首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
<正>Lipopolysaccharide(LPS),also termed endotoxin,is a main component of the external leaflet of the outer membrane(OM)in Gram-negative bacteria.It serves as a natural barrier against harsh environments and toxic compounds,including antibiotics,and partially confers drug-resistance in bacteria[1].LPS is also a powerful activator of inflammation and innate immune responses in mammalian cells.For  相似文献   

2.
Calpains are intracellular calcium-activated cysteine proteases whose unregulated proteolysis following the loss of calcium homeostasis can lead to acute degeneration during ischemic episodes and trauma, as well as Alzheimer's disease and cataract formation. The determination of the crystal structure of the proteolytic core of mu-calpain (muI-II) in a calcium-bound active conformation has made structure-guided design of active site inhibitors feasible. We present here high-resolution crystal structures of rat muI-II complexed with two reversible calpain-specific inhibitors employing cyclic hemiacetal (SNJ-1715) and alpha-ketoamide (SNJ-1945) chemistries that reveal new details about the interactions of inhibitors with this enzyme. The SNJ-1715 complex confirms that the free aldehyde is the reactive species of the cornea-permeable cyclic hemiacetal. The alpha-ketoamide warhead of SNJ-1945 binds with the hydroxyl group of the tetrahedral adduct pointing toward the catalytic histidine rather than the oxyanion hole. The muI-II-SNJ-1945 complex shows residue Glu261 displaced from the S1' site by the inhibitor, resulting in an extended "open" conformation of the domain II gating loop and an unobstructed S1' site. This conformation offers an additional template for structure-based drug design extending to the primed subsites. An important role for the highly conserved Glu261 is proposed.  相似文献   

3.
A comparison of messenger RNA in X-ray crystal structures of 70S ribosomal complexes in the initiation, post-initiation and elongation states of translation shows distinct conformational differences in the exit (E) codon. Here, we present structural evidence indicating that, after the initiation event, the E codon nucleotides relax and form a classical A-helical conformation. This conformation is similar to that of the P and A codons, and is favourable for establishing Watson-Crick interactions with the anticodon of E-site transfer RNA.  相似文献   

4.
The X-ray crystal structure of the vanadium bromoperoxidase from the red algae Corallina pilulifera has been solved in the presence of the known substrates, phenol red and phloroglucinol. A putative substrate binding site has been observed in the active site channel of the enzyme. In addition bromide has been soaked into the crystals and it has been shown to bind unambiguously within the enzyme active site by using the technique of single anomalous dispersion. A specific leucine amino acid is seen to move towards the bromide ion in the wild-type enzyme to produce a hydrophobic environment within the active site. A mutant of the enzyme where arginine 397 has been changed to tryptophan, shows a different behaviour on bromide binding. These results have increased our understanding of the mechanism of the vanadium bromoperoxidases and have demonstrated that the substrate and bromide are specifically bound to the enzyme active site.  相似文献   

5.
The primary photochemical process of the visual function has been investigated using the three crystallographic models, 11-cis-rhodopsin, all-trans-bathorhodopsin, and the artificial isomeric 9-cis-rhodopsin. Detailed examination of the atomic displacements and dihedral angle changes of the retinal chromophore involved in the interconversion among these isomers suggests the mechanism of isomerization efficiency.  相似文献   

6.
Kawano S  Kakuta Y  Kimura M 《Biochemistry》2002,41(51):15195-15202
Ribonuclease NW (RNase NW), the wound-inducible RNase in Nicotiana glutinosa leaves, preferentially cleaves guanylic acid. We expressed the cDNA encoding RNase NW in the methylotrophic yeast Pichia pastoris using the expression vector pPIC9K, and the resulting recombinant RNase NW (ryRNaseNW) secreted into medium was purified to apparent homogeneity using column chromatography. The crystal structure of ryRNase NW bound to 5'-GMP was determined at 1.5 A resolution by molecular replacement with tomato RNase LE as a search model. The RNase NW structurally belongs to the (alpha + beta) class of proteins, having eight helices (five alpha-helices and three 3(10) helices) and six beta-strands, and its structure is highly similar to those of other plant RNases, including a uridylic acid preferential RNase MC1 from bitter gourd seeds. The guanine ring of 5'-GMP lies in a hydrophobic pocket of the molecular surface composed of Tyr17, Tyr71, Ala80, Leu79, and Phe89: the guanine base is sandwiched between aromatic side chains of Tyr17 and Phe89. In addition, the guanine base is firmly stabilized by a network of hydrogen bonds of the side chains of Gln12 and Thr78, as well as of the main chain of Leu79. Therefore, Gln12, Tyr17, Thr78, Leu79, and Phe89 are responsible for recognition of the guanine base by RNase NW, findings which provide insight into the manner in which RNase NW preferentially cleaves guanylic acid.  相似文献   

7.
P-glycoprotein (ABCB1) is an ATP-binding cassette protein that is associated with the acquisition of multi-drug resistance in cancer and the failure of chemotherapy in humans. Structural insights into this protein are described using a combination of small angle X-ray scattering data and cryo-electron crystallography data. We have compared the structures with bacterial homologues, and discuss the development of homology models for P-glycoprotein based on the bacterial Sav1866 structure.  相似文献   

8.
The large extracellular glycoprotein reelin directs neuronal migration during brain development and plays a fundamental role in layer formation. It is composed of eight tandem repeats of an approximately 380-residue unit, termed the reelin repeat, which has a central epidermal growth factor (EGF) module flanked by two homologous subrepeats with no obvious sequence similarity to proteins of known structure. The 2.05 A crystal structure of the mouse reelin repeat 3 reveals that the subrepeat assumes a beta-jelly-roll fold with unexpected structural similarity to carbohydrate-binding domains. Despite the interruption by the EGF module, the two subdomains make direct contact, resulting in a compact overall structure. Electron micrographs of a four-domain fragment encompassing repeats 3-6, which is capable of inducing Disabled-1 phosphorylation in neurons, show a rod-like shape. Furthermore, a three-dimensional molecular envelope of the fragment obtained by single-particle tomography can be fitted with four concatenated repeat 3 atomic structures, providing the first glimpse of the structural unit for this important signaling molecule.  相似文献   

9.
Kawakami K  Iwai M  Ikeuchi M  Kamiya N  Shen JR 《FEBS letters》2007,581(25):4983-4987
PsbY is one of the low molecular mass subunits of oxygen-evolving photosystem II (PSII). Its location, however, has not been identified in the current crystal structure of PSII. We constructed a PsbY-deletion mutant of Thermosynechococcus elongatus, crystallized, and analyzed the crystal structure of the mutant PSII dimer. The results obtained showed that PsbY is located in the periphery of PSII close to the alpha- and beta-subunits of cytochrome b559, which corresponded to an unassigned helix in the 3.7A structure of T. vulcanus or helix X2 in the 3.0A structure of T. elongatus. Our results also indicated that the C-terminal loop of PsbY is protruded toward the stromal side, instead of the lumenal side predicted previously.  相似文献   

10.
Anand R  Hoskins AA  Stubbe J  Ealick SE 《Biochemistry》2004,43(32):10328-10342
Formylglycinamide ribonucleotide amidotransferase (FGAR-AT) catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to formylglycinamidine ribonucleotide (FGAM), ADP, P(i), and glutamate in the fourth step of the purine biosynthetic pathway. In eukaryotes and Gram-negative bacteria, FGAR-AT is encoded by the purL gene as a multidomain protein with a molecular mass of about 140 kDa. In Gram-positive bacteria and archaebacteria FGAR-AT is a complex of three proteins: PurS, PurL, and PurQ. We have determined the structure of FGAR-AT (PurL) from Salmonella typhimurium at 1.9 A resolution using X-ray crystallography. PurL is the last remaining enzyme in the purine biosynthetic pathway to have its structure determined. The structure reveals four domains: an N-terminal domain structurally homologous to a PurS dimer, a linker region, an FGAM synthetase domain homologous to an aminoimidazole ribonucleotide synthetase (PurM) dimer, and a triad glutaminase domain. The domains are intricately linked by interdomain interactions and peptide connectors. The fold common to PurM and the central region of PurL represents a superfamily for which HypE, SelD, and ThiL are predicted to be members. A structural ADP molecule was found bound to a site related to the putative active site by pseudo-2-fold symmetry and two sulfate ions were found at the putative active site. These observations and the structural similarities between PurM and StPurL were used to model the substrates FGAR and ATP in the StPurL active site. A glutamylthioester intermediate was found in the glutaminase domain at Cys1135. The N-terminal (PurS-like) domain is hypothesized to form the putative channel through which ammonia passes from the glutaminase domain to the FGAM synthetase domain.  相似文献   

11.
Enolase is a validated drug target in Trypanosoma brucei. To better characterize its properties and guide drug design efforts, we have determined six new crystal structures of the enzyme, in various ligation states and conformations, and have carried out complementary molecular dynamics simulations. The results show a striking structural diversity of loops near the catalytic site, for which variation can be interpreted as distinct modes of conformational variability that are explored during the molecular dynamics simulations. Our results show that sulfate may, unexpectedly, induce full closure of catalytic site loops whereas, conversely, binding of inhibitor phosphonoacetohydroxamate may leave open a tunnel from the catalytic site to protein surface offering possibilities for drug development. We also present the first complex of enolase with a novel inhibitor 2-fluoro-2-phosphonoacetohydroxamate. The molecular dynamics results further encourage efforts to design irreversible species-specific inhibitors: they reveal that a parasite enzyme-specific lysine may approach the catalytic site more closely than crystal structures suggest and also cast light on the issue of accessibility of parasite enzyme-specific cysteines to chemically modifying reagents. One of the new sulfate structures contains a novel metal-binding site IV within the catalytic site cleft.  相似文献   

12.
13.
Obtention and crystal structure of guanfacine (guaH) together with synthesis and crystal structure of its copper complex [CuII(gua)2] · DMF were reported. The free molecule guaH exhibits one tautomeric form (B) in contrast to the form (A) which was reported in the Merck index. In the copper(II) complex, the anionic form gua exhibits the third tautomeric form (C). This complex is characterized by a CuN2O2 coordination. The EPR spectrum is in agreement with a Cu(II) ion in a square planar configuration.  相似文献   

14.
The crystal structure of gluconate kinase from Escherichia coli has been determined to 2.0 A resolution by X-ray crystallography. The three-dimensional structure was solved by multi-wavelength anomalous dispersion, using a crystal of selenomethionine-substituted enzyme. Gluconate kinase is an alpha/beta structure consisting of a twisted parallel beta-sheet surrounded by alpha-helices with overall topology similar to nucleoside monophosphate (NMP) kinases, such as adenylate kinase. In order to identify residues involved in substrate binding and catalysis, structures of binary complexes with ATP, the ATP analogue adenosine 5'-(beta,gamma-methylene) triphosphate and the product, gluconate-6-phosphate have been determined. Significant conformational changes are induced upon binding of ATP to the enzyme. The largest changes involve a hinge-bending motion of the NMP(bind) part and a motion of the LID with adjacent helices, which opens the cavity to the second substrate, gluconate. Opening of the active site cleft upon ATP binding is the opposite of what has been observed in the NMP kinase family so far, which usually close their active site to prevent fortuitous hydrolysis of ATP. The conformational change positions the side-chain of Arg120 to stack with the purine ring of ATP and the side-chain of Arg124 is shifted to interact with the alpha-phosphate in ATP, at the same time protecting ATP from solvent water. The beta and gamma-phosphate groups of ATP bind in the predicted P-loop. A conserved lysine side-chain interacts with the gamma-phosphate group, and might promote phosphoryl transfer. Gluconate-6-phosphate binds with its phosphate group in a similar position as the gamma-phosphate of ATP, consistent with inline phosphoryl transfer. The gluconate binding-pocket in GntK is located in a different position than the nucleoside binding-site usually found in NMP kinases.  相似文献   

15.
Integration catalyzed by integrase (IN) is a key process in the retrovirus life cycle. Many biochemical or structural human immunodeficiency virus, type 1 (HIV-1) IN studies have been severely impeded by its propensity to aggregate. We characterized a retroviral IN (primate foamy virus (PFV-1)) that displays a solubility profile different from that of HIV-1 IN. Using various techniques, including fluorescence correlation spectroscopy, time-resolved fluorescence anisotropy, and size exclusion chromatography, we identified a monomer-dimer equilibrium for the protein alone, with a half-transition concentration of 20-30 mum. We performed specific enzymatic labeling of PFV-1 IN and measured the fluorescence resonance energy transfer between carboxytetramethylrhodamine-labeled IN and fluorescein-labeled DNA substrates. FRET and fluorescence anisotropy highlight the preferential binding of PFV-1 IN to the 3'-end processing site. Sequence-specific DNA binding was not observed with HIV-1 IN, suggesting that the intrinsic ability of retroviral INs to bind preferentially to the processing site is highly underestimated in the presence of aggregates. IN is in a dimeric state for 3'-processing on short DNA substrates, whereas IN polymerization, mediated by nonspecific contacts at internal DNA positions, occurs on longer DNAs. Additionally, aggregation, mediated by nonspecific IN-IN interactions, occurs preferentially with short DNAs at high IN/DNA ratios. The presence of either higher order complex is detrimental for specific activity. Ionic strength favors catalytically competent over higher order complexes by selectively disrupting nonspecific IN-IN interactions. This counteracting effect was not observed with polymerization. The synergic effect on the selection of specific/competent complexes, obtained by using short DNA substrates under high salt conditions, may have important implications for further structural studies in IN.DNA complexes.  相似文献   

16.
This study describes the first crystal structures of a complex between a DNA topoisomerase and a drug. We present the structures of a 24 kDa N-terminal fragment of the Escherichia coli DNA gyrase B protein in complexes with two different inhibitors of the ATPase activity of DNA gyrase, namely the coumarin antibiotic, novobiocin, and GR122222X, a member of the cyclothialidine family. These structures are compared with the crystal structure of the complex with an ATP analogue, adenylyl-beta-gamma-imidodiphosphate (ADPNP). The likely mechanism, by which mutant gyrase B proteins become resistant to inhibition by novobiocin are discussed in light of these comparisons. The three ligands are quite dissimilar in chemical structure and bind to the protein in very different ways, but their binding is competitive because of a small degree of overlap of their binding sites. These crystal structures consequently describe a chemically well characterized ligand binding surface and provide useful information to assist in the design of novel ligands.  相似文献   

17.
18.

Background  

In kinetic crystallography, the usually static method of X-ray diffraction is expanded to allow time-resolved analysis of conformational rearrangements in protein structures. To achieve this, reactions have to be triggered within the protein crystals of interest, and optical spectroscopy can be used to monitor the reaction state. For this approach, a modified form of H-Ras p21 was designed which allows reaction initiation and fluorescence readout of the initiated GTPase reaction within the crystalline state. Rearrangements within the crystallized protein due to the progressing reaction and associated heterogeneity in the protein conformations have to be considered in the subsequent refinement processes.  相似文献   

19.
Elevated levels of copper or silver ions in the environment are an immediate threat to many organisms. Escherichia coli is able to resist the toxic effects of these ions through strictly limiting intracellular levels of Cu(I) and Ag(I). The CusCFBA system is one system in E. coli responsible for copper/silver tolerance. A key component of this system is the periplasmic copper/silver-binding protein, CusF. Here the X-ray structure and XAS data on the CusF-Ag(I) and CusF-Cu(I) complexes, respectively, are reported. In the CusF-Ag(I) structure, Ag(I) is coordinated by two methionines and a histidine, with a nearby tryptophan capping the metal site. EXAFS measurements on the CusF-Cu(I) complex show a similar environment for Cu(I). The arrangement of ligands effectively sequesters the metal from its periplasmic environment and thus may play a role in protecting the cell from the toxic ion.  相似文献   

20.
Leng L  Bucala R 《Cell research》2006,16(2):162-168
The recent cloning of MIF receptor fills an important gap in our understanding of the molecular biology and immunology of MIF. The MIF receptor, like MIF, does not fall into any established family of protein mediators, providing both new challenges and opportunities for the structural and functional analysis of MIF signal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号