首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Pre-mRNA splicing factors are enriched in nuclear domains termed interchromatin granule clusters or nuclear speckles. During mitosis, nuclear speckles are disassembled by metaphase and reassembled in telophase in structures termed mitotic interchromatin granules (MIGs). We analysed the dynamics of the splicing factor SC35 in interphase and mitotic cells. In HeLa cells expressing green fluorescent protein (GFP)-SC35, this was localized in speckles during interphase and dispersed in metaphase. In telophase, GFP-SC35 was highly enriched within telophase nuclei and also detected in MIGs. Fluorescence recovery after photobleaching (FRAP) experiments revealed that the mobility of GFP-SC35 was distinct in different mitotic compartments. Interestingly, the mobility of GFP-SC35 was 3-fold higher in the cytoplasm of metaphase cells compared with interphase speckles, the nucleoplasm or MIGs. Treatment of cells with inhibitors of cyclin-dependent kinases (cdks) caused changes in the organization of nuclear compartments such as nuclear speckles and nucleoli, with corresponding changes in the mobility of GFP-SC35 and GFP-fibrillarin. Our results suggest that the dynamics of SC35 are significantly influenced by the organization of the compartment in which it is localized during the cell cycle.  相似文献   

4.
We have studied the effect of adenovirus infection on the nuclear organization of splicing small nuclear ribonucleoproteins (snRNPs) in HeLa cells. In uninfected HeLa cells, snRNPs are widespread throughout the nucleoplasm but also are concentrated in specific nuclear structures, including coiled bodies, interchromatin granules, and perichromatin fibrils. We have used immunofluorescence microscopy to study the localization of splicing snRNPs relative to centers of viral DNA synthesis and accumulation identified with antiserum against the viral 72,000-molecular-weight single-stranded DNA-binding protein (72K protein). Splicing snRNPs were independently detected with both monoclonal and polyclonal antibodies specific for common snRNP antigens, snRNP-specific proteins, and the snRNA-specific 2,2,7-trimethylguanosine 5' cap structure. We have examined infected cells 2 to 24 h after infection, and, in the majority of these cells, we observed no colocalization of the snRNP and 72K-protein staining patterns. In the late phase, snRNPs were found to markedly concentrate in discrete clusters that were distinct from the centers of viral DNA synthesis and accumulation identified with anti-72K protein. We have treated cells with hydroxyurea at various times after infection to inhibit aspects of the virus infectious program. We have found that the accumulation of snRNP clusters is correlated with late gene expression rather than with DNA synthesis or early gene expression. Finally, we show that the late-phase snRNP clusters colocalize with a monoclonal antibody that primarily stains interchromatin granules. These results suggest that the centers of snRNP concentration in late-phase infected cells are likely to correspond to interchromatin granule clusters.  相似文献   

5.
We have studied the ultrastructural distribution of heterogeneous nuclear ribonucleoproteins (hnRNPs), small nuclear ribonucleoproteins (snRNPs), and ribosomal proteins during mouse spermatogenesis and spermiogenesis by means of specific antibodies and immunocytochemistry. All the above components were detectable from primary spermatocytes until the spermatid elongation phase, when the RNA synthetic activity is known to cease. Ribosomal protein (P1/P2 and L7) labeling disappeared as early as during the acrosome phase, and nucleoli were no longer labeled even during the cap phase. The nucleoplasmic structures labeled with the different anti-nucleoplasmic RNP immunoprobes corresponded, until the acrosome phase, to those previously observed as targets of the same antibodies in the nucleoplasm of somatic cell nuclei. Clusters of interchromatin granules of spermatocyte and early spermatid nuclei exhibit some labeling for hnRNP when compared with nuclei of Sertoli cells or previously analyzed liver or tissue culture cells, where these structural constituents usually remain weakly labeled or unlabeled. In spermatids in step 10, another type of nuclear granule, resembling perichromatin granules, but occurring in aggregates, can be observed. These structural constituents were labeled with antibodies recognizing nucleoplasmic snRNP antigens and therefore suggesting a non-nucleolar origin of these granules. Finally, we have observed nucleoplasmic areas of fibrogranular material, occurring only in primary spermatocytes. These components were labeled with anti-ribosomal protein antibodies but did not contain either hnRNPs or snRNPs. © 1993 Wiley-Liss, Inc.  相似文献   

6.
7.
8.
The mature snRNP (small nuclear ribonucleoprotein) particles are localized quantitatively in the interphase nucleus. Like many nuclear antigens, they distribute throughout the cytoplasm after the nuclear envelope breaks down during mitosis and then return to the newly formed daughter nuclei in early G1. Their abundance and stability and the availability of monoclonal antibodies that recognize them, make the snRNP particles a useful model system for studying the reformation of the nucleus at the completion of mitosis. A wide variety of metabolic inhibitors and alterations in normal culture conditions were investigated for their ability to interfere with the return of the snRNP particles to daughter nuclei after mitosis. None of the well-characterized cytoskeletal inhibitors, biosynthetic inhibitors, calcium antagonists, nor ionophores were effective in interfering with this return. However, the removal of cellular water by exposure of cells to hypertonic medium during mitosis blocked the reformation of the nucleus and trapped the snRNP particles in the cytoplasm. In medium of twice the normal tonicity, the function of the mitotic spindle and the cleavage furrow are inhibited, however, the cells reattach to the substratum as if returning to interphase. The chromatin stays condensed and does not form a normal interphase nucleus and the snRNP particles stay dispersed throughout the cytoplasm. This condition is reversible and after return to normal medium the nucleus reforms and the snRNP particles collect in the new nuclei. After gentle extraction of metaphase cells, about 30% of the snRNP particles are soluble, however, the remainder are associated with an insoluble remnant. These data are consistent with the notion that the snRNP particles accumulate in the nucleus due to both preferential solubility and specific binding sites in the interphase nucleus.  相似文献   

9.
Heterogeneous nuclear ribonucleoprotein (hnRNP) complexes, the structures that contain heterogeneous nuclear RNA and its associated proteins, constitute one of the most abundant components of the eukaryotic nucleus. hnRNPs appear to play important roles in the processing, and possibly also in the transport, of mRNA. hnRNP C proteins (C1, M(r) of 41,000; C2, M(r) of 43,000 [by sodium dodecyl sulfate-polyacrylamide gel electrophoresis]) are among the most abundant pre-mRNA-binding proteins, and they bind tenaciously to sequences relevant to pre-mRNA processing, including the polypyrimidine stretch of introns (when it is uridine rich). C proteins are found in the nucleus during the interphase, but during mitosis they disperse throughout the cell. They have been shown previously to be phosphorylated in vivo, and they can be phosphorylated in vitro by a casein kinase type II. We have identified and partially purified at least two additional C protein kinases. One of these, termed Cs kinase, caused a distinct mobility shift of C proteins on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These phosphorylated C proteins, the Cs proteins, were the prevalent forms of C proteins during mitosis, and Cs kinase activity was also increased in extracts prepared from mitotic cells. Thus, hnRNP C proteins undergo cell cycle-dependent phosphorylation by a cell cycle-regulated protein kinase. Cs kinase activity appears to be distinct from the well-characterized mitosis-specific histone H1 kinase activity. Several additional hnRNP proteins are also phosphorylated during mitosis and are thus also potential substrates for Cs kinase. These novel phosphorylations may be important in regulating the assembly and disassembly of hnRNP complexes and in the function or cellular localization of RNA-binding proteins.  相似文献   

10.
11.
The distribution of U snRNAs during mitosis was studied by indirect immunofluorescence microscopy with snRNA cap-specific anti-m3G antibodies. Whereas the snRNAs are strictly nuclear at late prophase, they become distributed in the cell plasm at metaphase and anaphase. They re-enter the newly formed nuclei of the two daughter cells at early telophase, producing speckled nuclear fluorescent patterns typical of interphase cells. While the snRNAs become concentrated at the rim of the condensing chromosomes and at interchromosomal regions at late prophase, essentially no association of the snRNAs was observed with the condensed chromosomes during metaphase and anaphase. Independent immunofluorescent studies with anti-(U1)RNP autoantibodies, which react specifically with proteins unique to the U1 snRNP species, showed the same distribution of snRNP antigens during mitosis as was observed with the snRNA-specific anti-m3G antibody. Immunoprecipitation studies with anti-(U1)RNP and anti-Sm autoantibodies, as well as protein analysis of snRNPs isolated from extracts of mitotic cells, demonstrate that the snRNAs remain associated in a specific manner with the same set of proteins during interphase and mitosis. The concept that the overall structure of the snRNPs is maintained during mitosis also applies to the coexistence of the snRNAs U4 and U6 in a single ribonucleoprotein complex. Particle sedimentation studies in sucrose gradients reveal that most of the snRNPs present in sonicates of mitotic cells do not sediment as free RNP particles, but remain associated with high molecular weight (HMW) structures other than chromatin, most probably with hnRNA/RNP.  相似文献   

12.
D L Spector  X D Fu    T Maniatis 《The EMBO journal》1991,10(11):3467-3481
SC-35 is a non-snRNP spliceosome component that is specifically recognized by the anti-spliceosome monoclonal antibody alpha SC-35. In this paper we provide direct evidence that SC-35 is an essential splicing factor and we examine the immunolocalization of SC-35 by confocal laser scanning microscopy and by electron microscopy. We have found that the speckled staining pattern observed by fluorescence microscopy corresponds to structures previously designated as interchromatin granules and perichromatin fibrils. Although snRNP antigens are also concentrated in these nuclear regions, we show that the two types of spliceosome components are localized through different molecular interactions: The distribution of SC-35 was not affected by treatment with DNase I or RNase A, or when the cells were heat shocked. In contrast, snRNP antigens become diffusely distributed after RNase A digestion or heat shock. Examination of cells at different stages of mitosis revealed that the SC-35 speckled staining pattern is lost during prophase and speckles containing SC-35 begin to reform in the cytoplasm of anaphase cells. In contrast, snRNP antigens do not associate with speckled regions until late in telophase. These studies reveal a dynamic pattern of assembly and disassembly of the splicing factor SC-35 into discrete nuclear structures that colocalize with interchromatin granules and perichromatin fibrils. These subnuclear regions may therefore be nuclear organelles involved in the assembly of spliceosomes, or splicing itself.  相似文献   

13.
Insect oocyte nuclei contain different extrachromosomal nuclear bodies including Cajal bodies and interchromatin granule clusters (IGCs). In the present study, we describe IGC equivalents in the vitellogenic oocytes of the flesh fly, Sarcophaga sp. These structures were found to consist of 20-40-nm granules and also include the fibrillar areas of high and low electron density. Immunogold labeling electron microscopy revealed IGC marker protein SC35, Sm proteins, and trimethylguanosine cap of small nuclear (sn) RNAs in these bodies. Antibody against the non-phosphorylated RNA polymerase II selectively labeled the fibrillar areas of low electron density located inside the IGCs.  相似文献   

14.
15.
Serum from a patient showing symptoms related to autoimmunity was found to contain autoantibodies to the nuclear mitotic apparatus (NuMA) protein and to several novel nuclear antigens with estimated molecular weights of 40, 43, 72, 74 and 82 kDa. Using this serum for screening a human cDNA expression library a 2.5 kb cDNA clone was isolated which encoded the complete sequence of a protein of 633 amino acids. Sequence analysis revealed a modular structure of the protein: an acidic N-terminal region of approximately 150 amino acids was followed by three adjacent consensus sequence RNA binding domains located in the central part of the protein. In the C-terminal portion a nuclear localization signal and an octapeptide (PPPRMPPP) with similarity to a major B cell epitope of the snRNP core protein B were identified. This was followed by a glycine- and arginine-rich section of approximately 120 amino acids forming another type of RNA binding motif, a RGG box. Interestingly, three copies of a tyrosine-rich decapeptide were found interspersed in the RGG box region. The major in vitro translation product of the cDNA co-migrated in SDS-PAGE with the 82 kDa polypeptide that was recognized by autoantibodies. The structural motifs as well as the immunofluorescence pattern generated by anti-82 kDa antibodies suggested that the antigen was one of the proteins of the heterogeneous nuclear ribonucleoprotein (hnRNP) complex. Subsequently the 82 kDa antigen was identified as hnRNP R protein by its presence in immunoprecipitated hnRNP complexes and co-migration of the recombinant protein with this hitherto uncharacterized hnRNP constituent in two-dimensional gel electrophoresis. The concomitant autoimmune response to a hnRNP component of the pre-mRNA processing machinery and to NuMA, a protein engaged in mitotic events and reported to be associated with mRNA splicing complexes in interphase, may indicate physical and functional association of these antigens. Support for this notion comes from observations that concomitant or coupling of autoantibody responses to proteins which are associated with each other as components of subcellular particles are often found in autoimmune diseases.  相似文献   

16.
Summary— The ultrastructural organization of the interphase nucleus of the green alga Chlamydomonas reinhardtii was investigated and found to be largely dependent on the fixation conditions. In specimens stained with bismuth, densely contrasted granules ranging from 25 to 45 nm in diameter were localized throughout the interchromatin space and often formed clusters. These granules were labeled by RNase A-gold complexes and may represent the counterparts of animal and higher plant cll interchromatin granules. Within the nucleolus the Ag-NOR and pyroantimonate stains and, to a lesser extent, the bismuth stain reacted with the nucleolar dense fibrillar component (DFC). When cells were subjected to a heat shock at 42°C, the nucleolar DFC was found to progressively separate from the nucleolus and, after 3 h, appeared as a continuous meandering thread about 0.1 μm in width. Within the nucleolus, labeling on conventional preparations occurred as small clusters with antibodies to H3 histones or to DNA whereas RNase A-gold complexes labeled most of it including fibrillar centers. Improved ultrastructural preservation in cryofixed, cryosubstituted specimens gently fixed in glutaraldehyde permitted to localize nucleolar DNA predominantly at the outer edge of fibrillar centers and to a lesser extent within the neighbouring DFC. Our results indicate that the structure and composition of Chlamydomonas interphase nuclei are comparable, despite particularities, to those of animal and higher plant nuclei.  相似文献   

17.
This laboratory has previously isolated a fraction from rat liver nuclei consisting of nuclear pore complexes associated with the proteinaceous lamina which underlies the inner nuclear membrane. Using protein eluted from sodium dodecyl sulfate (SDS) gels, we have prepared antibodies in chickens to each of the three predominant pore complex- lamina bands. Ouchterlony double diffusion analysis shows that each of these individual bands cross-reacts strongly with all three antisera. In immunofluorescence localization performed on tissue culture cells with these antibodies, we obtain a pattern of intense staining at the periphery of the interphase nucleus, with little or no cytoplasmic reaction. Electron microscope immunoperoxidase staining of rat liver nuclei with these antibodies labels exclusively the nuclear periphery. Furthermore, reaction occurs in areas which contain the lamina, but not at the pore complexes. While our isolation procedure extracts the internal contents of nuclei completely, semiquantitative Ouchterlony analysis shows that it releases negligible amounts of these lamina antigens. Considered together, our results indicate that these three bands represent major components of a peripheral nuclear lamina, and are not structural elements of an internal "nuclear protein matrix." Fluorescence microscopy shows that the perinuclear interphase localization of these lamina proteins undergoes dramatic changes during mitosis. Concomitant with nuclear envelope disassembly in prophase, these antigens assume a diffuse localization throughout the cell. This distribution persists until telophase, when the antigens become progressively and completely localized at the surface of the daughter chromosome masses. We propose that the lamina is a biological polymer which can undergo reversible disassembly during mitosis.  相似文献   

18.
Mammalian heterogeneous nuclear RNP (hnRNP) subcomplexes are shown to be comprised of 14-17 basic A and B core group polypeptides (chrp) when subjected to two-dimensional immunoblot analysis. These proteins are normally confined to the nucleus but are distributed throughout the cell during mitosis. However, not all of the 17 protein spots are observed for all stages of the cell cycle. HeLa cell populations have been synchronized and the basic hnRNP core protein complement examined during S, G2, mitosis, and G1. During cell division several distinct chrp polypeptide species at 35 and 37 kD appear, while another of 37 kD and a chrp of 38 kD are diminished. These altered chrp complements are not due to any effects induced by thymidine treatment but appear to be physiological changes in the chrp polypeptide modification state. The new charge isomers found during mitosis are not the result of selective phosphorylation of the chrp polypeptides. However the nature of the modifications has yet to be determined. The mitosis-specific modified forms of the chrp polypeptides are found in the cytoplasmic fraction derived from mitotic cell populations. When this fraction is centrifuged upon sucrose density gradients the modified chrp polypeptides sediment from 30-200S in a distribution similar to that of hnRNP complexes isolated from the nuclei of randomly dividing cell populations. RNase digestion experiments indicate that the general substructure of the RNA/protein complexes in mitotic cell cytoplasm is similar to that of nuclear hnRNP isolated from unsynchronized cells or tissue.  相似文献   

19.
By conventional electron microscopy we observed in mitotic HeLa cells the structures termed Golgi clusters by Lucocq et al. (J. Cell Biol. 104, 865-874 (1987)) and interpreted by them as clusters of vesicular remnants of the Golgi apparatus. Golgi clusters consist of tubular and vesicular profiles about 50 nm in diameter, sometimes associated with larger 250 nm vesicles. When cultures of HeLa cells were incubated for 60 min or 120 min with medium containing high specific activity horseradish peroxidase (HRP) at 10 mg/ml we found that the membrane-bound compartments in the Golgi clusters in mitotic cells contained heavy deposits of HRP reaction product. Neither interphase nor mitotic HeLa cells contain an endogenous peroxidase activity. We concluded that Golgi clusters are an endocytic compartment and confirmed this by showing that Golgi clusters could be labeled with two other endocytic tracers--bovine serum albumin conjugated to colloidal gold and transferrin conjugated to HRP. When cultures were incubated with HRP for only 15 min most of the Golgi clusters in the mitotic cells were either unlabeled or consisted of a mixture of HRP-labeled and unlabeled profiles. Since during mitosis endocytosis is inhibited this was the expected result. When interphase HeLa cells were incubated with Brefeldin A (BFA), the Golgi apparatus disassembled and immunofluorescence microscopy showed that 1,4 beta galactosyltransferase had relocated to the endoplasmic reticulum. When cells in the presence of BFA and lacking the Golgi apparatus were allowed to endocytose HRP and then entered mitosis, typical HRP-labeled Golgi clusters were seen in the mitotic cells. It is therefore highly unlikely that these structures contain membrane derived from the Golgi cisternae that are sensitive to BFA, including in HeLa cells those containing galactosyltransferase. Finally, we found that interphase HeLa cells incubated with okadaic acid contain structures that are morphologically indistinguishable from Golgi clusters but can be labeled by endocytic tracer. Taken together, this evidence indicates that most, if not all, of the membrane-bound compartments in Golgi clusters are tubular early endosomes.  相似文献   

20.
We studied the chromosome periphery in human HeLa and TG cells using cryomethods in electron microscopy. A contrasted layer of peripheral chromosomal material (PCM) was visible in cryo-ultrathin sections of mitotic cells. This PCM was composed of closely packed fibrils associated with granules. The PCM did not cover the entire chromosome surface but was found around most of the chromosomes and even between two chromatids. The organization of the PCM was not affected by colchicine treatment of mitotic cells. In cells prepared by quick-freezing, the PCM appeared to be a fibrous material at the chromosome periphery, and was also associated with granules that resembled interchromatin granules in size and shape. At higher magnification, direct contacts between the chromosomes and the fibrils of the PCM were observed. The cryotechniques used are known to preserve the native organization of cells. Therefore, the architecture of the perichromosomal region analysed presumably corresponds to that in vivo during mitosis. These observations show that in HeLa and TG cells, a particular structure present at the chromosome periphery in the form of PCM is persistent and ubiquitous. In addition, we showed by immunolabelling that the PCM is the specific site of accumulation of nucleolar antigens during mitosis. These two results, i.e. the identification of specific morphological structures and the compartmentation of proteins, indicate that this layer is a specific region of mitotic cells.by D. Schweizer  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号