首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Molecular cell》2021,81(16):3323-3338.e14
  1. Download : Download high-res image (136KB)
  2. Download : Download full-size image
  相似文献   

2.
3.
4.
Anderson EC  Lever AM 《Journal of virology》2006,80(21):10478-10486
The full-length viral RNA of human immunodeficiency virus type 1 (HIV-1) functions both as the mRNA for the viral structural proteins Gag and Gag/Pol and as the genomic RNA packaged within viral particles. The packaging signal which Gag recognizes to initiate genome encapsidation is in the 5' untranslated region (UTR) of the HIV-1 RNA, which is also the location of translation initiation complex formation. Hence, it is likely that there is competition between the translation and packaging processes. We studied the ability of Gag to regulate translation of its own mRNA. Gag had a bimodal effect on translation from the HIV-1 5' UTR, stimulating translation at low concentrations and inhibiting translation at high concentrations in vitro and in vivo. The inhibition was dependent upon the ability of Gag to bind the packaging signal through its nucleocapsid domain. The stimulatory activity was shown to depend on the matrix domain of Gag. These results suggest that Gag controls the equilibrium between translation and packaging, ensuring production of enough molecules of Gag to make viral particles before encapsidating its genome.  相似文献   

5.
The control of translation is a critical aspect of gene regulation. It is often inversely related to mRNA degradation and is typically controlled during initiation. The Stm1 protein in Saccharomyces cerevisiae has been shown to interact with ribosomes, affect the interaction of eEF3 with ribosomes, and promote the decapping of a subclass of mRNAs. We demonstrate that in vitro Stm1 inhibits translation after formation of an 80S complex. This suggests that Stm1 modulates translation and mRNA decapping by controlling translation elongation.  相似文献   

6.
7.
Transmissible gastroenteritis virus (TGEV) genome contains three accessory genes: 3a, 3b and 7. Gene 7 is only present in members of coronavirus genus a1, and encodes a hydrophobic protein of 78 aa. To study gene 7 function, a recombinant TGEV virus lacking gene 7 was engineered (rTGEV-Δ7). Both the mutant and the parental (rTGEV-wt) viruses showed the same growth and viral RNA accumulation kinetics in tissue cultures. Nevertheless, cells infected with rTGEV-Δ7 virus showed an increased cytopathic effect caused by an enhanced apoptosis mediated by caspase activation. Macromolecular synthesis analysis showed that rTGEV-Δ7 virus infection led to host translational shut-off and increased cellular RNA degradation compared with rTGEV-wt infection. An increase of eukaryotic translation initiation factor 2 (eIF2α) phosphorylation and an enhanced nuclease, most likely RNase L, activity were observed in rTGEV-Δ7 virus infected cells. These results suggested that the removal of gene 7 promoted an intensified dsRNA-activated host antiviral response. In protein 7 a conserved sequence motif that potentially mediates binding to protein phosphatase 1 catalytic subunit (PP1c), a key regulator of the cell antiviral defenses, was identified. We postulated that TGEV protein 7 may counteract host antiviral response by its association with PP1c. In fact, pull-down assays demonstrated the interaction between TGEV protein 7, but not a protein 7 mutant lacking PP1c binding motif, with PP1. Moreover, the interaction between protein 7 and PP1 was required, during the infection, for eIF2α dephosphorylation and inhibition of cell RNA degradation. Inoculation of newborn piglets with rTGEV-Δ7 and rTGEV-wt viruses showed that rTGEV-Δ7 virus presented accelerated growth kinetics and pathology compared with the parental virus. Overall, the results indicated that gene 7 counteracted host cell defenses, and modified TGEV persistence increasing TGEV survival. Therefore, the acquisition of gene 7 by the TGEV genome most likely has provided a selective advantage to the virus.  相似文献   

8.
Spermatogenesis is a process which includes the following phases: spermatogonial stem cell proliferation and differentiation, spermatogonia, spermatocyte, spermatid and mature sperm. Spermatogenic failure is the important factor resulting in male infertility. Recent studies showed that long noncoding RNA (lncRNA) have been found to be involved in the regulation of male reproduction. However, lncRNA associated with spermatogenesis and their mechanisms of action are unclear. The aim of this study is to explore the role and molecular mechanism of lncRNA in spermatogenesis. LncRNA microarray of germ cells and bioinformatic analysis showed lncRNA Gm2044 may play potential roles in spermatogenesis. The expression level of RNA and protein were analyzed by RT-qPCR and western blotting, respectively. The interaction of lncRNA with mRNA was detected by RNA pull down and cellular proliferation was measured using CCK-8 reagent. Testis-enriched lncRNA Gm2044 is abundant in mouse spermatocytes. Gm2044 can suppress the translation of adjacent spermatogenesis-related gene Utf1 by interacting with Utf1 mRNA. Furthermore, the proliferation of mouse spermatogonia GC-1 cell line and spermatocyte GC-2 cell line was inhibited by Gm2044. CONCLUSION: LncRNA Gm2044 was identified to inhibit Utf1 mRNA translation and play important roles in spermatogenesis.  相似文献   

9.
Recent evidence indicates that the abnormal differentiation of bone marrow‐derived mesenchymal stem cells (BMSCs) plays a pivotal role in the pathogenesis of osteoporosis. LncRNA SNHG1 has been found to be associated with the differentiation ability of BMSCs. In this study, we aimed to elucidate the role of lncRNA SNHG1 and its associated pathway on the differentiation of BMSCs in osteoporosis. Mice that underwent bilateral ovariectomy (OVX) were used as models of osteoporosis. Induced osteogenic or adipogenic differentiation was performed in mouse BMSCs. Compared to sham animals, lncRNA SNHG1 expression was upregulated in OVX mice. Also, the in vitro expression of SNHG1 was increased in adipogenic BMSCs but decreased in osteogenic BMSCs. Moreover, overexpression of SNHG1 enhanced the adipogenic capacity of BMSCs but inhibited their osteogenic capacity as determined by oil red O, alizarin red, and alkaline phosphatase staining, while silencing of SNHG1 led to the opposite results. LncRNA SNHG1 interacting with the RNA‐binding polypyrimidine tract‐binding protein 1 (PTBP1) promoted osteoprotegerin (Opg) methylation and suppressed Opg expression via mediating DNA methyltransferase (DNMT) 1. Furthermore, Opg was showed to regulate BMSC differentiation. Knockdown of SNHG1 decreased the expressions of adipogenic related genes but increased that of osteogenic related genes. However, the knockdown of Opg partially reversed those effects. In summary, lncRNA SNHG1 upregulated the expression of DNMT1 via interacting with PTBP1, resulting in Opg hypermethylation and decreased Opg expression, which in turn enhanced BMSC adipogenic differentiation and contributed to osteoporosis.  相似文献   

10.
DEAD-box protein (Dbp) family members are essential for gene expression; however, their precise roles and regulation are not fully defined. During messenger (m)RNA export, Gle1 bound to inositol hexakisphosphate (IP(6)) acts via Dbp5 to facilitate remodeling of mRNA-protein complexes. In contrast, here we define a novel Gle1 role in translation initiation through regulation of a different DEAD-box protein, the initiation factor Ded1. We find that Gle1 physically and genetically interacts with Ded1. Surprisingly, whereas Gle1 stimulates Dbp5, it inhibits Ded1 ATPase activity in vitro, and IP(6) does not affect this inhibition. Functionally, a gle1-4 mutant specifically suppresses initiation defects in a ded1-120 mutant, and ded1 and gle1 mutants have complementary perturbations in AUG start site recognition. Consistent with this role in initiation, Gle1 inhibits translation in vitro in competent extracts. These results indicate that Gle1 has a direct role in initiation and negatively regulates Ded1. Together, the differential regulation of two distinct DEAD-box proteins by a common factor (Gle1) establishes a new paradigm for controlling gene expression and coupling translation with mRNA export.  相似文献   

11.
12.
《Cell reports》2023,42(3):112150
  1. Download : Download high-res image (146KB)
  2. Download : Download full-size image
  相似文献   

13.
lncRNA COL1A2-AS1 (COL1A2 antisense RNA 1), a lncRNA overexpressed in hypertrophic scar, has been demonstrated to be involved in the hypertrophic scar formation. However, the mechanisms of lncRNA COL1A2-AS1 inhibiting the scar fibroblasts proliferation remains not well understood. In this study, we demonstrated that lncRNA COL1A2-AS1 was upregulated in hypertrophic scar tissue and fibroblasts, and suppressed fibroblasts proliferation by promoting Smad7 expression. Furthermore, we found that miR-21 was involved in lncRNA COL1A2-AS1-induced expression of Smad7, by which COL1A2-AS1 acted as endogenous sponge to adsorb miR-21 and in turn regulated Smad7 and a cascade of molecular to play a protective role in hypertrophic scar. In addition, overexpression of miR-21 attenuated COL1A2-AS1-mediated proliferation suppression of hypertrophic scar fibroblasts. In conclusion, our study demonstrated that COL1A2-AS1/miR-21/Smad pathway plays an important role in inhibiting hypertrophic scar formation, and suggested this novel pathway may be a new target for hypertrophic scar treatment.  相似文献   

14.
《Cell reports》2023,42(6):112589
  1. Download : Download high-res image (98KB)
  2. Download : Download full-size image
  相似文献   

15.
Hashimoto K  Ishima T 《PloS one》2011,6(3):e17431
Cilostazol, a type-3 phosphodiesterase (PDE3) inhibitor, has become widely used as an antiplatelet drug worldwide. A recent second Cilostazol Stroke Prevention Study demonstrated that cilostazol is superior to aspirin for prevention of stroke after an ischemic stroke. However, its precise mechanisms of action remain to be determined. Here, we report that cilostazol, but not the PDE3 inhibitors cilostamide and milrinone, significantly potentiated nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells. Furthermore, specific inhibitors for the endoplasmic reticulum protein inositol 1,4,5-triphosphate (IP(3)) receptors and several common signaling pathways (PLC-γ, PI3K, Akt, p38 MAPK, and c-Jun N-terminal kinase (JNK), and the Ras/Raf/ERK/MAPK) significantly blocked the potentiation of NGF-induced neurite outgrowth by cilostazol. Using a proteomics analysis, we identified that levels of eukaryotic translation elongation factor eEF1A1 protein were significantly increased by treatment with cilostazol, but not cilostamide, in PC12 cells. Moreover, the potentiating effects of cilostazol on NGF-induced neurite outgrowth were significantly antagonized by treatment with eEF1A1 RNAi, but not the negative control of eEF1A1. These findings suggest that eEF1A1 and several common cellular signaling pathways might play a role in the mechanism of cilostazol-induced neurite outgrowth. Therefore, agents that can increase the eEF1A1 protein may have therapeutic relevance in diverse conditions with altered neurite outgrowth.  相似文献   

16.
17.
The refractory of castration-resistant prostate cancer (CRPC) is mainly reflected in drug resistance. The current research on the resistance mechanism of CRPC is still in its infancy. In this study, we revealed for the first time the key role of LncRNA PCBP1-AS1 in CRPC drug resistance. Through detailed in vivo and in vitro studies, we found that PCBP1-AS1 may enhance the deubiquitination of AR/AR-V7 by stabilizing the USP22-AR/AR-V7 complex, thereby preventing AR/AR-V7 from being degraded through the ubiquitin–proteasome pathway. Targeting PCBP1-AS1 can significantly restore the drug sensitivity of enzalutamide-resistant tumors in vivo and in vitro. Our research further expands the function of LncRNA in castration-resistant prostate cancer, which may provide new potential for clinical diagnosis and targeted therapy.Subject terms: Prostate cancer, Ubiquitylation, Long non-coding RNAs  相似文献   

18.
E-cadherin is a WT1 target gene   总被引:5,自引:0,他引:5  
  相似文献   

19.
Groucho (Gro) is a Drosophila corepressor required by numerous DNA-binding repressors, many of which are distributed in gradients and provide positional information during development. Gro contains well-conserved domains at its N- and C-termini, and a poorly conserved central region that includes the GP, CcN, and SP domains. All lethal point mutations in gro map to the conserved regions, leading to speculation that the unconserved central domains are dispensable. However, our sequence analysis suggests that the central domains are disordered leading us to suspect that the lack of lethal mutations in this region reflects a lack of order rather than an absence of essential functions. In support of this conclusion, genomic rescue experiments with Gro deletion variants demonstrate that the GP and CcN domains are required for viability. Misexpression assays using these same deletion variants show that the SP domain prevents unrestrained and promiscuous repression by Gro, while the GP and CcN domains are indispensable for repression. Deletion of the GP domain leads to loss of nuclear import, while deletion of the CcN domain leads to complete loss of repression. Changes in Gro activity levels reset the threshold concentrations at which graded repressors silence target gene expression. We conclude that co-regulators such as Gro are not simply permissive components of the repression machinery, but cooperate with graded DNA-binding factors in setting borders of gene expression. We suspect that disorder in the Gro central domains may provide the flexibility that allows this region to mediate multiple interactions required for repression.  相似文献   

20.
Epigenetic regulation of gene expression by histone-modifying corepressor complexes is central to normal animal development. The NAD(+)-dependent deacetylase and gene repressor SIRT1 removes histone H4K16 acetylation marks and facilitates heterochromatin formation. However, the mechanistic contribution of SIRT1 to epigenetic regulation at euchromatic loci and whether it acts in concert with other chromatin-modifying activities to control developmental gene expression programs remain unclear. We describe here a SIRT1 corepressor complex containing the histone H3K4 demethylase LSD1/KDM1A and several other LSD1-associated proteins. SIRT1 and LSD1 interact directly and play conserved and concerted roles in H4K16 deacetylation and H3K4 demethylation to repress genes regulated by the Notch signaling pathway. Mutations in Drosophila SIRT1 and LSD1 orthologs result in similar developmental phenotypes and genetically interact with the Notch pathway in Drosophila. These findings offer new insights into conserved mechanisms of epigenetic gene repression and regulation of development by SIRT1 in metazoans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号