首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peelen MV  Wiggett AJ  Downing PE 《Neuron》2006,49(6):815-822
Accurate perception of the actions and intentions of other people is essential for successful interactions in a social environment. Several cortical areas that support this process respond selectively in fMRI to static and dynamic displays of human bodies and faces. Here we apply pattern-analysis techniques to arrive at a new understanding of the neural response to biological motion. Functionally defined body-, face-, and motion-selective visual areas all responded significantly to "point-light" human motion. Strikingly, however, only body selectivity was correlated, on a voxel-by-voxel basis, with biological motion selectivity. We conclude that (1) biological motion, through the process of structure-from-motion, engages areas involved in the analysis of the static human form; (2) body-selective regions in posterior fusiform gyrus and posterior inferior temporal sulcus overlap with, but are distinct from, face- and motion-selective regions; (3) the interpretation of region-of-interest findings may be substantially altered when multiple patterns of selectivity are considered.  相似文献   

2.
The interpretation of biological motion   总被引:5,自引:0,他引:5  
The term biological motion has been coined by Johansson (1973) to refer to the ambulatory patterns of terrestrial bipeds and quadripeds. In this paper a computational theory of the visual perception of biological motion is proposed. The specific problem addressed is how the three dimensional structure and motions of animal limbs may be computed from the two dimensional motions of their projected images. It is noted that the limbs of animals typically do not move arbitrarily during ambulation. Rather, for anatomical reasons, they typically move in single planes for extended periods of time. This simple anatomical constraint is exploited as the basis for utilizing a planarity assumption in the interpretation of biological motion. The analysis proposed is: (1) divide the image into groups of two or three elements each; (2) test each group for pairwise-rigid planar motion; (3) combine the results from (2). Fundamental to the analysis are two structure from planar motion propositions. The first states that the structure and motion of two points rigidly linked and rotating in a plane is recoverable from three orthographic projections. The second states that the structure and motion of three points forming two highed rods constrained to move in a plane is recoverable from two orthographic projections. The psychological relevance of the analysis and possible interactions with top down recognition processes are discussed.  相似文献   

3.
The successful detection of biological motion can have important consequences for survival. Previous studies have demonstrated the ease and speed with which observers can extract a wide range of information from impoverished dynamic displays in which only an actor's joints are visible. Although it has often been suggested that such biological motion processing can be accomplished relatively automatically, few studies have directly tested this assumption by using behavioral methods. Here we used a flanker paradigm to assess how peripheral "to-be-ignored" walkers affect the processing of a central target walker. Our results suggest that task-irrelevant dynamic figures cannot be ignored and are processed to a level where they influence behavior. These findings provide the first direct evidence that complex dynamic patterns can be processed incidentally, a finding that may have important implications for cognitive, neurophysiological, and computational models of biological motion processing.  相似文献   

4.
5.
ObjectiveDynamic PET imaging is extensively used in brain imaging to estimate parametric maps. Inter-frame motion can substantially disrupt the voxel-wise time-activity curves (TACs), leading to erroneous maps during kinetic modelling. Therefore, it is important to characterize the robustness of kinetic parameters under various motion and kinetic model related factors.MethodsFully 4D brain simulations ([15O]H2O and [18F]FDG dynamic datasets) were performed using a variety of clinically observed motion patterns. Increasing levels of head motion were investigated as well as varying temporal frames of motion initiation. Kinetic parameter estimation was performed using both post-reconstruction kinetic analysis and direct 4D image reconstruction to assess bias from inter-frame emission blurring and emission/attenuation mismatch.ResultsKinetic parameter bias heavily depends on the time point of motion initiation. Motion initiated towards the end of the scan results in the most biased parameters. For the [18F]FDG data, k4 is the more sensitive parameter to positional changes, while K1 and blood volume were proven to be relatively robust to motion. Direct 4D image reconstruction appeared more sensitive to changes in TACs due to motion, with parameter bias spatially propagating and depending on the level of motion.ConclusionKinetic parameter bias highly depends upon the time frame at which motion occurred, with late frame motion-induced TAC discontinuities resulting in the least accurate parameters. This is of importance during prolonged data acquisition as is often the case in neuro-receptor imaging studies. In the absence of a motion correction, use of TOF information within 4D image reconstruction could limit the error propagation.  相似文献   

6.
7.
Biological motion displays depict a moving human figure by means of just a few isolated points of light attached to the major joints of the body. Naive observers readily interpret the moving pattern of dots as representing a human figure, despite the complete absence of form cues. This paper reports a series of experiments which investigated the visual processes underlying the phenomenon. Results suggest that (i) the effect relies upon responses in low-level motion-detecting processes, which operate over short temporal and spatial intervals and respond to local modulations in image intensity; and (ii) the effect does not involve hierarchical visual analysis of motion components, nor does it require the presence of dots which move in rigid relation to each other. Instead, movements of the extremities are crucial. Data are inconsistent with current theoretical treatments.  相似文献   

8.
Collective cell motility is crucial to many biological processes including morphogenesis, wound healing, and cancer invasion. Recently, the biology and biophysics communities have begun to use the term ‘cell jamming’ to describe the collective arrest of cell motion in tissues. Although this term is widely used, the underlying mechanisms are varied. In this review, we highlight three independent mechanisms that can potentially drive arrest of cell motion — crowding, tension-driven rigidity, and reduction of fluctuations — and propose a framework that connects all three. Because multiple mechanisms may be operating simultaneously, this emphasizes that experiments should strive to identify which mechanism dominates in a given situation. We also discuss how specific cell-scale and molecular-scale biological processes, such as cell–cell and cell-substrate interactions, control aspects of these underlying physical mechanisms.  相似文献   

9.
Three-dimensional imaging of biological complexity   总被引:5,自引:0,他引:5  
Over the past 5 years, thanks to advances in both instrumentation and computational speed, three-dimensional imaging techniques using the electron microscope have been greatly improved in two areas: electron tomography of cell organelles or cell sections and reconstruction of macromolecules from single particles. Ice embedment has brought a breakthrough in the degree of preservation of specimens under close-to-native conditions. The current challenge is to push the resolution of electron tomographic imaging to a point where macromolecular signatures can be recognized within the cellular context. We show first progress toward this goal by examples in two areas of application: the structure of the muscle triad junction and the architecture and fine structure of mitochondria. As techniques of cryo-microtomy are perfected, we hope to be able to apply tomography to high-pressure frozen sections of tissue.  相似文献   

10.
Metabolic signals are used for imaging and spectroscopic studies of brain function and disease and to elucidate the cellular basis of neuroenergetics. The major fuel for activated neurons and the models for neuron–astrocyte interactions have been controversial because discordant results are obtained in different experimental systems, some of which do not correspond to adult brain. In rats, the infrastructure to support the high energetic demands of adult brain is acquired during postnatal development and matures after weaning. The brain''s capacity to supply and metabolize glucose and oxygen exceeds demand over a wide range of rates, and the hyperaemic response to functional activation is rapid. Oxidative metabolism provides most ATP, but glycolysis is frequently preferentially up-regulated during activation. Underestimation of glucose utilization rates with labelled glucose arises from increased lactate production, lactate diffusion via transporters and astrocytic gap junctions, and lactate release to blood and perivascular drainage. Increased pentose shunt pathway flux also causes label loss from C1 of glucose. Glucose analogues are used to assay cellular activities, but interpretation of results is uncertain due to insufficient characterization of transport and phosphorylation kinetics. Brain activation in subjects with low blood-lactate levels causes a brain-to-blood lactate gradient, with rapid lactate release. In contrast, lactate flooding of brain during physical activity or infusion provides an opportunistic, supplemental fuel. Available evidence indicates that lactate shuttling coupled to its local oxidation during activation is a small fraction of glucose oxidation. Developmental, experimental, and physiological context is critical for interpretation of metabolic studies in terms of theoretical models.  相似文献   

11.
Experimental evidence suggests a link between perception and the execution of actions . In particular, it has been proposed that motor programs might directly influence visual action perception . According to this hypothesis, the acquisition of novel motor behaviors should improve their visual recognition, even in the absence of visual learning. We tested this prediction by using a new experimental paradigm that dissociates visual and motor learning during the acquisition of novel motor patterns. The visual recognition of gait patterns from point-light stimuli was assessed before and after nonvisual motor training. During this training, subjects were blindfolded and learned a novel coordinated upper-body movement based only on verbal and haptic feedback. The learned movement matched one of the visual test patterns. Despite the absence of visual stimulation during training, we observed a selective improvement of the visual recognition performance for the learned movement. Furthermore, visual recognition performance after training correlated strongly with the accuracy of the execution of the learned motor pattern. These results prove, for the first time, that motor learning has a direct and highly selective influence on visual action recognition that is not mediated by visual learning.  相似文献   

12.
13.

Background

In the context of interacting activities requiring close-body contact such as fighting or dancing, the actions of one agent can be used to predict the actions of the second agent [1]. In the present study, we investigated whether interpersonal predictive coding extends to interactive activities – such as communicative interactions - in which no physical contingency is implied between the movements of the interacting individuals.

Methodology/Principal Findings

Participants observed point-light displays of two agents (A and B) performing separate actions. In the communicative condition, the action performed by agent B responded to a communicative gesture performed by agent A. In the individual condition, agent A''s communicative action was substituted with a non-communicative action. Using a simultaneous masking detection task, we demonstrate that observing the communicative gesture performed by agent A enhanced visual discrimination of agent B.

Conclusions/Significance

Our finding complements and extends previous evidence for interpersonal predictive coding, suggesting that the communicative gestures of one agent can serve as a predictor for the expected actions of the respondent, even if no physical contact between agents is implied.  相似文献   

14.
Investigation of perceptual rivalry between conflicting stimuli presented one to each eye can further understanding of the neural underpinnings of conscious visual perception. During rivalry, visual awareness fluctuates between perceptions of the two stimuli. Here, we demonstrate that high-level perceptual grouping can promote rivalry between stimulus pairs that would otherwise be perceived as nonrivalrous. Perceptual grouping was generated with point-light walker stimuli that simulate human motion, visible only as lights placed on the joints. Although such walking figures are unrecognizable when stationary, recognition judgments as complex as gender and identity can accurately be made from animated displays, demonstrating the efficiency with which our visual system can group dynamic local signals into a globally coherent walking figure. We find that point-light walker stimuli presented one to each eye and in different colors and configurations results in strong rivalry. However, rivalry is minimal when the two walkers are split between the eyes or both presented to one eye. This pattern of results suggests that processing animated walker figures promotes rivalry between signals from the two eyes rather than between higher-level representations of the walkers. This leads us to hypothesize that awareness during binocular rivalry involves the integrated activity of high-level perceptual mechanisms in conjunction with lower-level ocular suppression modulated via cortical feedback.  相似文献   

15.
Head and facial movements can provide valuable cues to identity in addition to their primary roles in communicating speech and expression [1-8]. Here we report experiments in which we have used recent motion capture and animation techniques to animate an average head [9]. These techniques have allowed the isolation of motion from other cues and have enabled us to separate rigid translations and rotations of the head from nonrigid facial motion. In particular, we tested whether human observers can judge sex and identity on the basis of this information. Results show that people can discriminate both between individuals and between males and females from motion-based information alone. Rigid head movements appear particularly useful for categorization on the basis of identity, while nonrigid motion is more useful for categorization on the basis of sex. Accuracy for both sex and identity judgements is reduced when faces are presented upside down, and this finding shows that performance is not based on low-level motion cues alone and suggests that the information is represented in an object-based motion-encoding system specialized for upright faces. Playing animations backward also reduced performance for sex judgements and emphasized the importance of direction specificity in admitting access to stored representations of characteristic male and female movements.  相似文献   

16.
Culham J 《Neuron》2003,40(3):451-452
Visual motion signals can be derived either through a lower-order mechanism in which motion detectors register changes in luminance over space and time or through a higher-order mechanism that tracks salient features as they change position. A recent fMRI study by Claeys and colleagues reports a new area of the human brain that responds to the motion of salient features and to apparent motion.  相似文献   

17.
Quantum dots (QDs) are novel photostable semiconductor nanocrystals possessing wide excitation spectra and narrow, symmetrical emission spectra and can be conjugated to a wide range of biological targets, including proteins, antibodies and nucleic acid probes. These characteristics have provoked considerable interest in their use for bioimaging. Much investigation has been performed into their use for multiplex immunohistochemistry and in situ hybridisation which, when combined with multispectral imaging, has enabled quantitation and colocalisation of gene expression in clinical tissue. Many advances have recently been made using QDs for live cell and in vivo imaging, in which QD-labelled molecules can be tracked and visualised in 3-D. This review aims to outline the beneficial properties presented by QDs along with important advances in their biological application.  相似文献   

18.
Recent innovations in microscopy and digital image processing have greatly enhanced the power of biological imaging. Basic principles of several new methods in light and electron microscopy will be discussed, and examples presented of their application to cell and molecular biology.  相似文献   

19.
Conventional organic fluorophores suffer from poor photo stability, narrow absorption spectra and broad emission spectra. Semiconductor nanocrystals, however, are highly photo-stable with broad absorption spectra and narrow size-tunable emission spectra. Recent advances in the synthesis of these materials have resulted in the generation of bright, sensitive, extremely photo-stable and biocompatible semiconductor fluorophores. Commercial availability facilitates their application in a variety of unprecedented biological experiments, including multiplexed cellular imaging, long-term in vitro and in vivo labeling, deep tissue structure mapping and single particle investigation of dynamic cellular processes. Semiconductor nanocrystals are one of the first examples of nanotechnology enabling a new class of biomedical applications.  相似文献   

20.

Background  

The use of silica coated magnetic nanoparticles as contrast agents has resulted in the production of highly stable, non-toxic solutions that can be manipulated via an external magnetic field. As a result, the interaction of these nanocomposites with cells is of vital importance in understanding their behaviour and biocompatibility. Here we report the preparation, characterisation and potential application of new "two-in-one" magnetic fluorescent nanocomposites composed of silica-coated magnetite nanoparticles covalently linked to a porphyrin moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号