首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isopenicillin N synthase (IPNS) catalyzes formation of the β-lactam and thiazolidine rings of isopenicillin N from its linear tripeptide l-δ-(α-aminoadipoyl)-l-cysteinyl-d-valine (ACV) substrate in an iron- and dioxygen (O2)-dependent four-electron oxidation without precedent in current synthetic chemistry. Recent X-ray free-electron laser studies including time-resolved serial femtosecond crystallography show that binding of O2 to the IPNS–Fe(II)–ACV complex induces unexpected conformational changes in α-helices on the surface of IPNS, in particular in α3 and α10. However, how substrate binding leads to conformational changes away from the active site is unknown. Here, using detailed 19F NMR and electron paramagnetic resonance experiments with labeled IPNS variants, we investigated motions in α3 and α10 induced by binding of ferrous iron, ACV, and the O2 analog nitric oxide, using the less mobile α6 for comparison. 19F NMR studies were carried out on singly and doubly labeled α3, α6, and α10 variants at different temperatures. In addition, double electron–electron resonance electron paramagnetic resonance analysis was carried out on doubly spin-labeled variants. The combined spectroscopic and crystallographic results reveal that substantial conformational changes in regions of IPNS including α3 and α10 are induced by binding of ACV and nitric oxide. Since IPNS is a member of the structural superfamily of 2-oxoglutarate-dependent oxygenases and related enzymes, related conformational changes may be of general importance in nonheme oxygenase catalysis.  相似文献   

2.
3.
Although E3 ubiquitin ligases are deemed to play key roles in normal cell function and homeostasis, whether their alterations contribute to cancer pathogenesis remains unclear. In this study, we sought to investigate potential mechanisms that govern WWP1/Tiul1 (WWP1) ubiquitin ligase activity, focusing on its ability to trigger degradation of TGFβ type I receptor (TβRI) in conjunction with Smad7. Our data reveal that the WWP1 protein is very stable at steady states because its autopolyubiquitination activity is silenced due to an intra-interaction between the C2 and/or WW and Hect domains that favors WWP1 monoubiquitination at the expense of its polyubiquitination or polyubiquitination of TβRI. Upon binding of WWP1 to Smad7, this functional interplay is disabled, switching its monoubiquitination activity toward a polyubiquitination activity, thereby driving its own degradation and that of TβRI as well. Intriguingly, a WWP1 point mutation found in human prostate cancer disrupts this regulatory mechanism by relieving the inhibitory effects of C2 and WW on Hect and thereby causing WWP1 hyperactivation. That cancer-driven alteration of WWP1 culminates in excessive TβRI degradation and attenuated TGFβ cytostatic signaling, a consequence that could conceivably confer tumorigenic properties to WWP1.  相似文献   

4.
NSC (neural stem cells)/NPC (neural progenitor cells) are multipotent and self-renew throughout adulthood in the SVZ (subventricular zone) of the mammalian CNS (central nervous system). These cells are considered interesting targets for CNS neurodegenerative disorder cell therapies, and understanding their behaviour in vitro is crucial if they are to be cultured prior to transplantation. We cultured the SVZ tissue belonging to newborn rats under the form of NS (neurospheres) to evaluate the effects of Tf (transferrin) on cell proliferation. The NS were heterogeneous in terms of the NSC/NPC markers GFAP (glial fibrillary acidic protein), Nestin and Sox2 and the OL (oligodendrocyte) progenitor markers NG2 (nerve/glia antigen 2) and PDGFRα (platelet-derived growth factor receptor α). The results of this study indicate that aTf (apoTransferrin) is able to increase cell proliferation of SVZ-derived cells in vitro, and that these effects were mediated at least in part by the TfRc1 (Tf receptor 1). Since OPCs (oligodendrocyte progenitor cells) represent a significant proportion of the proliferating cells in the SVZ-derived primary cultures, we used the immature OL cell line N20.1 to show that Tf was able to augment the proliferation rate of OPC, either by adding aTf to the culture medium or by overexpressing rat Tf in situ. The culture medium supplemented with ferric iron, together with aTf, increased the DNA content, while ferrous iron did not. The present work provides data that could have a potential application in human cell replacement therapies for neurodegenerative disease and/or CNS injury that require the use of in vitro amplified NPCs.  相似文献   

5.
The classic mode of G protein‐coupled receptor (GPCR)‐mediated transactivation of the receptor tyrosine kinase epidermal growth factor receptor (EGFR) transactivation occurs via matrix metalloprotease (MMP)‐mediated cleavage of plasma membrane‐anchored EGFR ligands. Herein, we show that the Gαs‐activating GPCR ligands vasoactive intestinal peptide (VIP) and prostaglandin E2 (PGE2) transactivate EGFR through increased cell‐surface delivery of the EGFR ligand transforming growth factor‐α (TGFα) in polarizing madin‐darby canine kidney (MDCK) and Caco‐2 cells. This is achieved by PKA‐mediated phosphorylation of naked cuticle homolog 2 (NKD2), previously shown to bind TGFα and direct delivery of TGFα‐containing vesicles to the basolateral surface of polarized epithelial cells. VIP and PGE2 rapidly activate protein kinase A (PKA) that then phosphorylates NKD2 at Ser‐223, a process that is facilitated by the molecular scaffold A‐kinase anchoring protein 12 (AKAP12). This phosphorylation stabilized NKD2, ensuring efficient cell‐surface delivery of TGFα and increased EGFR activation. Thus, GPCR‐triggered, PKA/AKAP12/NKD2‐regulated targeting of TGFα to the cell surface represents a new mode of EGFR transactivation that occurs proximal to ligand cleavage by MMPs.   相似文献   

6.
7.
Signalling through the IGF1R [type 1 IGF (insulin-like growth factor) receptor] and canonical Wnt signalling are two signalling pathways that play critical roles in regulating neural cell generation and growth. To determine whether the signalling through the IGF1R can interact with the canonical Wnt signalling pathway in neural cells in vivo, we studied mutant mice with altered IGF signalling. We found that in mice with blunted IGF1R expression specifically in nestin-expressing neural cells (IGF1RNestin−KO mice) the abundance of neural β-catenin was significantly reduced. Blunting IGF1R expression also markedly decreased: (i) the activity of a LacZ (β-galactosidase) reporter transgene that responds to Wnt nuclear signalling (LacZTCF reporter transgene) and (ii) the number of proliferating neural precursors. In contrast, overexpressing IGF-I (insulin-like growth factor I) in brain markedly increased the activity of the LacZTCF reporter transgene. Consistently, IGF-I treatment also markedly increased the activity of the LacZTCF reporter transgene in embryonic neuron cultures that are derived from LacZTCF Tg (transgenic) mice. Importantly, increasing the abundance of β-catenin in IGF1RNestin−KO embryonic brains by suppressing the activity of GSK3β (glycogen synthase kinase-3β) significantly alleviated the phenotypic changes induced by IGF1R deficiency. These phenotypic changes includes: (i) retarded brain growth, (ii) reduced precursor proliferation and (iii) decreased neuronal number. Our current data, consistent with our previous study of cultured oligodendrocytes, strongly support the concept that IGF signalling interacts with canonical Wnt signalling in the developing brain to promote neural proliferation. The interaction of IGF and canonical Wnt signalling plays an important role in normal brain development by promoting neural precursor proliferation.  相似文献   

8.
The effect of thalidomide on epidermal growth factor (EGF)-induced cell growth was examined. Thalidomide inhibited EGF-induced cell growth in mouse and human monocytic leukemia cells, RAW 264.7, U937 and THP-1. Thalidomide inhibited EGF-induced phosphorylation of extracellular signal regulated kinase (ERK) 1/2, but not p38 and stress-activated protein kinase (SAPK)/JNK. The phosphorylation of MEK1/2 and Raf at Ser 338 as the upstream molecules of ERK 1/2 was also prevented by thalidomide. Further, it inhibited EGF-induced Ras activation through preventing the transition to GTP-bound active Ras. Thalidomide inhibited the Ras activation induced by lipopolysaccharide (LPS) and vascular endothelial growth factor (VEGF) as well as EGF. There was no significant difference in the expression and function of EGF receptor between thalidomide-treated and non-treated cells. Therefore, thalidomide was suggested to inhibit EGF-induced cell growth via inactivation of Ras.  相似文献   

9.
10.
Normal thyrocytes grown as reconstituted follicles in collagen gel were evaluated for drug effects of small molecule kinase inhibitors on growth factor-induced cell migration in a 3D context. MEK inhibition by U0126 only partially antagonized EGF/serum-induced cell migration from the basal follicular surface into the matrix. Combined treatment with U0126 and LY294002, a PI3K blocker, was necessary to abolish migration. However, exposure to only LY294002 facilitated the response to EGF by breakdown of the original follicular structure. In the same time EGF promoted thyroid cell survival that was compromised by LY294002 in absence of EGF. Cells treated with EGF and LY294002 retained the ability to form follicles. The findings indicate that dual inhibition of MAPK and PI3K/AKT pathways is required to fully block matrix invasion of EGF-stimulated thyroid cells. Conversely, single drug treatment with PI3K inhibitor adversely promotes invasiveness probably by destabilizing the follicular epithelium.  相似文献   

11.
The inhibitory switch (IS) domain of p21-activated kinase 1 (PAK1) stabilizes full-length PAK1 in an inactive conformation by binding to the PAK1 kinase domain. Competitive binding of small guanosine triphosphatases to the IS domain disrupts the autoinhibitory interactions and exposes the IS domain binding site on the surface of the kinase domain. To build an affinity reagent that selectively binds the activated state of PAK1, we used molecular modeling to reengineer the isolated IS domain so that it was soluble and stable, did not bind to guanosine triphosphatases and bound more tightly to the PAK1 kinase domain. Three design strategies were tested: in the first and second cases, extension and redesign of the N-terminus were used to expand the hydrophobic core of the domain, and in the third case, the termini were redesigned to be adjacent in space so that the domain could be stabilized by insertion into a loop in a host cyan fluorescent protein (CFP). The best-performing design, called CFP-PAcKer, was based on the third strategy and bound the kinase domain of PAK1 with an affinity of 400 nM. CFP-PAcKer binds more tightly to a full-length variant of PAK1 that is stabilized in the “open” state (Kd = 3.3 μM) than to full-length PAK1 in the “closed” state (undetectable affinity), and binding can be monitored with fluorescence by placing an environmentally sensitive fluorescence dye on CFP-PAcKer adjacent to the binding site.  相似文献   

12.
The vasculature of each organ expresses distinct molecular signatures critically influenced by the pathological status. The heterogeneous profile of the vascular beds has been successfully unveiled by the in vivo phage display, a high-throughput tool for mapping normal, diseased, and tumor vasculature. Specific challenges of this growing field are targeted therapies against cancer and cardiovascular diseases, as well as novel bioimaging diagnostic tools. Tumor vasculature-homing peptides have been extensively evaluated in several preclinical and clinical studies both as targeted-therapy and diagnosis. To date, results from several Phase I and II trials have been reported and many other trials are currently ongoing or recruiting patients. In this review, advances in the identification of novel peptide ligands and their corresponding receptors on tumor endothelium through the in vivo phage display technology are discussed. Emphasis is given to recent findings in the clinical setting of vascular-homing peptides selected by in vivo phage display for the treatment of advanced malignancies and their altered vascular beds.  相似文献   

13.
Phosphate homeostasis is preserved during variations in phosphate intake by short-term intrinsic renal and intestinal adaptations in transport processes, and by more long-term hormonal mechanisms, which regulate the efficiency of phosphate transport in the kidney and intestine. Recently, several phosphaturic peptides such as fibroblast growth factor 23 (FGF-23), secreted frizzled-related protein-4 (sFRP-4), extracellular phosphoglycoprotein (MEPE) and fibroblast growth factor 7 (FGF-7) have been shown to play a pathogenic role in several hypophosphatemic disorders such as tumor-induced osteomalacia (TIO), autosomal dominant hypophosphatemic rickets (ADHR), X-linked hypophosphatemic rickets (XLH), the McCune-Albright syndrome (MAS) and fibrous dysplasia (FD). These proteins induce phosphaturia and hypophosphatemia in vivo, and inhibit sodium-dependent renal phosphate transport in cultured renal epithelial cells. Interestingly, despite the induction of hypophosphatemia by FGF-23 and sFRP-4 in vivo, serum 1, 25-dihydroxyvitamin D (1alpha,25(OH)(2)D) concentrations are decreased or remain inappropriately normal, suggesting an inhibitory effect of these proteins on 25-hydroxyvitamin D 1alpha-hydroxylase activity. In FGF-23 knockout mice, 25-hydroxyvitamin D 1alpha-hydroxylase expression is increased and elevated serum 1alpha,25(OH)(2)D levels cause significant hypercalcemia and hyperphosphatemia. MEPE, however, increases circulating 1alpha,25(OH)(2)D. Circulating or local concentrations of these peptides/proteins may regulate 25-hydroxyvitamin D 1alpha-hydroxylase activity in renal tissues under physiologic circumstances.  相似文献   

14.
15.
African-American women have a higher risk for developing triple-negative breast cancer (TNBC). Lacking the expression of receptors for estrogen and progesterone, and without human epidermal growth factor 2 receptor gene amplification, TNBC is a very aggressive type of breast cancer with a high likelihood of metastasis and recurrence. Specific therapeutic targets for this aggressive disease remain to be identified. Phosphorylation, a post-translational modification that adds one or more phosphate groups to a protein, plays a key role in the activation and deactivation of a protein’s cellular function. Here, we report the first systematic phosphoproteomic analysis of a benign breast tissue, a primary breast cancer tissue, and a metastatic breast cancer tissue from the same African-American woman. Differential phosphoprotein levels were measured with reversed-phase nano-liquid chromatography coupled to a hybrid linear quadrupole ion trap/Fourier transform ion cyclotron resonance mass spectrometer (LC-LTQ/FT-ICR MS). Five proteins were found to be highly phosphorylated in the metastatic site whereas six proteins were highly phosphorylated in the cancer site of the TNBC patient. Identified phosphoproteins are known to be involved in breast cancer signal transduction pathways and these results may identify new diagnostic and therapeutic targets for TNBC.  相似文献   

16.
17.
Glioblastoma is the most common and aggressive brain tumor type, with a mean patient survival of approximately 1 year. Many previous analyses of the glioma kinome have identified key deregulated pathways that converge and activate mammalian target of rapamycin (mTOR). Following the identification and characterization of mTOR-promoting activity in gliomagenesis, data from preclinical studies suggested the targeting of mTOR by rapamycin or its analogs (rapalogs) as a promising therapeutic approach. However, clinical trials with rapalogs have shown very limited efficacy on glioma due to the development of resistance mechanisms. Analysis of rapalog-insensitive glioma cells has revealed increased activity of growth and survival pathways compensating for mTOR inhibition by rapalogs that are suitable for therapeutic intervention. In addition, recently developed mTOR inhibitors show high anti-glioma activity. In this review, we recapitulate the regulation of mTOR signaling and its involvement in gliomagenesis, discuss mechanisms resulting in resistance to rapalogs, and speculate on strategies to overcome resistance. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).  相似文献   

18.
This review focuses on structure and functions of spectrin as a major component of the membrane skeleton. Recent advances on spectrin function as an interface for signal transduction mediation and a number of data concerning interaction of spectrin with membrane channels, adhesion molecules, receptors and transporters draw a picture of multifaceted protein. Here, we attempted to show the current depiction of multitask role of spectrin in cell physiology. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.  相似文献   

19.

Background

Glucocorticoids are commonly used as adjuvant treatment for side-effects and have anti-proliferative activity in several tumors but, on the other hand, their proliferative effect has been reported in several studies, some of them involving the spread of cancer. We shall attempt to reconcile these incongruities from the genomic and tissue-physiology perspectives with our findings.

Methods

An accurate phenotype analysis of microarray data can help to solve multiple paradoxes derived from tumor-progression models. We have developed a new strategy to facilitate the study of interdependences among the phenotypes defined by the sample clusters obtained by common clustering methods (HC, SOTA, SOM, PAM). These interdependences are obtained by the detection of non-linear expression-relationships where each fluctuation in the relationship implies a phenotype change and each relationship typology implies a specific phenotype interdependence. As a result, multiple phenotypic changes are identified together with the genes involved in the phenotype transitions. In this way, we study the phenotypic changes from microarray data that describe common phenotypes in cancer from different tissues, and we cross our results with biomedical databases to relate the glucocorticoid activity to the phenotypic changes.

Results

11,244 significant non-linear expression relationships, classified into 11 different typologies, have been detected from the data matrix analyzed. From them, 415 non-linear expression relationships were related to glucocorticoid activity. Studying them, we have found the possible reason for opposite effects of some stressor agents like dexamethasone on tumor progression and it has been confirmed by literature. This hidden reason has resulted in being linked with the type of tumor progression of the tissues. In the first type of tumor progression found, new cells can be stressed during proliferation and stressor agents increase tumor proliferation. In the second type, cell stress and tumor proliferation are antagonists so, therefore, stressor agents stop tumor proliferation in order to stress the cells. The non-linear expression relationships among DUSP6, FERMT2, FKBP5, EGFR, NEDD4L and CITED2 genes are used to synthesize these findings.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号