首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim New Zealand is an ideal location in which to investigate the roles of landscape and climate change on speciation and biogeography. An earlier study of the widespread endemic cicada Maoricicada campbelli (Myers) found two phylogeographically distinguishable major clades – northern South Island plus North Island (northern‐SI + NI) and Otago. These two clades appeared to have diverged on either side of an area of the South Island known as the Biotic Gap. We sampled more intensively to test competing theories for this divergence. We aimed to discover if M. campbelli had survived within the Biotic Gap during recent glacial maxima, and if predicted areas of secondary contact between the two major clades existed. Location New Zealand. Methods We analysed mitochondrial DNA sequences (1520 bp; 212 individuals; 91 populations) using phylogenetic (maximum likelihood, Bayesian), population genetic (analysis of molecular variance) and molecular dating methods (Bayesian relaxed clock with improved priors). Results We found strong geographical structuring of genetic variation. Our dating analyses suggest that M. campbelli originated 1.83–2.58 Ma, and split into the two major clades 1.45–2.09 Ma. The main subclades in the northern‐SI + NI clade arose almost simultaneously at 0.69–1.03 Ma. Most subclades are supported by long internal branches and began to diversify 0.40–0.78 Ma. We found four narrow areas of secondary contact between the two major clades. We also found a difference between calling songs of the Otago vs. northern‐SI + NI clades. Main conclusions Phylogeographical patterns within M. campbelli indicate an early Pleistocene split into two major clades, followed by late Pleistocene range expansion and in situ population differentiation of subclades. The northern‐SI + NI clade diversified so rapidly that the main subclade relationships cannot be resolved, and we now have little evidence for a disjunction across the Biotic Gap. Structure within the main subclades indicates rapid divergence after a common bottlenecking event, perhaps attributable to an extremely cold glacial maximum at c. 0.43 Ma. Clade structure and dating analyses indicate that M. campbelli survived in many refugia during recent glacial maxima, including within the Biotic Gap. The narrow overlap between the two major clades is attributed to recent contact during the current interglacial and slow gene diffusion. The two major clades appear to be in the early stages of speciation based on genetic and behavioural differences.  相似文献   

2.
Aim To test hypotheses that: (1) late Pleistocene low sea‐level shorelines (rather than current shorelines) define patterns of genetic variation among mammals on oceanic Philippine islands; (2) species‐specific ecological attributes, especially forest fidelity and vagility, determine the extent to which common genetic patterns are exhibited among a set of species; (3) populations show reduced within‐population variation on small, isolated oceanic islands; (4) populations tend to be most highly differentiated on small, isolated islands; and (5) to assess the extent to which patterns of genetic differentiation among multiple species are determined by interactions of ecological traits and geological/geographic conditions. Location The Philippine Islands, a large group of oceanic islands in Southeast (SE) Asia with unusually high levels of endemism among mammals. Methods Starch‐gel electrophoresis of protein allozymes of six species of small fruit bats (Chiroptera, Pteropodidae) and one rodent (Rodentia, Muridae). Results Genetic distances between populations within all species are not correlated with distances between present‐day shorelines, but are positively correlated with distances between shorelines during the last Pleistocene period of low sea level; relatively little intraspecific variation was found within these ‘Pleistocene islands’. Island area and isolation of oceanic populations have only slight effects on standing genetic variation within populations, but populations on some isolated islands have heightened levels of genetic differentiation, and reduced levels of gene flow, relative to other islands. Species associated with disturbed habitat (all of which fly readily across open habitats) show more genetic variation within populations than species associated with primary rain forest (all of which avoid flying out from beneath forest canopy). Species associated with disturbed habitats, which tend to be widely distributed in SE Asia, also show higher rates of gene flow and less differentiation between populations than species associated with rain forest, which tend to be Philippine endemic species. One rain forest bat has levels of gene flow and heterozygosity similar to the forest‐living rodent in our study. Main conclusions The maximum limits of Philippine islands that were reached during Pleistocene periods of low sea level define areas of relative genetic homogeneity, whereas even narrow sea channels between adjacent but permanently isolated oceanic islands are associated with most genetic variation within the species. Moreover, the distance between ‘Pleistocene islands’ is correlated with the extent of genetic distances within species. The structure of genetic variation is strongly influenced by the ecology of the species, predominantly as a result of their varying levels of vagility and ability to tolerate open (non‐forested) habitat. Readily available information on ecology (habitat association and vagility) and geological circumstances (presence or absence of Pleistocene land‐bridges between islands, and distance between oceanic islands during periods of low sea level) are combined to produce a simple predictive model of likely patterns of genetic differentiation (and hence speciation) among these mammals, and probably among other organisms, in oceanic archipelagos.  相似文献   

3.
4.
The fluvicoline New World flycatchers (subfamily Fluvicolinae, family Tyrannidae) inhabit a broad range of forest and non‐forest habitats in all parts of the New World. Using a densely sampled phylogeny we depict the diversification and expansion of this group in time and space. We provide evidence that a shift in foraging behaviour allowed the group to rapidly expand in a wide range of tropical and subtropical habitats in South America. The results support that four main clades expanded into and specialized to distinct habitats and climates (closed to open, and warm to cold), respectively, and subsequently underwent vicariant speciation within their respective ecoregions. The group soon reached a significant species diversity over virtually all of South and North America, and with parallel trajectories of speciation slow‐down in all four clades. The genus Muscisaxicola is an exception, as it invaded the most inhospitable and barren environments in the Andes where they underwent rapid diversification in the Plio‐Pleistocene.  相似文献   

5.
Stevens MI  Hogg ID 《Molecular ecology》2003,12(9):2357-2369
We examined the phylogeography of the endemic Antarctic collembolan Gomphiocephalus hodgsoni using allozymes and mitochondrial DNA (mtDNA; COI) to determine if potentially limited dispersal and long-term habitat fragmentation have promoted regional genetic differentiation. Allozyme analyses showed that differentiation among 21 populations within the Ross Dependency was high (FST = 0.55) with two main groups each representing a distinct geographical region: (1) Ross Island and Beaufort Island; and (2) all continental sites. Ross Island populations showed low levels of differentiation (FST = 0.05) and no correlation with geographical distance, suggesting their derivation from a single glacial refuge. By contrast, continental regions revealed moderate levels of differentiation (FST = 0.27) and a strong correlation with geographical distance, indicating a much older history with several refugia likely. Two sympatric allozyme genotypes were found at three continental sites from Taylor Valley and were congruent with two mtDNA haplotypes, implying nonrandom breeding groups. Although haplotype sharing between one Ross Island site (Cape Bird) and one continental site (Granite Harbour) was identified, the clades showed mostly fragmented allopatric distributions. The extensive Pleistocene glaciations, in conjunction with limited dispersal opportunities, appear to have promoted isolation and divergence among the fragmented habitats. Furthermore, the McMurdo Sound appears to be an effective isolating barrier to dispersal. However, we suggest that the unaided dispersal capacity of G. hodgsoni is unlikely to account for the limited mixing of haplotypes across the McMurdo Sound and recent human- or bird-mediated dispersal is highly probable.  相似文献   

6.
Partial mitochondrial DNA sequences for parts of the cytochrome b gene and control region were obtained for 89 upland bullies Gobiomorphus breviceps from 19 catchments in New Zealand. There were two highly distinctive mtDNA clades: a northern clade corresponding to the North Island, northern South Island and west coast South Island, and a south‐east clade, in the southern and eastern South Island. Within these major clades there were further distinct clades that correlated with geographic sub‐regions and catchments. The marked genetic differentiation has occurred in the absence of obvious morphological divergence. Based on cytochrome b sequence divergences and the molecular clock hypothesis, the northern and southeastern clades correspond with the uplift of the Southern Alps during the Pliocene, while populations in the North Island and northern South Island were estimated to have diverged during the Pleistocene. The widescale geographic divergences were similar to those observed in the galaxiids, Galaxias vulgaris and Galaxias divergens , but biogeographic management boundaries may not be the same, reflecting different evolutionary histories for non‐diadromous species occupying the same areas.  相似文献   

7.
We investigated phylogeographic divergence among populations of Galápagos warble finches. Their broad distribution, lack of phenotypic differentiation and low levels of genetic divergence make warbler finches an appropriate model to study speciation in allopatry. A positive relationship between genetic and geographical distance is expected for island taxa. Warbler finches actually showed a negative isolation by distance relationship, causing us to reject the hypothesis of distance-limited dispersal. An alternative hypothesis, that dispersal is limited by habitat similarity, was supported. We found a positive correlation between genetic distances and differences in maximum elevation among islands, which is an indicator of ecological similarity. MtDNA sequence variation revealed monophyletic support for two distinct species. Certhidea olivacea have recently dispersed among larger central islands, while some Certhidea fusca have recently dispersed to small islands at opposite ends of the archipelago. We conclude that females have chosen to breed on islands with habitats similar to their natal environment. Habitat selection is implicated as an important component of speciation of warbler finches, which is the earliest known divergence of the adaptive radiation of Darwin's finches. These results suggest that small populations can harbour cryptic but biologically meaningful variation that may affect longer term evolutionary processes.  相似文献   

8.
Aim To examine the hypothesis raised by Graham S. Hardy that Pleistocene glacial cycles suffice to explain divergence among lineages within the endemic New Zealand speckled skink, Oligosoma infrapunctatum Boulenger. Location Populations were sampled from across the entire range of the species, on the North and South Islands of New Zealand. Methods We sequenced the mitochondrial genes ND2 (550 bp), ND4 + tRNAs (773 bp) and cytochrome b (610 bp) of 45 individuals from 21 locations. Maximum likelihood, maximum parsimony and Bayesian methods were used for phylogenetic reconstruction. The Shimodaira–Hasegawa test was used to examine hypotheses about the taxonomic status of morphologically distinctive populations. Results Our analysis revealed four strongly supported clades within O. infrapunctatum. Clades were largely allopatric, except on the west coast of the South Island, where representatives from all four clades were found. Divergences among lineages within the species were extremely deep, reaching over 5%. Two contrasting phylogeographical patterns are evident within O. infrapunctatum. Main conclusions The deep genetic divisions we found suggest that O. infrapunctatum is a complex of cryptic species which diverged in the Pliocene, contrary to the existing Pleistocene‐based hypothesis. Although Pleistocene glacial cycles do not underlie major divergences within this species, they may be responsible for the shallower phylogeographical patterns that are found within O. infrapunctatum, which include a radiation of haplotypes in the Nelson and Westland regions.  相似文献   

9.
The New Zealand skink fauna has proven to be an ideal taxonomic group in which to examine the impact of climatic and geological processes on the evolution of the New Zealand biota since the Pliocene. Here we examine the phylogeography of McCann's skink (Oligosoma maccanni) in order to gain insight into the relative contribution of Pliocene and Pleistocene processes on patterns of genetic structure in the South Island biota, and investigate the phylogeography of the brown skink (O. zelandicum) to examine whether Cook Strait landbridges facilitated geneflow between the North and South Islands in the late-Pleistocene. We obtained mitochondrial DNA sequence data (ND2 and ND4; 1282bp) from across the range of both species. We examined the phylogeographic patterns evident in each species using Neighbour-Joining, Maximum Likelihood and Bayesian methods. We found substantial phylogeographic structure within O. maccanni, with seven distinct clades identified. Divergences among clades are estimated to have occurred during the Pliocene. Populations in the Otago/Southland region (south of the Waitaki River valley) formed a well-supported lineage within O. maccanni. A substantial genetic break was evident between populations in east and west Otago, either side of the Nevis-Cardrona fault system, while north-south genetic breaks were evident within the Canterbury region. Within-clade divergences in O. maccanni appear to have occurred during the mid- to late-Pleistocene. Shimodaira-Hasegawa topology tests indicated that the 'Garston' skink is not genetically distinct from O. maccanni. There was only relatively minor phylogeographic structure within O. zelandicum, with divergences among populations occurring during the mid- to late-Pleistocene. Our genetic data supports a single colonisation of the North Island by O. zelandicum from the South Island, with the estimated timing of this event (0.46mya) consistent with the initial formation of Cook Strait.  相似文献   

10.
Understanding the biological significance of Pleistocene glaciations requires knowledge of the nature and extent of habitat refugia during glacial maxima. An opportunity to examine evidence of glacial forest refugia in a maritime, Southern Hemisphere setting is found in New Zealand, where the extent of Pleistocene forests remains controversial. We used the mitochondrial phylogeography of a forest-edge cicada ( Kikihia subalpina ) to test the hypothesis that populations of this species survived throughout South Island during the Last Glacial Maximum. We also compared mitochondrial DNA phylogeographic patterns with male song patterns that suggest allopatric divergence across Cook Strait. Cytochrome oxidase I and II sequences were analyzed using network analysis, maximum-likelihood phylogenetic estimation, Bayesian dating and Bayesian skyline plots. K. subalpina haplotypes from North Island and South Island form monophyletic clades that are concordant with song patterns. Song divergence corresponds to approximately 2% genetic divergence, and Bayesian dating suggests that the North Island and South Island population-lineages became isolated around 761 000 years bp . Almost all South Island genetic variation is found in the north of the island, consistent with refugia in Marlborough Sounds, central Nelson and northwest Nelson. All central and southern South Island and Stewart Island haplotypes are extremely similar to northern South Island haplotypes, a 'northern richness/southern purity' pattern that mirrors genetic patterns observed in many Northern Hemisphere taxa. Proposed southern South Island forest habitat fragments may have been too small to sustain populations of K. subalpina , and/or they may have harboured ecological communities with no modern-day analogues.  相似文献   

11.
The sea snake subfamily Laticaudinae consists of a single genus with eight named species, based on morphological characters. We used microsatellite and mitochondrial DNA (mtDNA) data to clarify the adaptive radiation of these oviparous sea snakes in the South Pacific, with special reference to New Caledonia and Vanuatu. A mitochondrial DNA data set (ND4 gene 793 bp) was obtained from 345 individuals of the five species of Laticauda sp. sea snakes endemic to the region. Maximum likelihood and Bayesian approaches yielded the same optimal tree topology, identifying two major clades (yellow-banded and blue-banded sea snakes). Although all laticaudine sea snakes rely on small islands as oviposition sites, the two lineages differ in their use of marine vs. terrestrial habitats. A highly aquatic species (Laticauda laticaudata) shows a strong pattern of genetic isolation by distance, implying that the patchy distribution of terrestrial habitats has had little impact on gene flow. The more terrestrial clade (Laticauda colubrina, Laticauda frontalis, Laticauda guineai, Laticauda saintgironsi) shows stronger geographic differentiation in allelic frequencies, associated with island groups rather than with geographic distance. Microsatellites and mtDNA suggest that L. frontalis (restricted to Vanuatu) represents a recent founder-induced speciation event, from allopatric migrants of the New Caledonian taxon L. saintgironsi. A major divergence in speciation patterns between the two major clades of laticaudine snakes thus correlates with (and perhaps, is driven by) differences in the importance of terrestrial habitats in the species' ecology.  相似文献   

12.
We examine the genetic structure and evolutionary history of the mitten crab Eriocheir sensu stricto in East Asia by employing a genome scan - amplified fragment length polymorphism. Population analysis reveals three divergent clades in Eriocheir s. s., which dominate the East China Sea-Yellow Sea, the Sea of Japan (plus Okinawa) and the South China Sea, respectively, mostly in agreement with our previous mtDNA analysis. With the tropical South China Sea inferred as the origin, the East China Sea-Yellow Sea and the Sea of Japan clades in the north diverged successively from the ancestral clade during the mid-Pleistocene. The divergence of the three clades likely resulted from isolation of the three marginal seas caused by sea level change in the Pleistocene. Two sympatric zones, one of the East China Sea-Yellow Sea and the South China Sea clades in southeast China and the other of the East China Sea-Yellow Sea and the Sea of Japan clades in Vladivostok, are demonstrated to be hybrid zones, with hybridization occurring currently in the former but historically in the latter. Adaptive speciation is observed in the divergence process of the three clades, possibly because of selection from accumulated temperature. Our study indicates that the genetic structure and evolutionary history of Eriocheir s. s. have been primarily affected by Pleistocene glacial cycles, secondarily by divergent selection and drainage isolation, but only minimally by human activities.  相似文献   

13.
Aims Insular Southeast Asia and adjacent regions are geographically complex, and were dramatically affected by both Pliocene and Pleistocene changes in climate, sea level and geology. These circumstances allow the testing of several biogeographical hypotheses regarding species distribution patterns and phylogeny. Avian species in this area present a challenge to biogeographers, as many are less hindered by barriers that may block the movements of other species. Widely distributed Southeast Asian avian lineages, of which there are many, have been generally neglected. Ficedula flycatchers are distributed across Eurasia, but are most diverse within southern Asia and Southeast Asian and Indo‐Australian islands. We tested the roles of vicariance, dispersal and the evolution of migratory behaviours as mechanisms of speciation within the Ficedula flycatchers, with a focus on species distributed in insular Southeast Asia. Methods Using a published molecular phylogeny of Ficedula flycatchers, we reconstructed ancestral geographical areas using dispersal vicariance analysis, weighted ancestral area analysis, and a maximum likelihood method. We evaluated the evolution of migratory behaviours using maximum likelihood ancestral character state reconstruction. Speciation timing estimates were calculated via local molecular clock methods. Results Ficedula originated in southern mainland Asia, c. 6.5 Ma. Our analyses indicate that two lineages within Ficedula independently and contemporaneously colonized insular Southeast Asia and Indo‐Australia, c. 5 Ma. The potential impact of vicariance due to rising sea levels is difficult to assess in these early colonization events because the ancestral areas to these clades are reconstructed as oceanic islands. Within each of these clades, inter‐island dispersal was critical to species’ diversification across oceanic and continental islands. Furthermore, Pliocene and Pleistocene climatic change may have caused the disjunct island distributions between several pairs of sister taxa. Both vicariance and dispersal shaped the distributions of continental species. Main conclusions This study presents the first evaluation, for Ficedula, of the importance of vicariance and dispersal in shaping distributions, particularly across insular Southeast Asia and Indo‐Australia. Although vicariant speciation may have initially separated the island clades from mainland ancestors, speciation within these clades was driven primarily by dispersal. Our results contribute to the emerging body of literature concluding that dynamic geological processes and climatic change throughout the Pliocene and Pleistocene have been important factors in faunal diversification across continental and oceanic islands.  相似文献   

14.
The southwest mountainous region of China has been characterized as one of the worldwide biodiversity hotspots, but mechanisms underlying diversification of organisms in this region are still not clear. We assessed whether fragmented mountainous habitats and Pleistocene climate changes impacted the genetic diversity and diversification patterns of the hoary bamboo rat (Rhizomys pruinosus Blyth), a widely distributed species of rodent in SW China. Genetic diversity analyses were undertaken based on four mitochondrial DNA regions and 12 nuclear microsatellite loci (simple sequence repeats), representing 153 individuals from 24 populations across SW China. Moreover, we investigated correlations between genotype and geographical components, and predicted species distribution models for R. pruinosus under the historical and present climate conditions. Both mitochondrial DNA and simple sequence repeat markers revealed substantial genetic diversity and strong differentiation between populations. Phylogeographical analyses revealed two phylogenetic clades that were consistent with their geographical distributions (eastern and western clades). We inferred that the divergence of R. pruinosus was largely driven by Quaternary climatic oscillations and regionally fragmented mountainous habitats with environmental and geographical heterogeneity. Overall, our study revealed diversification patterns of R. pruinosus—patterns that may be shared by small alpine vertebrates in SW China.  相似文献   

15.
Dipteronia is an endemic genus to China and includes only two species, Dipteronia sinensis and D.dyeriana.Based on random amplified polymorphic DNA (RAPD) markers,a comparative study of the genetic diversity and genetic structure of Dipteronia was performed.In total,128 and 103 loci were detected in 17 D.sinensis populations and 4 D.dyeriana populations,respectively,using 18 random primers.These results showed that the proportions of polymorphic loci for the two species were 92.97% and 81.55%,respectively,indicating that the genetic diversity of D.sinensis was higher than that of D.dyeriana.Analysis,based on similarity coefficients,Shannon diversity index and Nei gene diversity index,also confirmed this result.AMOVA analysis demonstrated that the genetic variation of D.sinensis within and among populations accounted for 56.89% and 43.11% of the total variation,respectively,and that of D.dyeriana was 57.86% and 42.14%,respectively.The Shannon diversity index and Nei gene diversity index showed similar results.The abovementioned characteristics indicated that the genetic diversity levels of these two species were extremely similar and that the interpopulational genetic differentiation within both species was relatively high.Analysis of the genetic distance among populations also supported this conclusion.Low levels of interpopulational gene flow within both species were believed to be among the leading causes for the above-mentioned phenomenon.The correlation analysis between genetic and geographical distances showed the existence of a remarkably significant correlation between the genetic distance and the longitudinal difference among populations of D.sinensis (p<0.01),while no significant correlation was found between genetic and geographical distances among populations of D.dyeriana.This indicated that genetic distance was correlated with geographical distances on a large scale rather than on a small scale.This result may be related to differences in the selection pressure on species by their habitats with different distribution ranges.We suggest that in situ conservation efforts should focus on establishing more sites to protect the natural populations and their habitats.Ex situ conservation efforts should focus on enhancing the exchange of seeds and seedlings among populations to facilitate gene exchange and recombination,and to help conserve genetic diversity.  相似文献   

16.
Species in the genus Tangara are distributed throughout the New World tropics and vary in their morphology, behavior, and ecology. We used data from the cytochrome b and ND 2 genes to provide the first phylogenetic perspective on the evolution of this diversity. Reconstructions based on parsimony, maximum likelihood, and Bayesian approaches were largely congruent. The genus is monophyletic and consists of two main clades. Within these clades, DNA sequence data confirm the monophyly of most previously recognized species groups within Tangara, indicating general concordance between molecular data and impressions based on geographic distribution, morphology, and behavior. Within some currently recognized species, levels of DNA sequence variation are larger than expected, suggesting multiple taxa may be involved. In contrast, some currently recognized species are only weakly differentiated from their sister species. Biogeographic analyses indicate that many early speciation events occurred in the Andes. More recently, dispersal events followed by subsequent speciation have occurred in other geographic areas of the Neotropics. Assuming a molecular clock, most speciation events occurred well before Pleistocene climatic cycles. The time frame of Tangara speciation corresponds more closely to a period of continued uplift in the Andes during the late Miocene and Pliocene.  相似文献   

17.
金钱槭和云南金钱槭遗传多样性比较研究   总被引:5,自引:1,他引:5       下载免费PDF全文
金钱槭属(Dipteronia)是我国特有少种属,属下仅金钱槭(D. sinensis)和云南金钱槭(D. dyeriana)两种。该文用RAPD标记揭示了金钱槭的遗传多样性和遗传结构,并与云南金钱槭的RAPD研究结果进行了比较。同时,对两物种遗传距离与地理距离的相关性进行了分析,结果有助于阐释该属植物遗传变异的产生机制。研究显示,18条随机引物在17个金钱槭居群(226个个体)中检测到128个扩增位点,物种水平的多态位点比率为92.97%,在4个云南金钱槭居群(45个个体)中则检测到103个扩增位点,物种水平的多态位点比率为81.55%,金钱槭的多态位点比率高于云南金钱槭。相似性系数值、Shannon多样性指数和Nei基因多样性指数分析反映了与多态位点比率相一致的结果。AMOVA(Analysis of molecular variance)分析结果显示,金钱槭居群内、居群间的遗传变异分别占总变异量的56.89%和43.11%。云南金钱槭居群内、居群间的遗传变异分别占总变异量的57.86 %和42.14%。Shannon多样性指数、Nei基因多样性指数的分析结果与AMOVA分析结果趋势相同。上述特征值揭示,金钱槭和云南金钱槭居群间的遗传分化均已达到较高水平,推测居群间低水平的基因流可能是导致上述现象产生的原因之一。遗传距离与地理距离的相关分析结果显示,金钱槭居群间的遗传距离与经度差异存在极显著水平的相关性(p<0.01),云南金钱槭居群间的遗传距离与地理隔离则无显著相关关系。说明在大尺度上遗传距离与地理距离相关而在小范围内则无上述关系,该结果可能与位于不同分布区内的物种所承受的生境选择压力不同有关。建议在对该属植物进行就地保护时,应设立多个保护点,保护自然居群及其周围生境;在迁地保护时,应通过加大居群间种子和幼苗的交换,人为创造基因交流和重组的条件,保存该属植物的遗传多样性。  相似文献   

18.
Aim We test whether species of western Mediterranean aquatic Coleoptera of the ‘Haenydra’ lineage (Hydraenidae, Hydraena) originated through: (1) successive periods of dispersal and speciation, (2) range fragmentation by random vicariance, or (3) range fragmentation by geographic isolation owing to a general reduction of population density. Location Europe. Methods To discriminate between scenarios we use contrasting predictions of the relationship between phylogenetic and geographic distance. The phylogeny was based on 3 kb of four mitochondrial and two nuclear gene fragments of about half of the known species of ‘Haenydra’, including most western Mediterranean taxa. Divergences were estimated using a molecular clock. The relationship between phylogenetic and geographic distance was tested using bivariate plots, Mantel tests and comparison of the observed phylogeny with the one minimizing geographic distances between species, as measured using Euclidean minimum spanning trees (EMSTs). Results The monophyly of ‘Haenydra’ was strongly supported, although its phylogenetic placement was not resolved. ‘Haenydra’ was estimated to be of late Miocene age, with most species originating during the Pleistocene. In two clades (Hydraena tatii and Hydraena emarginata clades) there was a significant association between geographic and phylogenetic distance, and the reconstructed phylogeny was identical to that obtained through the EMST, demonstrating a strong non‐randomness of the geographic distribution of the species. In two other clades (Hydraena iberica and Hydraena bitruncata clades) there was no association between geographic and phylogenetic distance, and the observed phylogeny was not the one minimizing geographic distances. In one of the clades this seems to be due to a secondary, recent range expansion of one species (H. iberica), which erased the geographic signal of their distributions. Main conclusions We show that it is possible to obtain strong evidence of stasis of the geographic ranges of narrow‐range endemic species through the study of their phylogenetic relationships and current distributions. In at least two of the studied clades, current species seem to have originated through the fragmentation of a more widely distributed species, without further range movements. A process of range expansion and fragmentation may have occurred repeatedly within the ‘Haenydra’ lineage, contributing to the accumulation of narrow‐range endemics in Mediterranean Pleistocene refugia.  相似文献   

19.
Most research on the biological effects of Pleistocene glaciation and refugia has been undertaken in the northern hemisphere and focuses on lowland taxa. Using single-strand conformation polymorphism (SSCP) analysis and sequencing of mitochondrial cytochrome oxidase I, we explored the intraspecific phylogeography of a flightless orthopteran (the alpine scree weta, Deinacrida connectens) that is adapted to the alpine zone of South Island, New Zealand. We found that several mountain ranges and regions had their own reciprocally monophyletic, deeply differentiated lineages. Corrected genetic distance among lineages was 8.4% (Kimura 2-parameter [K2P]) / 13% (GTR + I + Gamma), whereas within-lineage distances were only 2.8% (K2P) / 3.2% (GTR + I + Gamma). We propose a model to explain this phylogeographical structure, which links the radiation of D. connectens to Pliocene mountain building, and maintenance of this structure through the combined effects of mountain-top isolation during Pleistocene interglacials and ice barriers to dispersal during glacials.  相似文献   

20.
This study investigated allozyme and morphometric variability within the genus Cynopterus, with particular emphasis on C. nusatenggara, which is endemic to Wallacea, the area encompassing the Oriental-Australian biogeographic interface. The genetic distances between Cynopterus species are small by mammalian standards and suggest that this genus has undergone a recent series of speciation events. The genetic distance between populations of C. nusatenggara is strongly correlated with both the contemporary sea-crossing distance between islands and the estimated sea crossing at the time of the last Pleistocene glacial maximum, 18,000 b .p . This observation, together with low levels of population substructure within islands as shown by F-statistics, indicates that the sea is a primary and formidable barrier to gene exchange. The genetic distance and the great-circle geographical distance between the populations of C. nusatenggara are not correlated, although a principal-coordinates analysis of genetic distance reveals relationships between the populations that are similar to their geographical arrangement. A strong negative correlation exists between the level of heterozygosity within island populations of C. nusatenggara and the minimum sea-crossing distance to the nearest large source population. This is interpreted as reflecting an isolation effect of the sea, leading to reduced heterozygosity in populations that have larger sea barriers between them and the large source islands. Independently of this, heterozygosity is negatively associated with longitude, which in turn is associated with systematic changes in the environment such as a gradual decline in rainfall from west to east. The association between heterozygosity and longitude is interpreted as reflecting an association between genetic and environmental variance and supports the niche-width theory of genetic variance. Morphometric variability did not show any of the main effects demonstrated in the genetic data. Furthermore, there was no evidence that, at the level of individuals, genetic and morphometric variability were associated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号