首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 107 毫秒
1.
Membrane-derived oligosaccharides are a novel class of glucose-containing oligosaccharides found in the cell envelope of Escherichia coli and other Gram-negative organisms (Schulman, H., AND Kennedy, E.P. (1979) J. Bacteriol. 137, 686-688). Previous work has shown that these oligosaccharides contain sn-1-glycero-P and smaller amounts of phosphoethanolamine, derived from membrane phospholipids, attached to position 6 of certain of the glucose residues. The structure of the parent oligosaccharides (obtained by reduction with borohydride followed by alkaline hydrolysis) has now been studied. The oligosaccharide was permethylated, followed by hydrolysis and conversion of the products to methylated glucitol acetates, which were then analyzed and identified by gas-liquid chromatography and mass spectrometry. The membrane oligosaccharides contain 10 to 12 D-glucopyranoside residues/mol, linked solely by 1 yields 2 and 1 yields 6 bonds. They are highly branched structures, with four nonreducing termini per mol. Glucose units at the branch points are doubly substituted at positions 2 and 6. The low specific rotation of the oligosaccharide (+8.3 degrees) indicates that the glycosidic bonds are predominantly or entirely beta.  相似文献   

2.
Membrane-derived oligosaccharides (MDO) consist of branched substituted beta-glucan chains and are present in the periplasmic space of Escherichia coli and other gram-negative bacteria. A procedure for the isolation of mutants defective in MDO synthesis is described. Their phenotype was compared with a mdoA mutant previously identified, and they are mapped in the mdoA region. Mutants lacking MDO showed imparied chemotaxis on tryptone swarm plates, a reduced number of flagella, and an enhanced expression of the OmpC porin. Revertants able to form swarm rings again had regained the ability to synthesize MDO and showed the wild-type porin pattern. A second group of chemotactic revertants were mutated in the ompB gene region involved in osmoregulation, and they were still devoid of MDO. These findings provide evidence for a link between MDO biosynthesis and other functions of E. coli related to its adaptation to the environment.  相似文献   

3.
The osmotic regulation of the biosynthesis of membrane-derived oligosaccharides (MDO) in strains UB1005 and DC2 of Escherichia coli K-12 was examined; this regulation was previously reported by Clark (J. Bacteriol. 161:1049-1053, 1985) to be different from that observed by Kennedy for other strains of E. coli (Proc. Natl. Acad. Sci. USA 79:1092-1095, 1982). Osmotic regulation of the synthesis of MDO in UB1005 and DC2 is in fact indistinguishable from that previously reported for other strains of E. coli, with maximum production of MDO occurring in the medium of lowest osmolarity. The report of Clark to the contrary was apparently based on the inadequate methods for the measurement of MDO employed in that study. MDO are localized in the periplasm of wild-type E. coli cells. However, strain DC2, selected for hypersensitivity to a range of antibiotics, released most of its MDO into the medium, apparently as a result of greater outer membrane permeability.  相似文献   

4.
The periplasmic glucans of Gram-negative bacteria, including the membrane-derived oligosaccharides (MDO) of Escherichia coli and the cyclic glucans of the Rhizobiaceae, are now recognized to be a family of closely related substances with important functions in osmotic adaptation and cell signaling. The synthesis of the beta-1,2-glucan backbone of MDO is catalyzed by a membrane-bound glucosyltransferase system previously shown to require UDP-glucose and (surprisingly) acyl carrier protein (Therisod, H., Weissborn, A. C., and Kennedy, E. P. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 7236-7240). In the present study, no glucan intermediates bound to acyl carrier protein or to UDP could detected. The enzyme system, however, was found to be strongly inhibited by bacitracin and by amphomycin. Because the two antibiotics function by forming specific complexes with polyprenyl phosphates, their inhibitory effect suggests a prenol requirement for MDO biosynthesis. Furthermore, the activity of the glucosyltransferase was greatly stimulated by the addition of polyprenyl phosphates such as decaprenyl-P and dihydroheptaprenyl-P, but not by farnesyl-P. The same membrane preparations carry out the synthesis of polyprenyl-P-glucose, which is also stimulated by added polyprenyl-P, including farnesyl-P, the most active of those tested. Pulse chase experiments, however, indicate that the endogenous pool of polyprenyl-P-glucose cannot be an obligate intermediate in the MDO glucosyltransferase system.  相似文献   

5.
6.
We report a new procedure for the facile selection of mutants of Escherichia coli that are blocked in the production of membrane-derived oligosaccharides. Four phenotypic classes were identified, including two with a novel array of characteristics. The mutations mapped to two genetic loci. Mutations in the mdoA region near 23 min are in two distinct genes, only one of which is needed for the membrane-localized glucosyltransferase that catalyzes the synthesis of the beta-1,2-glucan backbone of membrane-derived oligosaccharides. Another set of mutations mapped near 27 min closely linked to osmZ; these appear to be in the galU gene.  相似文献   

7.
Phosphatidylglycerol was pulse-labeled with radioactive lipid precursors in a serine auxotroph of Escherichia coli. Most of the radioactivity of phosphatidylglycerol labeled in a serine-depleted medium was transferred to phosphatidylethanolamine during a chase in the presence of L-serine, but not in its absence. Metabolism of fatty acyl moieties labeled with [1-14C]acetate, acylated glycerol moieties labeled with [2-3H]glycerol, and phosphate moieties labeled with 32Pi, followed by a chase in the presence of cerulenin, showed that the intact phosphatidyl moiety of phosphatidylglycerol was transferred to phosphatidylethanolamine. The composition of phosphatidylethanolamine molecular species was unaltered and not perturbed by the transfer of the phosphatidyl moiety of phosphatidylglycerol. The increase of phosphatidylethanolamine with a concomitant decrease of phosphatidylglycerol was not coupled with the postulated turnover of phosphatidylglycerol to membrane-derived oligosaccharides and lipoprotein. It is suggested that phosphatidylglycerol is capable of providing its phosphatidyl moiety for the production of phosphatidylethanolamine in response to the relief of serine limitation by addition of L-serine.  相似文献   

8.
The membrane-derived oligosaccharides of Escherichia coli constitute a closely related family of oligosaccharides containing approximately 9 glucose units variously substituted with sn-glycero-1-phosphate and phosphoethanolamine residues derived from the head groups of membrane phospholipids, and also with succinate in O-ester linkage (Kennedy, E.P., Rumley, M.K., Schulman, H., and van Golder, L.M.G. (1976) J. Biol. Chem. 251, 4208-4213). Studies with mutant strains defective in the synthesis of various nucleoside diphosphate sugars have now revealed that UDP-glucose is an essential intermediate in the biosynthesis of these oligosaccharides. Mutants unable to synthesize UDP-glucose do not contain significant amounts of the membrane-derived oligosaccharides. In contrast, a strain unable to synthesize ADP-glucose, the glucosyl donor for glycogen synthesis in E. coli, contained normal amounts of the membrane-derived oligosaccharides, although with a somewhat different pattern of distribution of the various subspecies. In confirmation of these genetic studies, pulse-label isotope tracer studies have been carried out with glucose of high specific activity, under conditions in which UDP-glucose comprises a large fraction of the total radioactivity in the low molecular weight pool. Subsequent "chase" experiments clearly revealed the conversion of UDP-glucose to the higher molecular weight membrane-derived oligosaccharides.  相似文献   

9.
A procedure for the isolation of mutants affected in components containing glycerol derived from phospholipids yielded two mutant strains that contain membrane-derived oligosaccharides (MDO) devoid of glycerol (Rotering, H., Fiedler, W., Rollinger, W., and Braun, V. (1984) FEMS Microbiol. Lett. 22, 61-68). MDO are found in the periplasmic space of Escherichia coli and other Gram-negative bacteria, and they may comprise up to 7% of the cells dry weight. The biosynthesis of MDO is osmoregulated (Kennedy, E. P. (1982) Proc. Natl. Acad. Sci. U. S. A. 79, 1092-1095) and linked to the metabolism of phospholipids (van Golde, L. M. G., Schulman, H., and Kennedy, E. P. (1973) Proc. Natl. Acad. Sci. U. S. A. 70, 1368-1372). This leads to substitution of MDO with sn-1-phosphoglycerol and phosphoethanolamine (Kennedy, E. P., Rumley, M. K., Schulman, P., and van Golde, L. M. G. (1976) J. Biol. Chem. 251, 4208-4213). MDO also contain succinate in O-ester linkage. We now report that one mutant strain lacks phosphoglycerol transferase I activity and thus is unable to transfer sn-1-phosphoglycerol residues from phosphatidylglycerol to MDO. The mdoB gene affected in this mutant has been located at 99.2 min on the E. coli chromosome. The ethanolamine content of MDO isolated from the mutant strain is elevated, whereas the number of succinate residues is not affected. The only phenotype of mdoB mutants we found is a dramatic reduction of the diglyceride content observed in dgk mdoB double mutants when the beta-glucoside arbutin is present in the growth medium.  相似文献   

10.
Mutants of Escherichia coli defective in the newly discovered mdoA locus are blocked at an early stage in the biosynthesis of membrane-derived oligosaccharides. The mutation has now been mapped and found to be located near 23 min on the E. coli chromosome between putA and pyrC. The mdoA mutants are defective in the membrane-localized component of the glucosyl transferase system described by Weissborn and Kennedy (A. C. Weissborn and E. P. Kennedy, Fed. Proc. 42:2122, 1983).  相似文献   

11.
Membrane-derived oligosaccharides are periplasmic constituents of Escherchia coli and other Gram-negative bacteria. Oligosaccharides in this family may be variously substituted with O-succinyl ester residues, and with sn-1-phosphoglycerol and phosphoethanolamine residues derived from membrane phospholipids. Membrane-derived oligosaccharides appear to be important in osmoregulation, because their synthesis is under strict control (Kennedy, E.P. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 1092-1095). Maximum rate of synthesis is at very low osmolarity of the medium. Phosphoglycerol residues are transferred from phosphatidylglycerol to membrane-derived oligosaccharides, or to certain beta-glucoside acceptors, in a reaction catalyzed by phosphoglycerol transferase I, an enzyme of the inner membrane (Jackson, B. J., and Kennedy, E.P. (1983) J. Biol. Chem. 258, 2394-2398). We now report that this enzyme catalyzes the transfer of phosphoglycerol residues to arbutin (p-hydroxyphenyl-beta-D-glucoside) added to the medium with Km similar to that observed with the cell-free enzyme. The active site of the enzyme must therefore be on the periplasmic face of the inner membrane. We assayed phosphoglycerol transferase I in vivo and found that it is present and completely active even in cells growing in medium of very high osmolarity, in which the synthesis of membrane-derived oligosaccharides is severely reduced. We conclude that osmotic regulation must occur at the stage of the synthesis of oligosaccharide chains. A study of the kinetics of transfer of phosphoglycerol residues to membrane-derived oligosaccharides in vivo revealed that synthesis of the polyglucose chains must stop abruptly upon transfer of cells from medium of low to high osmolarity, inconsistent with a model postulating simple dilution of some rate-limiting enzyme during growth at the higher osmolarity.  相似文献   

12.
The glucose-containing, membrane-derived oligosaccharides of Escherichia coli are localized in the external envelope of that organism, most probably in the periplasmic space. The membrane-derived oligosaccharides appear to be generally occurring cell constituents of gram-negative (but not gram-positive) bacteria.  相似文献   

13.
14.
Certain strains of Escherichia coli and Salmonella contain lipopolysaccharide (LPS) modified with a phosphoethanolamine (pEtN) group at position 7 of the outer 3-deoxy-d-manno-octulosonic acid (Kdo) residue. Using the heptose-deficient E. coli mutant WBB06 (Brabetz, W., Muller-Loennies, S., Holst, O., and Brade, H. (1997) Eur. J. Biochem. 247, 716-724), we now demonstrate that the critical parameter determining the presence or absence of pEtN is the concentration of CaCl(2) in the medium. As judged by mass spectrometry, half the LPS in WBB06, grown on nutrient broth with 5 mm CaCl(2), is derivatized with a pEtN group, whereas LPS from WBB06 grown without supplemental CaCl(2) is not. Membranes from E. coli WBB06 or wild-type W3110 grown on 5-50 mm CaCl(2) contain a novel pEtN transferase that uses the precursor Kdo(2)-[4'-(32)P]lipid IV(A) as an acceptor. Transferase is not present in membranes of E. coli grown with 5 mm MgCl(2), BaCl(2), or ZnCl(2). Hydrolysis of the in vitro reaction product, pEtN-Kdo(2)-[4'-(32)P]lipid IV(A), at pH 4.5 shows that the pEtN substituent is located on the outer Kdo moiety. Membranes from an E. coli pss knockout mutant grown on 50 mm CaCl(2), which lack phosphatidylethanolamine, do not contain measurable transferase activity unless exogenous phosphatidylethanolamine is added back to the assay system. The induction of the pEtN transferase by 5-50 mm CaCl(2) suggests possible role(s) in establishing transformation competence or resisting environmental stress, and represents the first example of a regulated covalent modification of the inner core of E. coli LPS.  相似文献   

15.
Mutants of Escherichia coli defective in the mdoA locus are blocked at an early stage in the biosynthesis of membrane-derived oligosaccharides. The mdoA locus has now been cloned into multicopy plasmids. A 5 kb DNA fragment is necessary to complement mdoA mutations. Cells harbouring the mdoA+ plasmid produced three to four times more MDO than wild-type cells. MDO overproduction did not affect the degree of MDO substitution with sn-1-phosphoglycerol residues. The biosynthesis of MDO remained under osmotic control in overproducing strains.  相似文献   

16.
Tryptophanase from Escherichia coli B/1t7-A is inactivated by the arginine-specific reagent, phenylglyoxal, in potassium phosphate buffer at pH 7.8 AND 25 degrees. Apo- and holoenzyme are inactivated at the same rate, and inactivation of both is correlated with modification of 2 arginine residues/tryptophanase monomer. Substrate analogs having a carboxyl group protect the holoenzyme against both inactivation and arginine modification but have no effect on the inactivation or modification of the apoenzyme. Phenylglyoxal-modified apotryptophanase retains the capacity to bind the coenzyme, pyridoxal-P, but the spectrum of this reconstituted species differs from that of native holotryptophanase. Neither this reconstituted species nor the phenyglyoxal-modified holoenzyme shows the 500 nm absorption characteristic of the native enzyme when substrates are added. These results demonstrate a requirement for specific arginine residues for substrate binding and are discussed in the context of the known conformational and spectal forms of tryptophanase with regard to a possible role for arginine residues in formation of a catalytically effective enzyme-pyridoxal-P complex.  相似文献   

17.
Expression of the cloned lysis protein of phage MS2, which is sufficient to lyse wild type Escherichia coli, does not cause lysis of mutants lacking the osmoregulatory membrane-derived oligosaccharides (MDO). The lysis gene product normally found in the membrane fraction was not stably inserted into the membranes of a mdoA mutant; rather degradation and release from the membrane occurred. Gentle plasmolysis of the MDO-lacking mutant clearly showed an increased periplasmic space as compared to wild type cells. It is concluded that the MDOs play an important role in maintaining a proper arrangement of inner and outer membrane, a prerequisite for a functional insertion of the MS2 lysis protein.  相似文献   

18.
19.
Membrane-derived oligosaccharides, found in the Escherichia coli periplasmic space (Schulman, H., and Kennedy, E. P. (1979) J. Bacteriol. 137, 686-688), are composed of 8-10 units of glucose, the sole sugar, in beta 1 leads to 2 and beta 1 leads to 6 linkages (Schneider, J. E., Reinhold, V., Rumley, M. K., and Kennedy, E. P. (1979) J. Biol. Chem. 254, 10135-10138). Oligosaccharides in this family are variously substituted with succinyl ester residues, as well as with sn-1-phosphoglycerol and phosphoethanolamine, both derived from membrane phospholipids. These negatively charged oligosaccharides may function in cellular osmoregulation since their synthesis is under osmotic control (Kennedy, E. P. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 1092-1095). We now report initial characterization of an enzyme catalyzing transfer of phosphoglycerol residues from phosphatidylglycerol to membrane-derived oligosaccharides or to synthetic beta-glucoside acceptors. The products are sn-1,2-diglyceride and beta-glucoside-6-phosphoglycerol. Localized in the inner membrane, the transferase has a requirement for divalent cations, of which manganese is most effective, and a pH optimum of 8.9 in vitro.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号