreaks in SSA.  相似文献   

4.
5.
6.
Mayaro virus (MAYV) is an alphavirus endemic to South and Central America associated with sporadic outbreaks in humans. MAYV infection causes severe joint and muscle pain that can persist for weeks to months. Currently, there are no approved vaccines or therapeutics to prevent MAYV infection or treat the debilitating musculoskeletal inflammatory disease. In the current study, a prophylactic MAYV vaccine expressing the complete viral structural polyprotein was developed based on a non-replicating human adenovirus V (AdV) platform. Vaccination with AdV-MAYV elicited potent neutralizing antibodies that protected WT mice against MAYV challenge by preventing viremia, reducing viral dissemination to tissues and mitigating viral disease. The vaccine also prevented viral-mediated demise in IFN⍺R1-/- mice. Passive transfer of immune serum from vaccinated animals similarly prevented infection and disease in WT mice as well as virus-induced demise of IFN⍺R1-/- mice, indicating that antiviral antibodies are protective. Immunization with AdV-MAYV also generated cross-neutralizing antibodies against two related arthritogenic alphaviruses–chikungunya and Una viruses. These cross-neutralizing antibodies were protective against lethal infection in IFN⍺R1-/- mice following challenge with these heterotypic alphaviruses. These results indicate AdV-MAYV elicits protective immune responses with substantial cross-reactivity and protective efficacy against other arthritogenic alphaviruses. Our findings also highlight the potential for development of a multi-virus targeting vaccine against alphaviruses with endemic and epidemic potential in the Americas.  相似文献   

7.

Background

Arthropod-borne viruses (arboviruses) are among the most common agents of human febrile illness worldwide and the most important emerging pathogens, causing multiple notable epidemics of human disease over recent decades. Despite the public health relevance, little is know about the geographic distribution, relative impact, and risk factors for arbovirus infection in many regions of the world. Our objectives were to describe the arboviruses associated with acute undifferentiated febrile illness in participating clinics in four countries in South America and to provide detailed epidemiological analysis of arbovirus infection in Iquitos, Peru, where more extensive monitoring was conducted.

Methodology/Findings

A clinic-based syndromic surveillance system was implemented in 13 locations in Ecuador, Peru, Bolivia, and Paraguay. Serum samples and demographic information were collected from febrile participants reporting to local health clinics or hospitals. Acute-phase sera were tested for viral infection by immunofluorescence assay or RT-PCR, while acute- and convalescent-phase sera were tested for pathogen-specific IgM by ELISA. Between May 2000 and December 2007, 20,880 participants were included in the study, with evidence for recent arbovirus infection detected for 6,793 (32.5%). Dengue viruses (Flavivirus) were the most common arbovirus infections, totaling 26.0% of febrile episodes, with DENV-3 as the most common serotype. Alphavirus (Venezuelan equine encephalitis virus [VEEV] and Mayaro virus [MAYV]) and Orthobunyavirus (Oropouche virus [OROV], Group C viruses, and Guaroa virus) infections were both observed in approximately 3% of febrile episodes. In Iquitos, risk factors for VEEV and MAYV infection included being male and reporting to a rural (vs urban) clinic. In contrast, OROV infection was similar between sexes and type of clinic.

Conclusions/Significance

Our data provide a better understanding of the geographic range of arboviruses in South America and highlight the diversity of pathogens in circulation. These arboviruses are currently significant causes of human illness in endemic regions but also have potential for further expansion. Our data provide a basis for analyzing changes in their ecology and epidemiology.  相似文献   

8.
Yellow fever virus (YFV) is a mosquito-borne flavivirus that is a major public health problem in tropical areas of Africa and South America. There have been detailed studies on YFV ecology in West Africa and South America, but current understanding of YFV circulation on the African continent is incomplete. This inadequacy is especially notable for East and Central Africa, for which the unpredictability of human outbreaks is compounded by limitations in both historical and present surveillance efforts. Sparse availability of nucleotide sequence data makes it difficult to investigate the dispersal of YFV in these regions of the continent. To remedy this, we constructed Bayesian phylogenetic and geographic analyses utilizing 49 partial genomic sequences to infer the structure of YFV divergence across the known range of the virus on the African continent. Relaxed clock analysis demonstrated evidence for simultaneous divergence of YFV into east and west lineages, a finding that differs from previous hypotheses of YFV dispersal from reservoirs located on edges of the endemic range. Using discrete and continuous geographic diffusion models, we provide detailed structure of YFV lineage diversity. Significant transition links between extant East and West African lineages are presented, implying connection between areas of known sylvatic cycling. The results of demographic modeling reinforce the existence of a stably maintained population of YFV with spillover events into human populations occurring periodically. Geographically distinct foci of circulation are reconstructed, which have significant implications for studies of YFV ecology and emergence of human disease. We propose further incorporation of Bayesian phylogeography into formal GIS analyses to augment studies of arboviral disease.  相似文献   

9.
The Arboviral diseases are caused by arthropod-borne viruses, such as Mayaro virus (MAYV), the etiological agent of Mayaro fever. This disease has been drawing the attention of the public health authorities for the increased number of cases likely due to virus adaptation for survival to urban areas as well as infection and multiplication in other vectors insects. Therefore, this work aimed to identify the MAYV infecting Aedes aegypti mosquitoes in Goiânia, the capital of state of Goiás, Brazil. For the development of study, the larvae of A. aegypti were collected in Basic Health Units from different regions of Goiânia then the larvae were grown to adult mosquitoes in controlled laboratory conditions. The female mosquitoes were submitted to the procedure of head and body separation. The RNAs obtained from these samples were analyzed by real-time PCR for identification of arboviruses. We only detect the presence of MAVY in the mosquitoes, in this sense our findings suggest that A. aegypti harbor MAYV in different anatomical sites, and potentially the process of vertical transmission of MAYV can occur in this vector.  相似文献   

10.
ABSTRACT. A new species of Herpetomonas was isolated from the intestinal tract of a mosquito, Haemagogus janthinomys, in French Guiana (South America). Ultrastructure, growth in various culture media, and morphological changes are presented. The name, Herpetomonas dedonderi, is proposed for this new species of lower trypanosomatid.  相似文献   

11.
12.
Yellow fever virus (YFV) remains the cause of severe morbidity and mortality in South America and Africa. To determine the evolutionary history of this important reemerging pathogen, we performed a phylogenetic analysis of the largest YFV data set compiled to date, representing the prM/E gene region from 133 viral isolates sampled from 22 countries over a period of 76 years. We estimate that the currently circulating strains of YFV arose in Africa within the last 1,500 years and emerged in the Americas following the slave trade approximately 300-400 years ago. These viruses then spread westwards across the continent and persist there to this day in the jungles of South America. We therefore illustrate how gene sequence data can be used to test hypotheses of viral dispersal and demographics, and document the role of human migration in the spread of infectious disease.  相似文献   

13.
Aedes simpsoni complex has a wide distribution in Africa and comprises at least three described sub-species including the yellow fever virus (YFV) vector Ae. bromeliae. To date, the distribution and relative contributions of the sub-species and/or subpopulations including bionomic characteristics in relation to YF transmission dynamics remain poorly studied. In this study conducted in two areas with divergent ecosystems: peri-urban (coastal Rabai) and rural (Rift Valley Kerio Valley) in Kenya, survival rate was estimated by parity in Ae. simpsoni s.l. mosquitoes sampled using CO2-baited BG Sentinel traps. We then applied PCR targeting the nuclear internal transcribed spacer 2 (ITS2), region followed by sequencing and phylogenetic analytics to identify the sibling species in the Ae. simpsoni complex among parous and blood fed cohorts. Our results show that Ae. bromeliae was the most dominant sub-species in both areas, exhibiting high survival rates, human blood-feeding, and potentially, high vectorial capacity for pathogen transmission. We document for the first time the presence of Ae. lilii in Kenya and potentially yet-to-be described species in the complex displaying human feeding tendencies. We also infer a wide host feeding range on rodents, reptile, and domestic livestock besides humans especially for Ae. bromeliae. This feeding trend could likely expose humans to various zoonotic pathogens. Taken together, we highlight the utility of genotype-based analyses to generate precision surveillance data of vector populations for enhanced disease risk prediction and to guide cost-effective interventions (e.g. YF vaccinations).  相似文献   

14.
《Journal of molecular biology》2019,431(12):2283-2297
Mayaro virus (MAYV) is a member of Togaviridae family, which also includes Chikungunya virus as a notorious member. MAYV recently emerged in urban areas of the Americas, and this emergence emphasized the current paucity of knowledge about its replication cycle. The macro domain (MD) of MAYV belongs to the N-terminal region of its non-structural protein 3, part of the replication complex. Here, we report the first structural and dynamical characterization of a previously unexplored Alphavirus MD investigated through high-resolution NMR spectroscopy, along with data on its ligand selectivity and binding properties. The structural analysis of MAYV MD reveals a typical “macro” (ββαββαβαβα) fold for this polypeptide, while NMR-driven interaction studies provide in-depth insights into MAYV MD–ligand adducts. NMR data in concert with thermodynamics and biochemical studies provide convincing experimental evidence for preferential binding of adenosine diphosphate ribose (ADP‐r) and adenine-rich RNAs to MAYV MD, thus shedding light on the structure–function relationship of a previously unexplored viral MD. The emerging differences with any other related MD are expected to enlighten distinct functions.  相似文献   

15.
Mayaro virus (MAYV) is an emerging, mosquito-borne alphavirus that causes a dengue-like illness in many regions of South America, and which has the potential to urbanize. Because no specific treatment or vaccine is available for MAYV infection, we capitalized on an IRES-based approach to develop a live-attenuated MAYV vaccine candidate. Testing in infant, immunocompetent as well as interferon receptor-deficient mice demonstrated a high degree of attenuation, strong induction of neutralizing antibodies, and efficacy against lethal challenge. This vaccine strain was also unable to infect mosquito cells, a major safety feature for a live vaccine derived from a mosquito-borne virus. Further preclinical development of this vaccine candidate is warranted to protect against this important emerging disease.  相似文献   

16.
17.
Mosquito-borne yellow fever virus (YFV) causes highly lethal, viscerotropic disease in humans and non-human primates. Despite the availability of efficacious live-attenuated vaccine strains, 17D-204 and 17DD, derived by serial passage of pathogenic YFV strain Asibi, YFV continues to pose a significant threat to human health. Neither the disease caused by wild-type YFV, nor the molecular determinants of vaccine attenuation and immunogenicity, have been well characterized, in large part due to the lack of a small animal model for viscerotropic YFV infection. Here, we describe a small animal model for wild-type YFV that manifests clinical disease representative of that seen in primates without adaptation of the virus to the host, which was required for the current hamster YF model. Investigation of the role of type I interferon (IFN-α/β) in protection of mice from viscerotropic YFV infection revealed that mice deficient in the IFN-α/β receptor (A129) or the STAT1 signaling molecule (STAT129) were highly susceptible to infection and disease, succumbing within 6–7 days. Importantly, these animals developed viscerotropic disease reminiscent of human YF, instead of the encephalitic signs typically observed in mice. Rapid viremic dissemination and extensive replication in visceral organs, spleen and liver, was associated with severe pathologies in these tissues and dramatically elevated MCP-1 and IL-6 levels, suggestive of a cytokine storm. In striking contrast, infection of A129 and STAT129 mice with the 17D-204 vaccine virus was subclinical, similar to immunization in humans. Although, like wild-type YFV, 17D-204 virus amplified within regional lymph nodes and seeded a serum viremia in A129 mice, infection of visceral organs was rarely established and rapidly cleared, possibly by type II IFN-dependent mechanisms. The ability to establish systemic infection and cause viscerotropic disease in A129 mice correlated with infectivity for A129-derived, but not WT129-derived, macrophages and dendritic cells in vitro, suggesting a role for these cells in YFV pathogenesis. We conclude that the ability of wild-type YFV to evade and/or disable components of the IFN-α/β response may be primate-specific such that infection of mice with a functional IFN-α/β antiviral response is attenuated. Consequently, subcutaneous YFV infection of A129 mice represents a biologically relevant model for studying viscerotropic infection and disease development following wild-type virus inoculation, as well as mechanisms of 17D-204 vaccine attenuation, without a requirement for adaptation of the virus.  相似文献   

18.
Rabies was known to humans as a disease thousands of years ago. In America, insectivorous bats are natural reservoirs of rabies virus. The bat species Tadarida brasiliensis and Lasiurus cinereus, with their respective, host-specific rabies virus variants AgV4 and AgV6, are the principal rabies reservoirs in Chile. However, little is known about the roles of bat species in the ecology and geographic distribution of the virus. This contribution aims to address a series of questions regarding the ecology of rabies transmission in Chile. Analyzing records from 1985–2011 at the Instituto de Salud Pública de Chile (ISP) and using ecological niche modeling, we address these questions to help in understanding rabies-bat ecological dynamics in South America. We found ecological niche identity between both hosts and both viral variants, indicating that niches of all actors in the system are undifferentiated, although the viruses do not necessarily occupy the full geographic distributions of their hosts. Bat species and rabies viruses share similar niches, and our models had significant predictive power even across unsampled regions; results thus suggest that outbreaks may occur under consistent, stable, and predictable circumstances.  相似文献   

19.
Arenaviridae are a family of single stranded RNA viruses of mammals and boid snakes. Twenty-nine distinct mammalian arenaviruses have been identified, many of which cause severe hemorrhagic disease in humans, particularly in parts of sub-Saharan Africa, and in Central and South America. Humans typically become infected with an arenavirus through contact with excreta from infected rodents. Tacaribe virus (TCRV) is an arenavirus that was first isolated from bats and mosquitoes during a rabies surveillance survey conducted in Trinidad from 1956 to 1958. Tacaribe virus is unusual because it has never been associated with a rodent host and since that one time isolation, the virus has not been isolated from any vertebrate or invertebrate hosts. We report the re-isolation of the virus from a pool of 100 host-seeking Amblyomma americanum (lone star ticks) collected in a Florida state park in 2012. TCRV was isolated in two cell lines and its complete genome was sequenced. The tick-derived isolate is nearly identical to the only remaining isolate from Trinidad (TRVL-11573), with 99.6% nucleotide identity across the genome. A quantitative RT-PCR assay was developed to test for viral RNA in host-seeking ticks collected from 3 Florida state parks. Virus RNA was detected in 56/500 (11.2%) of surveyed ticks. As this virus was isolated from ticks that parasitize humans, the ability of the tick to transmit the virus to people should be evaluated. Furthermore, reservoir hosts for the virus need to be identified in order to develop risk assessment models of human infection.  相似文献   

20.
BackgroundSince the major outbreak in 2007 in the Yap Island, Zika virus (ZIKV) causing dengue-like syndromes has affected multiple islands of the South Pacific region. In May 2015, the virus was detected in Brazil and then spread through South and Central America. In December 2015, ZIKV was detected in French Guiana and Martinique. The aim of the study was to evaluate the vector competence of the mosquito spp. Aedes aegypti and Aedes albopictus from the Caribbean (Martinique, Guadeloupe), North America (southern United States), South America (Brazil, French Guiana) for the currently circulating Asian genotype of ZIKV isolated from a patient in April 2014 in New Caledonia.Conclusions/SignificanceThis study suggests that although susceptible to infection, Ae. aegypti and Ae. albopictus were unexpectedly low competent vectors for ZIKV. This may suggest that other factors such as the large naïve population for ZIKV and the high densities of human-biting mosquitoes contribute to the rapid spread of ZIKV during the current outbreak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号