首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SMARCAL1 promotes the repair and restart of damaged replication forks. Either overexpression or silencing SMARCAL1 causes the accumulation of replication-associated DNA damage. SMARCAL1 is heavily phosphorylated. Here we identify multiple phosphorylation sites, including S889, which is phosphorylated even in undamaged cells. S889 is highly conserved through evolution and it regulates SMARCAL1 activity. Specifically, S889 phosphorylation increases the DNA-stimulated ATPase activity of SMARCAL1 and increases its ability to catalyze replication fork regression. A phosphomimetic S889 mutant is also hyperactive when expressed in cells, while a non-phosphorylatable mutant is less active. S889 lies within a C-terminal region of the SMARCAL1 protein. Deletion of the C-terminal region also creates a hyperactive SMARCAL1 protein suggesting that S889 phosphorylation relieves an auto-inhibitory function of this SMARCAL1 domain. Thus, S889 phosphorylation is one mechanism by which SMARCAL1 activity is regulated to ensure the proper level of fork remodeling needed to maintain genome integrity during DNA synthesis.  相似文献   

2.
3.
BackgroundCholera, an acute diarrheal disease is a major public health problem in many developing countries. Several rapid diagnostic tests (RDT) are available for the detection of cholera, but their efficacies are not compared in an endemic setting. In this study, we have compared the specificity and sensitivity of three RDT kits for the detection of Vibrio cholerae O1 and compared their efficiency with culture and polymerase chain reaction (PCR) methods.MethodsFive hundred six diarrheal stool samples collected from patients from two different hospitals in Kolkata, India were tested using SD Bioline Cholera, SMART-II Cholera O1 and Crystal-VC RDT kits. All the stool samples were screened for the presence of V. cholerae by direct and enrichment culture methods. Stool DNA-based PCR assay was made to target the cholera toxin (ctxAB) and O1 somatic antigen (rfb) encoding genes. Statistical evaluation of the RDTs has been made using STATA software with stool culture and PCR results as the gold standards. The Bayesian latent class model (LCM) was used to evaluate the diagnostic tests in the absence of the gold standard.ResultsInvolving culture technique as gold standard, the sensitivity and specificity of the cholera RDT kits in the direct testing of stools was highest with SAMRT-II (86.1%) and SD-Cholera (94.4%), respectively. The DNA based PCR assays gave very high sensitivity (98.4%) but the specificity was comparatively low (75.3%). After enrichment, the high sensitivity and specificity was detected with SAMRT-II (78.8%) and SD-Cholera (99.1%), respectively. Considering PCR as the gold standard, the sensitivity and specificity of the RDTs remained between 52.3–58.2% and 92.3–96.8%, respectively. In the LCM, the sensitivity of direct and enrichment testing was high in SAMRT-II (88% and 92%, respectively), but the specificity was high in SD cholera for both the methods (97% and 100%, respectively). The sensitivity/specificity of RDTs and direct culture have also been analyzed considering the age, gender and diarrheal disease severity of the patients.ConclusionOverall, the performance of the RDT kits remained almost similar in terms of specificity and sensitivity. Performance of PCR was superior to the antibody-based RDTs. The RTDs are very useful in identifying cholera cases during outbreak/epidemic situations and for making them as a point-of-care (POC) testing tool needs more improvement.  相似文献   

4.
Topoisomerase II Binding Protein 1 (TOPBP1) is an important activator of the DNA damage response kinase Ataxia Telangiectasia and Rad3-related (ATR), although the mechanism by which this activation occurs is not yet known. TOPBP1 contains nine copies of the BRCA1 C-terminal repeat (BRCT) motif, which allows protein–protein and protein–DNA interactions. TOPBP1 also contains an ATR activation domain (AAD), which physically interacts with ATR and its partner ATR-interacting protein (ATRIP) in a manner that stimulates ATR kinase activity. It is unclear which of TOPBP1’s nine BRCT domains participate in the reaction, as well as the individual roles played by these relevant BRCT domains. To address this knowledge gap, here, we delineated a minimal TOPBP1 that can activate ATR at DNA double-strand breaks in a regulated manner. We named this minimal TOPBP1 “Junior” and we show that Junior is composed of just three regions: BRCT0-2, the AAD, and BRCT7&8. We further defined the individual functions of these three regions by showing that BRCT0-2 is required for recruitment to DNA double-strand breaks and is dispensable thereafter, and that BRCT7&8 is dispensable for recruitment but essential to allow the AAD to multimerize and activate ATR. The delineation of TOPBP1 Junior creates a leaner, simplified, and better understood TOPBP1 and provides insight into the mechanism of ATR activation.  相似文献   

5.
6.
RhBG, a human member of the Amt/Mep/Rh/superfamily of ammonium transporters, has been shown to facilitate NH(3) transport and to be anchored to the basolateral plasma membrane of kidney epithelial cells, via ankyrin-G. We showed here that triple alanine substitution of the (419)FLD(421) sequence, which links the cytoplasmic C-terminal domain of RhBG to ankyrin-G, not only disrupted the interaction of RhBG with the spectrin-based skeleton but also delayed its cell surface expression, decreased its plasma membrane stability, and abolished its NH(3) transport function in epithelial cell lines. Similarly, we demonstrated that both anchoring to the membrane skeleton and ammonium transport activity are regulated by the phosphorylation status of the C-terminal tail of RhBG. Tyrosine 429, which belongs to the previously reported YED basolateral targeting signal of RhBG, was demonstrated to be phosphorylated in vitro using purified Src and Syk kinases and ex vivo by analyzing the effect of pervanadate treatment on wild-type RhBG or Y429A mutants. Then, we showed that Y429D and Y429E mutations, mimicking constitutive phosphorylation, abolished NH(3) transport and enhanced Triton X-100 solubilization of RhBG from the cell membrane. In contrast, the nonphosphorylated/nonphosphorylatable Y429A and Y429F mutants behaved the same as wild-type RhBG. Conversely, Y/A or Y/F but not Y/E or Y/D mutations of residue 429 abolished the exclusive basolateral localization of RhBG in polarized epithelial cells. All these results led to a model in which targeting and ammonium transport function of RhBG are regulated by both phosphorylation and membrane skeleton binding of the C-terminal cytoplasmic domain.  相似文献   

7.
The recombinant human interleukin-2 (IL-2) receptor was expressed in mouse mammary epithelial cells following the transfection of these cells with an expression vector containing the human IL-2 receptor cDNA. The recombinant IL-2 receptor in these cells was rapidly phosphorylated in response to phorbol myristate acetate (PMA), but its phosphorylation could not be detected in the absence of PMA or upon addition of human IL-2. The C-terminal, cytoplasmic peptide domain of the IL-2 receptor, Gln-Arg-Arg-Gln-Arg-Lys-Ser-Arg-Arg-Thr-Ile, was synthesized and used as a substrate for protein kinase C. The Km for phosphorylation of the peptide by protein kinase C was 23 microM. The stoichiometry of phosphorylation was 1 mol of phosphate/mol of peptide and serine was the predominant amino acid phosphorylated. Because this peptide was a good substrate for protein kinase C in vitro, it was possible that the same serine (serine 247) was also phosphorylated in the receptor in the cell. The IL-2 receptor gene in the expression vector was therefore altered by site-directed mutagenesis to code for an IL-2 receptor containing an alanine in the place of serine 247. The IL-2 receptor expressed by these cells was not phosphorylated in the presence of PMA. These data suggest that protein kinase C, in response to PMA, phosphorylates the C-terminal serine residue (serine 247) in the human IL-2 receptor.  相似文献   

8.
Associative toehold is a powerful concept enabling efficient combinatorial computation in DNA circuit. A longer association length boosts circuit kinetics and equilibrium signal but results in higher leak rate. We reconcile this trade-off by using a hairpin lock design to dynamically elongate the effective associative toehold length in response to the input target. Design guidelines were established to achieve robust elongation without incurring additional leakages. Three hairpin initiators with different combinations of elongated associative toehold (4 → 6 nt, 5 → 8 nt and 6 → 9 nt) were shortlisted from the design framework for further discussion. The circuit performance improved in terms of reaction kinetics, equilibrium signal generated and limit of detection. Overall, the elongated associative toehold served as a built-in function to stabilize and favour the forward, desired reaction when triggered.  相似文献   

9.
11F8 is a pathogenic anti-ssDNA monoclonal autoantibody isolated from a lupus-prone mouse. Previous studies have established that 11F8 is sequence specific. To determine the basis for the observed binding specificity, stopped-flow fluorescence spectroscopy was used to measure the kinetic parameters and establish the mechanisms for the association of 11F8 with its target sequence, noncognate, and nonspecific ssDNA ligands. The data revealed that sequence-specific binding follows a two-step mechanism where the initial association step is second order. Values of k(1) are fast and above the modified Smoluchowski limit for a diffusion limited interaction (10(5)-10(6)M(-1)s(-1)). The dependency of k(1) on [salt] and solvent polarity indicates that electrostatic steering is responsible for this rapid association rate. The second association step is rate limiting and is characteristic of an isomerization process during which binding interfaces are optimized. This step apparently is driven by the desolvation of hydrophobic surfaces within the binding interface. The differences in the rate of dissociation for the various DNA ligands suggest that specificity is governed primarily through the dissociation of the final complexes.  相似文献   

10.
Insulin-like growth factor-binding protein-2 (IGFBP-2) is the largest member of a family of six proteins (IGFBP-1 to 6) that bind insulin-like growth factors I and II (IGF-I/II) with high affinity. In addition to regulating IGF actions, IGFBPs have IGF-independent functions. The C-terminal domains of IGFBPs contribute to high-affinity IGF binding, and confer binding specificity and have overlapping but variable interactions with many other molecules. Using nuclear magnetic resonance (NMR) spectroscopy, we have determined the solution structure of the C-terminal domain of IGFBP-2 (C-BP-2) and analysed its backbone dynamics based on 15N relaxation parameters. C-BP-2 has a thyroglobulin type 1 fold consisting of an alpha-helix, a three-stranded anti-parallel beta-sheet and three flexible loops. Compared to C-BP-6 and C-BP-1, structural differences that may affect IGF binding and underlie other functional differences were found. C-BP-2 has a longer disordered loop I, and an extended C-terminal tail, which is unstructured and very mobile. The length of the helix is identical with that of C-BP-6 but shorter than that of C-BP-1. Reduced spectral density mapping analysis showed that C-BP-2 possesses significant rapid motion in the loops and termini, and may undergo slower conformational or chemical exchange in the structured core and loop II. An RGD motif is located in a solvent-exposed turn. A pH-dependent heparin-binding site on C-BP-2 has been identified. Protonation of two histidine residues, His271 and His228, seems to be important for this binding, which occurs at slightly acidic pH (6.0) and is more significant at pH 5.5, but is largely suppressed at pH 7.4. Possible preferential binding of IGFBP-2 and its C- domain fragments to glycosaminoglycans in the acidic extracellular matrix (ECM) of tumours may be related to their roles in cancer.  相似文献   

11.
Substrate binding to the phosphodiesterase-5 (PDE5) catalytic site increases cGMP binding to the regulatory domain (R domain). The latter promotes PDE5 phosphorylation by cyclic nucleotide-dependent protein kinases, which activates catalysis, enhances allosteric cGMP binding, and causes PDE5A1 to apparently elongate. A human PDE5A1 R domain fragment (Val(46)-Glu(539)) containing the phosphorylation site (Ser(102)) and allosteric cGMP-binding sites was studied. The rate, cGMP dependence, and stoichiometry of phosphorylation of the PDE5 R domain by the catalytic subunit of cAMP-dependent protein kinase are comparable with that of the holoenzyme. Migration in native polyacrylamide gels suggests that either cGMP binding or phosphorylation produces distinct conformers of the R domain. Phosphorylation of the R domain increases affinity for cGMP approximately 10-fold (K(D) values 97.8 +/- 17 and 10.0 +/- 0.5 nm for unphospho- and phospho-R domains, respectively). [(3)H]cGMP dissociates from the phospho-R domain with a single rate (t(12) = 339 +/- 30 min) compared with the biphasic pattern of the unphospho-R domain (t(12) = 39.0 +/- 4.8 and 265 +/- 28 min, for the fast and slow components, respectively). Thus, cGMP-directed regulation of PDE5 phosphorylation and the resulting increase in cGMP binding affinity occur largely within the R domain. Conformational change(s) elicited by phosphorylation of the R domain within the PDE5 holoenzyme may also cause or participate in stimulating catalysis.  相似文献   

12.
Musashi1 is an RNA-binding protein abundantly expressed in the developing mouse central nervous system. Its restricted expression in neural precursor cells suggests that it is involved in the regulation of asymmetric cell division. Musashi1 contains two ribonucleoprotein (RNP)-type RNA-binding domains (RBDs), RBD1 and RBD2. Our previous studies showed that RBD1 alone binds to RNA, while the binding of RBD2 is not detected under the same conditions. Joining of RBD2 to RBD1, however, increases the affinity to greater than that of RBD1 alone, indicating that RBD2 contributes to RNA-binding. We have determined the three-dimensional solution structure of the C-terminal RBD (RBD2) of Musashi1 by NMR. It folds into a compact alpha beta structure comprising a four-stranded antiparallel beta-sheet packed against two alpha-helices, which is characteristic of RNP-type RBDs. Special structural features of RBD2 include a beta-bulge in beta2 and a shallow twist of the beta-sheet. The smaller 1H-15N nuclear Overhauser enhancement values for the residues of loop 3 between beta2 and beta3 suggest that this loop is flexible in the time-scale of nano- to picosecond order. The smaller 15N T2 values for the residues around the border between alpha2 and the following loop (loop 5) suggest this region undergoes conformational exchange in the milli- to microsecond time-scale. Chemical shift perturbation analysis indicated that RBD2 binds to an RNA oligomer obtained by in vitro selection under the conditions for NMR measurements, and thus the nature of the weak RNA-binding of RBD2 was successfully characterized by NMR, which is otherwise difficult to assess. Mainly the residues of the surface composed of the four-stranded beta-sheet, loops and C-terminal region are involved in the interaction. The appearance of side-chain NH proton resonances of arginine residues of loop 3 and imino proton resonances of RNA bases upon complex formation suggests the formation of intermolecular hydrogen bonds. The structural arrangement of the rings of the conserved aromatic residues of beta2 and beta3 is suitable for stacking interaction with RNA bases, known to be one of the major protein-RNA interactions, but a survey of the perturbation data suggested that the stacking interaction is not ideally achieved in the complex, which may be related to the weaker RNA-binding of RBD2.  相似文献   

13.
14.
15.
Climate fluctuations in the past and in the future are likely to result in population expansions, shifts, or the contraction of the ecological niche of many species, and potentially leading to the changes in their geographical distributions. Prediction of suitable habitats has been developed as a useful tool for the assessment of habitat suitability and resource conservation to protect wildlife. Here, we model the ancestral demographic history of the extant modern Chinese Muntjac Muntiacus reevesi populations using approximate Bayesian computation (ABC) and used the maximum entropy model to simulate the past and predict the future spatial dynamics of the species under climate oscillations. Our results indicated that the suitable habitats for the M. reevesi shifted to the Southeast and contracted during the Last Glacial Maximum, whereas they covered a broader and more northern position in the Middle Holocene. The ABC analyses revealed that the modern M. reevesi populations diverged in the Middle Holocene coinciding with the significant contraction of the highly suitable habitat areas. Furthermore, our predictions suggest that the potentially suitable environment distribution for the species will expand under all future climate scenarios. These results indicated that the M. reevesi diverged in the recent time after the glacial period and simultaneously as its habitat’s expanded in the Middle Holocene. Furthermore, the past and future climate fluctuation triggered the change of Chinese muntjac spatial distribution, which has great influence on the Chinese muntjac’s population demographic history.  相似文献   

16.
The newly developed finite element (FE) modeling at the atomic scale was used to predict the static and dynamic response of the α-helix (AH) and tropocollagen (TC) protein fragments, the main building blocks of the spike of the SARS-CoV-2. The geometry and morphology of the spike’s stalk and its connection to the viral envelope were determined from the combination of most recent molecular dynamics (MD) simulation and images of cryoelectron microscopy. The stiffness parameters of the covalent bonds in the main chain of the helix were taken from the literature. The AH and TC were modeled using both beam elements (wire model) and shell elements (ribbon model) in FE analysis to predict their mechanical properties under tension. The asymptotic stiffening features of AH and TC under tensile loading were revealed and compared with a new analytical solution. The mechanical stiffnesses under other loading conditions, including compression, torsion, and bending, were also predicted numerically and correlated with the results of the existing MD simulations and tests. The mode shapes and natural frequencies of the spike were predicted using the built FE model. The frequencies were shown to be within the safe range of 1–20 MHz routinely used for medical imaging and diagnosis by means of ultrasound. These results provide a solid theoretical basis for using ultrasound to study damaging coronavirus through transient and resonant vibration at large deformations.  相似文献   

17.
18.
Protein Ser/Thr phosphatase 5 is a 58-kDa protein containing a catalytic domain structurally related to the catalytic subunits of protein phosphatases 1, 2A, and 2B and an extended N-terminal domain with three tetratricopeptide repeats. The activity of this enzyme is stimulated 4-14-fold in vitro by polyunsaturated fatty acids and anionic phospholipids. The structural basis for lipid activation of protein phosphatase 5 was examined by limited proteolysis and site-directed mutagenesis. Trypsinolysis removed the tetratricopeptide repeat domain and increased activity to approximately half that of lipid-stimulated, full-length enzyme. Subtilisin removed the tetratricopeptide repeat domain and 10 residues from the C terminus, creating a catalytic fragment with activity that was equal to or greater than that of lipid-stimulated, full-length enzyme. Catalytic fragments generated by proteolysis were no longer stimulated by lipid, and degradation of the tetratricopeptide repeat domain was decreased by association with lipid. A truncated mutant missing 13 C-terminal residues was also insensitive to lipid and was as active as full-length, lipid-stimulated enzyme. These results suggest that the C-terminal and N-terminal domain act in a coordinated manner to suppress the activity of protein phosphatase 5 and mediate its activation by lipid. These regions may be targets for the regulation of protein phosphatase 5 activity in vivo.  相似文献   

19.
20.
T-LAK-cell-originated protein kinase (TOPK), a novel member of the mitogen-activated protein kinase family, is considered an effective therapeutic target for skin inflammation. In this study, a series (A − D) of paeonol derivatives was designed and synthesised using a fragment growing approach, and their anti-inflammatory activities against lipopolysaccharide (LPS)-induced nitric oxide production in RAW264.7 cells were tested. Among them, compound B12 yielded the best results (IC50 = 2.14 μM) with low toxicity (IC50 > 50 µM). Preliminary mechanistic studies indicated that this compound could inhibit the TOPK-p38/JNK signalling pathway and phosphorylate downstream related proteins. A murine psoriasis-like skin inflammation model was used to determine its therapeutic effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号