首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Fibrosis is the hallmark of pathologic tissue remodelling in most chronic diseases. Despite advances in our understanding of the mechanisms of fibrosis, it remains uncured. Fibrogenic processes share conserved core cellular and molecular pathways across organs. In this study, we aimed to elucidate shared and organ-specific features of fibrosis using murine precision-cut tissue slices (PCTS) prepared from small intestine, liver and kidneys. PCTS displayed substantial differences in their baseline gene expression profiles: 70% of the extracellular matrix (ECM)-related genes were differentially expressed across the organs. Culture for 48 h induced significant changes in ECM regulation and triggered the onset of fibrogenesis in all PCTS in organ-specific manner. TGFβ signalling was activated during 48 h culture in all PCTS. However, the degree of its involvement varied: both canonical and non-canonical TGFβ pathways were activated in liver and kidney slices, while only canonical, Smad-dependent, cascade was involved in intestinal slices. The treatment with galunisertib blocked the TGFβRI/SMAD2 signalling in all PCTS, but attenuated culture-induced dysregulation of ECM homeostasis and mitigated the onset of fibrogenesis with organ-specificity. In conclusion, regardless the many common features in pathophysiology of organ fibrosis, PCTS displayed diversity in culture-induced responses and in response to the treatment with TGFβRI kinase inhibitor galunisertib, even though it targets a core fibrosis pathway. A clear understanding of the common and organ-specific features of fibrosis is the basis for developing novel antifibrotic therapies.  相似文献   

3.
Chronic liver damage leads to pathological accumulation of ECM proteins (liver fibrosis). Comprehensive characterization of the human ECM molecular composition is essential for gaining insights into the mechanisms of liver disease. To date, studies of ECM remodeling in human liver diseases have been hampered by the unavailability of purified ECM. Here, we developed a decellularization method to purify ECM scaffolds from human liver tissues. Histological and electron microscopy analyses demonstrated that the ECM scaffolds, devoid of plasma and cellular components, preserved the three-dimensional ECM structure and zonal distribution of ECM components. This method has been then applied on 57 liver biopsies of HCV-infected patients at different stages of liver fibrosis according to METAVIR classification. Label-free nLC-MS/MS proteomics and computation biology were performed to analyze the ECM molecular composition in liver fibrosis progression, thus unveiling protein expression signatures specific for the HCV-related liver fibrotic stages. In particular, the ECM molecular composition of liver fibrosis was found to involve dynamic changes in matrix stiffness, flexibility and density related to the dysregulation of predominant collagen, elastic fibers and minor components with both structural and signaling properties. This study contributes to the understanding of the molecular bases underlying ECM remodeling in liver fibrosis and suggests new molecular targets for fibrolytic strategies.  相似文献   

4.
微RNA(microRNAs,miRNAs)是在基因编码中起负性调控作用的内源性短链非编码RNA(non-coding RNAs,ncRNAs),是生理和病理过程中基因表达必不可少的转录后调控物。miRNAs占人类基因组的1%~2%,通过与各自的mRNA结合并抑制其翻译,调节大于50%的人类基因及60%的哺乳动物蛋白质编码基因。系统性硬化症(systemic sclerosis,SSc)的发病机制由复杂的miRNAs网络调控。这些miRNAs位于与SSc纤维化相关的基因组区域,通过参与调节重要的细胞信号通路,如TGF-β、Wnt/β-catenin、TLR-4、IL和PDGF-β等,在SSc纤维化过程中发挥作用。同时,还与细胞信号转导、基质修复与重塑、成纤维细胞凋亡、胶原蛋白质合成和细胞外基质(extracellular matrix,ECM)沉积等相关。充分了解miRNAs在SSc纤维化中的重要性,有助于为SSc的诊断提供新的生物标记,为治疗提供新策略。本文综述了miRNAs在SSc纤维化过程中参与调节的这些复杂细胞信号通路的作用及机制,以期为SSc诊断、严重程度判断、预后评估,以及寻求潜在治疗靶点提供新思路。  相似文献   

5.
Detailed analysis of the cellular and molecular mechanisms that mediate liver fibrosis has provided a framework for therapeutic approaches to prevent, slow down, or even reverse fibrosis and cirrhosis. A pivotal event in the development of liver fibrosis is the activation of quiescent hepatic stellate cells (HSCs) to scar-forming myofibroblast-like cells. Consequently, HSCs and the factors that regulate HSC activation, proliferation, and function represent important antifibrotic targets. Drugs currently licensed in the US and Europe for other indications target HSC-related components of the fibrotic cascade. Their deployment in the near future looks likely. Ultimately, treatment strategies for liver fibrosis may vary on an individual basis according to etiology, risk of fibrosis progression, and the prevailing pathogenic milieu, meaning that a multiagent approach could be required. The field continues to develop rapidly and starts to identify exciting potential targets in proof-of-concept preclinical studies. Despite this, no antifibrotics are currently licensed for use in humans. With epidemiological predictions for the future prevalence of viral, obesity-related, and alcohol-related cirrhosis painting an increasingly gloomy picture, and a shortfall in donors for liver transplantation, the clinical urgency for new therapies is high. There is growing interest from stakeholders keen to exploit the market potential for antifibrotics. However, the design of future trials for agents in the developmental pipeline will depend on strategies that enable equal patient stratification, techniques to reliably monitor changes in fibrosis over time, and the definition of clinically meaningful end points.  相似文献   

6.
Dynamic remodeling of the extracellular matrix (ECM) is essential for development, wound healing and normal organ homeostasis. Life-threatening pathological conditions arise when ECM remodeling becomes excessive or uncontrolled. In this Perspective, we focus on how ECM remodeling contributes to fibrotic diseases and cancer, which both present challenging obstacles with respect to clinical treatment, to illustrate the importance and complexity of cell-ECM interactions in the pathogenesis of these conditions. Fibrotic diseases, which include pulmonary fibrosis, systemic sclerosis, liver cirrhosis and cardiovascular disease, account for over 45% of deaths in the developed world. ECM remodeling is also crucial for tumor malignancy and metastatic progression, which ultimately cause over 90% of deaths from cancer. Here, we discuss current methodologies and models for understanding and quantifying the impact of environmental cues provided by the ECM on disease progression, and how improving our understanding of ECM remodeling in these pathological conditions is crucial for uncovering novel therapeutic targets and treatment strategies. This can only be achieved through the use of appropriate in vitro and in vivo models to mimic disease, and with technologies that enable accurate monitoring, imaging and quantification of the ECM.  相似文献   

7.
8.
Chronic C hepatitis represents a major health problem worldwide, mainly because progression of the tissue damage leads to the development of cirrhosis and hepatocellular carcinoma. In this review we discuss the molecular mechanisms underlying the development of liver fibrosis. In particular we consider some immunologic aspects that regulate the interaction between HCV and the host immune defense. Reflections are made about the roles played by the host capacity to respond to the viral infection during therapy and the consequences of the deposition of extracellular matrix (ECM) proteins leading to the development of fibrosis. The involvement of inflammatory cytokines in regulating the proteolytic remodeling of the liver and the ECM turn-over is essential for the activation of hepatic stellate cells (HSCs), that have an important role in the progression of liver fibrosis. Finally, we analyze one of the aspects involved in the activation of the HSCs, namely the proteolytic remodeling of the surrounding environment.  相似文献   

9.
PAI-1 has been shown to be both profibrotic and antifibrotic in animal models of hepatic fibrosis. Although these models have similarities to human fibrotic liver disease, no rodent model completely recapitulates the clinical situation; indeed, transaminase values in most models of hepatic fibrosis are much higher than in chronic liver diseases in humans. Here, wild-type and PAI-1−/− mice were administered AngII (500 ng/kg/min) for 4 weeks. ECM accumulation was evaluated by Sirius red staining, hydroxyproline content, and fibrin and collagen immunostaining. Induction of pro-fibrotic genes was assessed by real-time RT-PCR. Despite the absence of any significant liver damage, AngII infusion increased the deposition of hepatic collagen and fibrin ECM, with a perisinusoidal pattern. PAI-1−/− mice were protected from these ECM changes, indicating a causal role of PAI-1 in this fibrosis model. Protection in the knockout strain correlated with a blunted increase in αSMA, and elevated activities of matrix metalloproteinases (MMP2, MMP9). These data suggest that PAI-1 plays a critical role in mediating fibrosis caused by AngII and lends weight-of-evidence to a pro-fibrotic role of this protein in liver. Furthermore, the current study proposes a new model of ‘pure’ hepatic fibrosis in mice with little inflammation or hepatocyte death.  相似文献   

10.
11.
12.
13.
14.
The identification of specific target proteins for any diseased condition involves extensive characterization of the potentially involved proteins. Members of a protein family demonstrating comparable features may show certain unusual features when implicated in a pathological condition. Advancements in the field of computational biology and the use of various bioinformatics tools for analysis can aid researchers to comprehend their system of work in primary stages of research. This initial screening can help to reduce time and cost of testing and experimentation in laboratory. Human matrix metalloproteinase (MMP) family of endopeptidases is one such family of 23 members responsible for the remodeling of extracellular matrix (ECM) by degradation of the ECM proteins. Though their role has been implicated in various pathological conditions such as arthritis, atherosclerosis, cancer, liver fibrosis, cardio-vascular and neurodegenerative disorders, little is known about the specific involvement of members of the large MMP family in diseases. A comparative in silico characterization of the MMP protein family has been carried out to analyze their physico-chemical, secondary structural and functional properties. Based on the observed patterns of occurrence of atypical features, we hypothesize that cysteine rich and highly thermostable MMPs might be key players in diseased conditions. Thus, a plausible grouping of disease responsive MMPs that might be considered as promising clinical targets may be done. This study can be used as a fundamental approach to characterize, analyze and screen large protein families for the identification of signature patterns.  相似文献   

15.
Activation of hepatic stellate cells (HSCs) is a pivotal event in the pathogenesis of liver fibrosis. Pharmacological induction of HSC apoptosis could be a promising strategy for fibrosis regression. Natural product tetramethylpyrazine (TMP) exhibits potent antifibrotic activities in vivo. However, the molecular mechanisms remain to be defined. The present study aimed at investigating the anti-proliferative and pro-apoptotic effects of TMP on HSCs and elucidating the underlying mechanisms. Our results demonstrated that TMP had no apparent cytotoxic effects on hepatocytes, but significantly inhibited HSC proliferation and induced cell cycle arrest at the G0/G1 checkpoint. These effects were associated with TMP regulation of cyclin D1, p21, p27 and p53. Furthermore, we found that TMP disrupted mitochondrial functions and led to activation of caspase cascades in HSCs. Mechanistic investigations revealed that TMP selectively blocked the extracellular signal-regulated kinase (ERK) signaling and activated p53, which was required for TMP induction of caspase-dependent mitochondrial apoptosis in HSCs. Autodock simulations predicted that TMP could directly bind to ERK2 with two hydrogen bonds and low energy score, indicating that ERK2 could be a direct target molecule for TMP within HSCs. Moreover, TMP altered expression of some marker proteins relevant to HSC activation. These data collectively revealed that TMP modulation of ERK/p53 signaling led to mitochondrial-mediated and caspase-dependent apoptosis in HSCs in vitro. These studies provided mechanistic insights into the antifibrotic properties of TMP that may be exploited as a potential option for hepatic fibrosis.  相似文献   

16.
17.
Hepatic fibrosis is a reversible wound healing response characterized by accumulation of extracellular matrix (ECM), or "scar," that follows chronic but not self-limited liver disease. The ECM components in fibrotic liver are similar regardless of the underlying cause. Activation of hepatic stellate cells is the central event in hepatic fibrosis. These perisinusoidal cells orchestrate an array of changes including degradation of the normal ECM of liver, deposition of scar molecules, vascular and organ contraction, and release of cytokines. Not only is hepatic fibrosis reversible, but it is also increasingly clear that cirrhosis may be reversible as well. The exact stage at which fibrosis/cirrhosis becomes truly irreversible is not known. Antifibrotic therapies will soon be a clinical reality. Emerging therapies will be targeted to those patients with reversible disease. The paradigm of stellate cell activation provides an important framework for defining therapeutic targets.  相似文献   

18.
Activation of hepatic stellate cells (HSCs) is an integral component of the wound‐healing process in liver injury/inflammation. However, uncontrolled activation of HSCs leads to constant secretion of collagen‐rich extracellular matrix (ECM) proteins, resulting in liver fibrosis. The enhanced ECM synthesis/secretion demands an uninterrupted supply of intracellular energy; however, there is a paucity of data on the bioenergetics, particularly the mitochondrial (mito) metabolism of fibrogenic HSCs. Here, using human and rat HSCs in vitro, we show that the mito‐respiration, mito‐membrane potential (Δψm) and cellular ‘bioenergetic signature’ distinguish fibrogenic HSCs from normal, less‐active HSCs. Ex vivo, HSCs from mouse and rat models of liver fibrosis further confirmed the altered ‘bioenergetic signature’ of fibrogenic HSCs. Importantly, the distinctive elevation in mito‐Δψm sensitized fibrogenic HSCs for selective inhibition by mitotropic doxorubicin while normal, less‐active HSCs and healthy human primary hepatocytes remained minimally affected if not, unaffected. Thus, the increased mito‐Δψm may provide an opportunity to selectively target fibrogenic HSCs in liver fibrosis.  相似文献   

19.
Overactive DNA repair contributes to therapeutic resistance in cancer. However, pan-cancer comparative studies investigating the contribution of all DNA repair genes in cancer progression employing an integrated approach have remained limited. We performed a multi-cohort retrospective analysis to determine the prognostic significance of 138 DNA repair genes in 16 cancer types (n = 16,225). Cox proportional hazards analyses revealed a significant variation in the number of prognostic genes between cancers; 81 genes were prognostic in clear cell renal cell carcinoma while only two genes were prognostic in glioblastoma. We reasoned that genes that were commonly prognostic in highly correlated cancers revealed by Spearman’s correlation analysis could be harnessed as a molecular signature for risk assessment. A 10-gene signature, uniting prognostic genes that were common in highly correlated cancers, was significantly associated with overall survival in patients with clear cell renal cell (P < 0.0001), papillary renal cell (P = 0.0007), liver (P = 0.002), lung (P = 0.028), pancreas (P = 0.00013) or endometrial (P = 0.00063) cancers. Receiver operating characteristic analyses revealed that a combined model of the 10-gene signature and tumor staging outperformed either classifier when considered alone. Multivariate Cox regression models incorporating additional clinicopathological features showed that the signature was an independent predictor of overall survival. Tumor hypoxia is associated with adverse outcomes. Consistent across all six cancers, patients with high 10-gene and high hypoxia scores had significantly higher mortality rates compared to those with low 10-gene and low hypoxia scores. Functional enrichment analyses revealed that high mortality rates in patients with high 10-gene scores were attributable to an overproliferation phenotype. Death risk in these patients was further exacerbated by concurrent mutations of a cell cycle checkpoint protein, TP53. The 10-gene signature identified tumors with heightened DNA repair ability. This information has the potential to radically change prognosis through the use of adjuvant DNA repair inhibitors with chemotherapeutic drugs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号