首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Bloom's syndrome is one of the congenital disorders known to have increased frequency of acute leukaemia. The complex cytogenetic findings in the leukaemic cells of a 39-year-old male with Bloom's syndrome are described. These included a translocation t(7;17), missing 7q and 17p, a reciprocal translocation t(4;22); del 3q, del 8q22, del 20q, missing 12 and missing Y. In the same patient a missing Y had been noted 10 years previously in 15% of his peripheral blood lymphocytes.  相似文献   

2.
3.
Acute myeloid leukemia (AML-M3) is associated with the translocation t(15;17)(q22;q12-21) which disrupts the retinoic acid receptor alpha (RARA) gene on chromosome 17 and the PML gene on chromosome 15. We report a two-year-old patient with AML-M3 without the usual translocation t(15;17). Cytogenetic studies demonstrated normal appearance of chromosome 15 while the abnormal 17 homologue was apparently a derivative 17, der(17)(17qter-cen-q21:), the rearrangement distinctly shows deletion at 17q21 band and the morphology corresponding to an iso chromosome i(17q-). This case report is a rare cytogenetic presentation of acute promyelocytic leukemia (APML).  相似文献   

4.
T R Sukhikh 《Tsitologiia》1992,34(2):72-76
A chimpanzee family was studied, in which the father had a balanced translocation t(17p--; 23p+). The mother showed the normal female chromosome complement. Their daughter had also the normal female karyotype, but with heteromorphic chromosomes 23. A cytogenetic analysis was made using G- and Q-banding techniques and in addition an alkaline silver method for NOR staining. A mechanism of the translocation inheritance is discussed.  相似文献   

5.
The definition of the genetic linkage map of human chromosomes may be helpful in the analysis of cancer-specific chromosome abnormalities. In the translocation (8;21)(q22;q22), a nonrandom cytogenetic abnormality of acute myelogenous leukemia (AML), we previously observed the transposition of the ETS2 gene located at the 21q22 region from chromosome 21 to chromosome 8. However, no ETS2 rearrangements were detected in the DNA of t(8;21)-positive AML cells. Genetic linkage analysis has allowed us to locate the ETS2 gene relative to other loci and to establish that the breakpoint is at an approximate genetic distance of 17 cM from ETS2. When the information from the linkage map is combined with that from molecular studies, it is apparent that (a) the t(8;21) breakpoint does not affect the ETS2 gene structure or the structure of the other four loci proximal to ETS2: D21S55, D21S57, D21S17, and ERG, and ETS-related gene; and (b) the actual DNA sequence involved in the t(8;21) must reside in a 3-cM genetic region between the D21S58 and the D21S55/D21S57 loci, and remains to be identified.  相似文献   

6.
We performed cytogenetic analysis in 23 consecutive patients with Burkitt's ALL and 7 patients with Burkitt's lymphoma. Only one patient had a normal karyotype. Twenty-seven patients had a (8;14) translocation and 2 a (2;8) translocation. No (8;22) translocation was seen. In 12 patients (41%), the t(8;14) was the only chromosome rearrangement whereas in the 18 remaining cases (59%), the t(8;14) or t(2;8) was associated with other numerical or structural abnormalities. Chromosomes 1, 7 and 6 were rearranged in 10, 8, and 5 patients, respectively, usually in translocations, duplications, deletions (chromosome 6), or isochromosome of the long arm (chromosomes 1 or 7). The incidence of these additional rearrangements is discussed with regard to previously published reports and the chromosome localization of oncogenes.  相似文献   

7.
Summary Two reciprocal translocations involving chromosomes 3, 9, 17, and 22 were found in a patient with seemingly Ph1-negative chronic myelogenous leukemia (CML). The two translocations were t(3;9)(q21;q34) and t(17;22)(q21;q11); the breakage in chromosomes 9 and 22 apparently occurred at the same point as in the usual Ph1 translocation, t(9;22)(q34;q11).From the present evidence and a review of the literature it appears that the breakage on both chromosomes 9 and 22 at the special regions and the separation of the fragments are present in practically all standard and variant Ph1 translocations, even those in which the terminal region of the long arm of chromosome 9 (9q) does not seem to be involved in the rearrangement; however, a translocation between chromosomes 9 and 22 is not an obligatory result of the rearrangement, as seen in the present case. Thus, we postulate that the breakage on both chromosomes 9 and 22 at the special regions and separation of the fragments are the crucial cytogenetic events in the genesis of CML and stress the importance of paying careful attention to the terminal region of 9q, particularly when chromosome 9 does not seem to be involved in the rearrangement.This work was supported in part by grants (Nos. 401001 and 401071) from the Ministry of Education, Science and Culture of Japan  相似文献   

8.
9.
Myelodysplastic syndromes (MDS) are clonal stem cell diseases that can result in cytopenias, dysplasia in one or more cell lineages, infective hematopoiesis, and increase the risk of progression to acute myeloid leukemia (AML). MDSs are characterized by several recurrent cytogenetic defects, which can affect diagnosis, prognosis, and treatment. Some of that chromosomal alterations are associated with very poor prognosis. Conventional cytogenetics cannot accurately define the rearranged karyotype. Instead, molecular cytogenetics analyses can provide important diagnostic and prognostic information for patients affected by MDS, allowing the characterization of the whole mutational spectrum and, mainly, novel chromosomal lesions.In this paper, we report a MDS case with a novel chromosomal translocation [t(17;22)(q12;q22)], described for the first time here. Following Giemsa-banding karyotyping, fluorescent in situ hybridization analyses, by using chromosome-specific probes, displayed the breakpoint regions at chromosomes 17 and 22, within which intra and inter-chromosomal segmental duplications (SD) are present. Because of the occurrence of SDs in breakpoint region, it was not possible to finely define the genomic regions where breaks fell. Further investigations could be required to better understand the molecular basis of the novel translocation t(17;22)(q12;q12) acting in MDS context and to explain if SDs could contribute to the pathogenesis of MDS.  相似文献   

10.
Summary We describe the cytogenetic findings in a recurrent neurofibrosarcoma in a patient with nonfamilial von Recklinghausen disease. The composite karyotype was: 40,Y,-X,+dic r(X;20)(:Xp22.2q26::20p13 q13:), -1, +der(1)t(1;3) (p21;p24),-3,-4,-5,+der(5) t(5;?)(q31;?),-9,-9,+der(9)t(3;9)(q21 or q13;p24 or p22), -11,+der(11)t(11;?)(q22.2;?), -17,+der(17)t(17; 22;?)(q21;q13.1;?), -20, -21, -22, -22, +der(22)t(17; 22;?)(q21;q13.1;?),t(2;10)(q37;q22). The derivative chromosomes were demonstrated at the 500 band level. Chromosomes 17 and 22 were shown to be involved in an unbalanced three-way translocation: t(17;22;?)(q21;q13.1;?). This event was confirmed by in situ hybridization, using two probes mapped to chromosome 17. Hill H is a probe derived from the novel oncogene TRE and is located at 17q12–22. The second probe, derived from the granulocyte colony-stimulating factor (G-CSF), is located at 17q11–q21. The rearrangement between chromosomes 17 and 22 showed breakpoints similar or close to the gene loci for neurofibromatosis 1 (NF-1) and NF-2. Based on our observations we recommend that genetic studies on NF-1 tumors include both gene sites (NF-1 and NF-2) rather than focus on one gene locus.  相似文献   

11.
The majority of constitutional reciprocal translocations appear to be unique rearrangements arising from independent events. However, a small number of translocations are recurrent, most significantly the t(11;22)(q23;q11). Among large series of translocations there may be multiple independently ascertained cases with the same cytogenetic breakpoints. Some of these could represent additional recurrent rearrangements, alternatively they could be identical by descent (IBD) or have subtly different breakpoints when examined under higher resolution. We have used molecular breakpoint mapping and haplotyping to determine the origin of three pairs of reciprocal constitutional translocations, each with the same cytogenetic breakpoints. FISH mapping showed one pair to have different breakpoints and thus to be distinct rearrangements. Another pair of translocations were IBD with identical breakpoint intervals and highly conserved haplotypes on the derived chromosomes. The third pair, t(4;11)(p16.2;p15.4), had the same breakpoint intervals by aCGH and fosmid mapping but had very different haplotypes, therefore they represent a novel recurrent translocation. Unlike the t(11;22)(q23;q11), the formation of the t(4;11)(p16.2;p15.4) may have involved segmental duplications and sequence homology at the breakpoints. Additional examples of recurrent translocations could be identified if the resources were available to study more translocations using the approaches described here. However, like the t(4;11)(p16.2;p15.4), such translocations are likely to be rare with the t(11;22) remaining the only common recurrent constitutional reciprocal translocation.  相似文献   

12.
Partial duplication of 17 long arm   总被引:1,自引:0,他引:1  
Three subjects from 2 unrelated families with partial duplication of 17q, derived from a reciprocal parental translocation between chromosomes 11 and 17 with different breakpoints, are described. A female patient from one family with a 46,XX,-11,+der(11),t(11;17)(q24;q23.2)pat chromosome complement had died at 2 months of age. In the second family, a male propositus and a subsequent fetus, identified by cytogenetic prenatal diagnosis, showed a 46,XY,-11,+der(11),t(11;17)(q2505,q24.3) mat chromosome complement. Twelve other cases involving partial duplication of chromosome 17 have been reported, 11 of these derived from a balanced translocation, and 1 was a duplication. All these cases showed psychomotor and mental retardation, cranial contour anomalies, micrognathia, bulbous nose, short neck, skeletal anomalies, and CNS defects. The phenotypic and clinical observations in the three subjects of this report are compared with previously reported findings.  相似文献   

13.
We describe an eleven day-old boy and his first degree double cousin who both have distal trisomy 10q syndrome. Their cytogenetic analysis using GTG-banding showed an unbalanced translocation 46, XY, -20, +der(20), t(10;20)(q22.3, p11) mat and 46, XX, -20, +der(20), t(10;20)(q22.3, p11) mat. The translocation was confirmed by FISH. We have found balanced translocation t(10;20)(q22.3; p11) with cytogenetic and FISH studies in the mothers and maternal grandfather of these children. Our cases had typical craniofacial and visceral anomalies of this syndrome. However case 1 had an agenesia of corpus callosum which was not previously described and case 2 had hypertrophied cardiomyopathy and cliteromegaly which were previously described as rare anomalies for this syndrome.  相似文献   

14.
High-resolution cytogenetics analysis of peripheral blood lymphocytes was done prospectively on 27 of 28 patients with features of DiGeorge anomaly. Twenty-two patients (81%) had normal chromosome studies with no detectable deletion in chromosome 22. Five patients (18%) had demonstrable chromosome abnormalities. Three patients had monosomy 22q11, one due to a 4q;22q translocation, one due to a 20q;22q translocation, and one due to an interstitial deletion of 22q11. One patient had monosomy 10p13, and one patient had monosomy 18q21.33, although the latter had subsequent resolution of T-cell defects. These findings are consistent with the heterogeneity of DiGeorge anomaly but confirm the association with monosomy 22q11 in some cases. However, monosomy 10p13 may also lead to this phenotype. Because of these associated chromosome findings, cytogenetic analyses should be done on patients with suspected DiGeorge anomaly. This is particularly important since many of the abnormalities involving chromosome 22 are translocations that can be familial with a higher recurrence risk. Since only one subtle, interstitial deletion of chromosome 22 was observed, it is not clear whether high-resolution cytogenetic analysis is cost beneficial for all such patients.  相似文献   

15.
Summary This paper reports the case of a one-day-old male child presenting the typical features of Patau's syndrome. The cytogenetic study by means of conventional techniques and GTG and QFQ banding techniques showed that the chromosomal pattern of the propositus was 46,XYq+,-21,+t(13q21q) 15ps+,22ps+, and that the nondisjunction that originated the translocation and trisomy had occurred in the mother.  相似文献   

16.
We present clinical and cytogenetic data on a 2.5 year-old boy with partial monosomy 22p (p11.2-->pter) and distal 10q trisomy (10q24.1-->qter), resulting from maternal t(10;22) reciprocal translocation. The patient had bilateral hydronephrosis and hydroureters but without evidence of vesicoureteral reflux. Our clinical observation suggests that urinary collecting system anomaly may be an integral part of distal 10q trisomy syndrome. We recommend detailed imaging studies of urinary tracts be performed on probands with chromosomal disorders involving a duplication of distal 10q.  相似文献   

17.
The t(11;22)(q23;q11) translocation is the most frequently encountered familial reciprocal translocation in humans. In the majority of reported cases ascertainment has been through the birth of a child with the chromosomal constitution 47,XX,+der(22) or 47,XY,+der(22), i.e., tertiary trisomy. Previous segregation analysis of familial cases showed a number of interesting features. Thus, euploid unbalanced genotypes resulting from adjacent segregation are absent in the progeny, and only tertiary trisomic offspring are recovered. To explain this unusual progeny output we present here a model for the meiotic behavior of this translocation in the carriers based on an analysis of cytogenetic data of progeny of carriers. This model predicts the formation of a chain trivalent with chromosome order 11-der(11)-22 during prophase I and its predominant alternate orientation at metaphase I.  相似文献   

18.
The concurrence of a reciprocal translocation and an aneuploidy represent a rare coincidence and an interchromosome effect between these two events has been suggested. We report the case of a family with a t(1;15) in three generations which was identified through the evaluation ofa patient with classical trisomy 21 or Down syndrome. The cytogenetic analysis with GTG banding showed that the proband had a regular trisomy 21 and a balanced translocation t(1;15). FISH and microsatellite analysis were carried out in the family in order to discard an interchromosomal effect. The implications for genetic assessment are discussed.  相似文献   

19.
A 32-year-old phenotypic female with a history of nine consecutive abortions each in the first trimester was referred for cytogenetic studies. She was found to have 45,XX,t(22;22) (p11.1;q11.1) chromosomal pattern. The Ag-NOR banding technique showed that the NORs of both the acrocentrics involved in the translocation were deleted and the loss suffered from the elimination was compensated by the increased NOR activity as well as presence of dNOR on other acrocentric chromosomes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号