首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Increased surface tension is an important component of several respiratory diseases, but its effects on pulmonary capillary mechanics are incompletely understood. We measured capillary volume and specific compliance before and after increasing surface tension with nebulized siloxane in excised dog lungs. The change in surface tension was sufficient to increase lung recoil 5 cm H(2)O at 50% total lung capacity. Increased surface tension decreased both capillary volume and specific compliance. The changes in capillary volume and compliance were greatest at the lung volumes at which the surface tension change was greatest. Near functional residual capacity, capillary volume postsiloxane was approximately 30% of control. Presiloxane capillary specific compliance was approximately 7%/cm H(2)O near functional residual capacity and approximately 2.5%/cm H(2)O near total lung capacity. Postsiloxane capillary-specific compliance was 3%/cm H(2)O, and was independent of lung volume. We conclude that in addition to their well-known effects on lung mechanics, changes in surface tension also have important effects on capillary mechanics. We speculate that these changes may in turn affect ventilation and perfusion, worsen gas exchange, and alter leukocyte sequestration.  相似文献   

2.
Maximal lung volume or total lung capacity in experimental animals is dependent on the pressure to which the lungs are inflated. Although 25-30 cm H2O are nominally used for such inflations, mouse pressure-volume (P-V) curves show little flattening on inflation to those pressures. In the present study, we examined P-V relations and mean alveolar chord length in three strains (C3H/HeJ, A/J, and C57BL/6J) at multiple inflation pressures. Mice were anesthetized, and their lungs were degassed in vivo by absorption of 100% O2. P-V curves were then recorded in situ with increasing peak inflation pressure in 10-cm H2O increments up to 90 cm H2O. Lungs were quickly frozen at specific pressures for morphometric analysis. The inflation limbs never showed the appearance of a plateau, with lung volume increasing 40-60% as inflation pressure was increased from 30 to 60 cm H2O. In contrast, parallel flat deflation limbs were always observed, regardless of the inflation pressure, indicating that the presence of a flat deflation curve cannot be used to justify measurement of total lung capacity in mice. Alveolar size increased monotonically with increasing pressure in all strains, and there was no evidence of irreversible lung damage from these inflations to high pressures. These results suggest that the mouse lung never reaches a maximal volume, even up to nonphysiological pressures >80 cm H2O.  相似文献   

3.
The double sigmoidal nature of the mouse pressure-volume (PV) curve is well recognized but largely ignored. This study systematically examined the effect of inflating the mouse lung to 40 cm H2O transrespiratory pressure (Prs) in vivo. Adult BALB/c mice were anesthetized, tracheostomized, and mechanically ventilated. Thoracic gas volume was calculated using plethysmography and electrical stimulation of the intercostal muscles. Lung mechanics were tracked during inflation-deflation maneuvers using a modification of the forced oscillation technique. Inflation beyond 20 cm H2O caused a shift in subsequent PV curves with an increase in slope of the inflation limb and an increase in lung volume at 20 cm H2O. There was an overall decrease in tissue elastance and a fundamental change in its volume dependence. This apparent "softening" of the lung could be recovered by partial degassing of the lung or applying a negative transrespiratory pressure such that lung volume decreased below functional residual capacity. Allowing the lung to spontaneously recover revealed that the lung required approximately 1 h of mechanical ventilation to return to the original state. We propose a number of possible mechanisms for these observations and suggest that they are most likely explained by the unfolding of alveolar septa and the subsequent redistribution of the fluid lining the alveoli at high transrespiratory pressure.  相似文献   

4.
Our aim was to measure the compliance of the liquid-filled lungs (CL), and the compliance of the chest wall (CW) in fetal sheep in utero. CL and CW were measured in 6 fetuses. The compliance of the lungs and chest wall combined (respiratory system, Crs) was measured in 9 fetuses. Pressure differences across the lungs (PL), chest wall (PW) and respiratory system (Prs) were measured while the lungs were deflated and inflated with liquid from their resting lung liquid volume (V1). V1 was measured using an indicator dilution technique. Specific compliance values were obtained by normalizing the values of CL, CW and Crs with respect to values of V1. From values obtained during stepwise inflation from V1, specific compliances (ml/cm H2O/ml of lung liquid) were: lungs, 0.22 +/- 0.02; chest wall, 0.41 +/- 0.07; respiratory system, 0.13 +/- 0.01. Specific compliances of the lungs, chest wall and respiratory system did not change significantly with advancing gestational age from 120 to 143 days. Our baseline data will be valuable in assessing the in utero progress of the structural development of the lungs following manipulations known to cause altered lung growth.  相似文献   

5.
In the early stages of pulmonary edema, excess liquid leaving the pulmonary exchange vessels accumulates in the peribronchovascular interstitium where it forms large peribronchovascular cuffs. The peribronchovascular interstitium therefore acts as a reservoir to protect the air spaces from alveolar flooding. The rate of liquid accumulation and the liquid storage capacity of the cuffs determine how quickly alveolar flooding is likely to follow once edema formation has begun. To measure the rate and capacity of interstitial filling we inflated 11 isolated degassed dog lung lobes with liquid to an inflation pressure of 14 cmH2O (total lung capacity) for 1-300 min, then froze the lobes in liquid N2. We made photographs of 20 randomly selected 12 X 8-mm cross sections from each lobe and measured cuff volume from the photographs by point-counting. We found that cuff volume increased from 2.2% of air-space volume after 1 min of inflation to 9.3% after 300 min. To measure the driving pressure responsible for cuff formation we used micropipettes to measure subpleural interstitial liquid pressure at the hilum of three additional lobes. With liquid inflation pressure set to 14 cmH2O interstitial pressure rose exponentially to 11.5 cmH2O. Interstitial compliance calculated from our volume and pressure measurements equaled 0.09 ml X cmH2O-1 X g wet wt-1, a value similar to that measured in air-inflated lungs. Goldberg [Am. J. Physiol. 239 (Heart Circ. Physiol. 8): H189-H198, 1980] has likened interstitial filling to the charging of a capacitor, a process that follows a monoexponential time course.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The causes of respiratory distress in O2 toxicity are not well understood. The purpose of this study was to better define the airway abnormalities caused by breathing 100% O2. Sheep were instrumented for measurements of dynamic compliance (Cdyn), functional residual capacity by body plethysmography (FRC), hemodynamics, and lung lymph flow. Each day Cdyn and FRC were measured before, during, and after the application of 45 min continuous positive airway pressure (CPAP) at 15 cmH2O. The amount of aerosol histamine necessary to reduce Cdyn 35% from baseline (ED35) was measured each day as was the response to aerosol metaproterenol. Cdyn decreased progressively from 0.083 +/- 0.005 (SE) 1/cmH2O at baseline to 0.032 +/- 0.004 l/cm H2O at 96 h of O2. Surprisingly, FRC did not decrease (1,397 +/- 153 ml at baseline vs. 1,523 +/- 139 ml at 96 h). The ED35 to histamine did not vary among days or from air controls. Metaproterenol produced a variable inconsistent increase in Cdyn. We also measured changes in Cdyn during changes in respiratory rate and static pressure-volume relationships in five other sheep. We found a small but significant frequency dependence of compliance and an increase in lung stiffness with O2 toxicity. We conclude that in adult sheep O2 toxicity reduces Cdyn but does not increase airway reactivity. The large reduction in Cdyn in O2 toxicity results from processes other than increased airway reactivity or reduced lung volume, and Cdyn decreases before the development of lung edema.  相似文献   

7.
An attempt has been made in the present report to evaluate quantitatively the sensory activity in both vagal nerves of control rats and rats with experimental lung inflammation, by employing the integration technique. We evaluated background vagal nerve activity, resting respiration and activity during inflation at constant pressures of 5 to 20 cm of water. It was found that integrated vagal respiratory activity cannot be assessed in absolute units under our experimental conditions, because of the large scatter of data. However, when the integrated values were related, for example, to resting respiration (in percentage), it was possible to compare some respiratory parameters in control, healthy rats of the Wistar strain and rats with lung inflammation. While background activity in control rats represents 75.9% of resting respiration, this parameter is significantly higher both in rats with 2-day carrageenin lung inflammation and those intoxicated with paraquat. Lung inflation at pressures 5, 10, 15, 20 cm H2O increased vagal activity linearly both in control and the two experimental groups with the degree of lung inflation. However, values in experimental animals corresponding to those of the control group were not reached until higher inflation pressures. From the functional aspect, experimental rats had characteristic tachypnoea which returns to control values after bilateral vagotomy. Since it was found that lung compliance was significantly decreased in both carrageenin and paraquat lung processes, it is being suggested that the diminished activity from lung receptors during inflation is due to mechanical properties of the lung tissue, namely lowered lung compliance.  相似文献   

8.
At functional residual capacity, lung expansion is more uniform in the prone position than in the supine position. We examined the effect of positive airway pressure (Paw) on this position-dependent difference in lung expansion. In supine and prone rabbits postmortem, we measured alveolar size through dependent and nondependent pleural windows via videomicroscopy at Paw of 0 (functional residual capacity), 7, and 15 cmH2O. After the chest was opened, alveolar size was measured in the isolated lung at several transpulmonary pressures (Ptp) on lung deflation. Alveolar mean linear intercept (Lm) was measured from the video images taken in situ. This was compared with those measured in the isolated lung to determine Ptp in situ. In the supine position, the vertical Ptp gradient increased from 0.52 cmH2O/cm at 0 cmH2O Paw to 0.90 cmH2O/cm at 15 cmH2O Paw, while the vertical gradient in Lm decreased from 2.17 to 0.80 microns/cm. In the prone position, the vertical Ptp gradient increased from 0.06 cmH2O/cm at 0 cmH2O Paw to 0.35 cmH2O/cm at 15 cmH2O Paw, but there was no change in the vertical Lm gradient. In anesthetized paralyzed rabbits in supine and prone positions, we measured pleural liquid pressure directly at 0, 7, and 15 cmH2O Paw with dependent and nondependent rib capsules. Vertical Ptp gradients measured with rib capsules were similar to those estimated from the alveolar size measurements. Lung inflation during mechanical ventilation may reduce the vertical nonuniformities in lung expansion observed in the supine position, thereby improving gas exchange and the distribution of ventilation.  相似文献   

9.
The isolated effects of alterations of lung inflation and transmural pulmonary arterial pressure (pressure difference between intravascular and pleural pressure) on pulmonary arterial blood volume (Vpa) were investigated in anesthetized intact dogs. Using transvenous phrenic nerve stimulation, changes in transmural pulmonary arterial pressure (Ptm) at a fixed transpulmonary pressure (Ptp) were produced by the Mueller maneuver, and increases in Ptp at relatively constant Ptm by a quasi-Valsalva maneuver. Also, both Ptm and Ptp were allowed to change during open airway lung inflation. Vpa was determined during these three maneuvers by multiplying pulmonary blood flow by pulmonary arterial mean transit time obtained by an ether plethysmographic method. During open airway lung inflation, mean (plus or minus SD) Ptp increased by 7.2 (plus or minus 3.7) cmH2O and Ptm by 4.3 (plus or minus 3.4) cmH2O for a mean increase in Vpa by 26.2 (plus or minus 10.7) ml. A pulmonary arterial compliance term (Delta Vpa/Delta Ptm) calculated from the Mueller maneuver was 3.9 ml/cmH2O and an interdependence term (Delta Vpa/Delta Ptp) calculated from the quasi-Valsalva maneuver was 2.5 ml/cmH2O for a 19% increase in lung volume, and 1.2 ml/cmH2O for an increase in lung volume from 19% to 35%. These findings indicate that in normal anesthetized dogs near FRC for a given change in Ptp and Ptm the latter results in a greater increase of Vpa.  相似文献   

10.
Baseline pulmonary physiologic values were determined on 43 (421-910 g) male and 47 (425-604 g) female squirrel monkeys (Saimiri sciureus). Respiratory rate was found to be 55 +/- 1.9 (SE) breaths per minute for males and 58 +/- 1.7 breaths per minute for females. Tidal volume was 8.9 +/- 0.37 ml for males and 7.5 +/- 0.28 ml for females. Airway resistance for the male was 0.052 +/- 0.006 cm H2O/ml/second; while for the female it was 0.086 +/- 0.011 cm H2O/ml/second. Dynamic compliance was found to be 1.78 +/- 0.15 ml/cm H2O for males and 1.48 +/- 0.124 ml/cm H2O for females. An index of distribution of ventilation was 48 +/- 2.5 breaths for males and 42 +/- 1.7 breaths for females.  相似文献   

11.
Mechanical stress during ventilation may cause or aggravate acute lung injury. This study investigates the influence of low vs. high tidal volume (V(t)) on factors known to play key roles in acute lung injury: nitric oxide release, eNOS and iNOS gene expression, lipid peroxidation (LPO), and surfactant phospholipids (PL). Isolated rabbit lungs were subjected to one of three ventilation patterns for 135 min (V(t)-PEEP): 6 ml/kg-0 cm H(2)O. 12 ml/kg-0 cm H(2)O 6 ml/kg-5 cm H(2)O, 12 ml/kg-0 cm H(2)O, and 6 ml/kg-5 cm H(2)O resulted in comparable peak inspiratory pressure (PIP). This allowed comparing low and high V(t) without dependence on PIP. Ventilatory patterns did not induce changes in pulmonary artery pressure, vascular permeability (K(f,c)), PIP or pulmonary compliance. High V(t) in comparison with both of the low V(t) groups caused an increase in BALF-nitrite (30.6+/-3.0* vs. 21.4+/-2.2 and 16.2+/-3.3 microM), BALF-PL (1110+/-19* vs. 750+/-68 and 634+/-82 microg/ml), and tissue LPO product accumulation (0.62+/-0.051* vs. 0.48+/-0.052 and 0.43+/-0.031 nmol/mg), *P<0.05 each. Perfusate nitrite and BALF-PL composition (assessed by use of 31P-NMR spectroscopy and MALDI-TOF mass spectrometry) did not differ among the groups. High V(t) ventilation reduced eNOS gene expression but did not affect iNOS expression. The increased release of NO and the accumulation of LPO products may represent early lung injury while elevated BALF-PL may reflect distension-induced surfactant secretion.  相似文献   

12.
HYPOTHESIS: The changes in pulmonary volume taking place during respiration are accompanied by the opening and closing of the alveoli, with the number of alveoli open, at the same transpulmonary pressure (TPP) differing, depending on whether the lung is insufflated or deflated. MATERIAL AND METHODS: Seventy 344 Fischer rats divided into five groups. Group 1 lungs were fixed by instilling 10% formalin through the trachea to a pressure of 25 cm H2O. The lungs of the next four groups were air-filled and fixed via the pulmonary artery: group 2 lungs were fixed in inflation at 10 cm H2O TPP; group 3 lungs were fixed in inflation at 20 cm. H2O TPP; the lungs of groups 4 and 5 were fixed in deflation and, therefore, were inflated with air up to 27 cm. H2O to drop to 20 cm in group 4 and to 10 cm in group 5. The lungs were processed for light microscopy, carrying out a morphometric study. The results were statistically processed. RESULTS: The lungs insufflated with liquid fixative at 25 cm of TPP reached higher values in the variables Pulmonary Volume, Internal Alveolar Surface (IAS) and Number of Alveoli, being statistically significant (p < 0.05) in comparison with the other four groups. In the lungs fixed in deflation, the pulmonary volume, IAS and number of alveoli were greater than in those fixed in inflation. The lungs fixed to 20 cm in deflation displayed significant statistical differences compared with those fixed to 20 cm in inflation. The IAS and number of alveoli gave good rates in relation with the pulmonary volume (r > or = 0.65). Three variables were used to measure the size of the alveoli, alveolar cord, alveolar surface and Lm, but none showed significant modifications. CONCLUSION: This study supports the hypothesis that changes in lung volume are related to the increase/decrease in the number of alveoli that are open/closed and not to the modification in the size of the alveoli. Alveolar recruitment is the microscopic expression of pulmonary hysteresis, since the number of alveoli open in deflation is greater than the number open during inflation.  相似文献   

13.
We investigated the effect of IL-2 in the isolated guinea pig lung perfused with phosphate-buffered Ringer's solution (containing 0.5 g/100 ml albumin and 5.5 mM dextrose) to determine the mechanism of IL-2-induced pulmonary edema. IL-2 (0 to 10,000 U/ml) was added to the perfusate following a 10 min baseline steady-state period. Pulmonary arterial pressure (Ppa), pulmonary capillary pressure (Ppc), and change in lung weight (as a measure of developing pulmonary edema) were recorded at 0, 10, 30, 40, and 60 min. The capillary filtration coefficient (Kf.c), an index of vascular permeability to water, was measured at 30 and 60 min. Infusion of IL-2 increased Ppc (from 3.9 +/- 0.1 cm H2O at baseline to 8.8 +/- 1.1 cm H2O at 60 min for IL-2 at 2000 U/ml, p less than 0.01; and from 3.8 +/- 0.1 cm H2O at baseline to 8.9 +/- 0.6 cm H2O at 60 min for IL-2 at 10,000 U/ml, p less than 0.01. The lung weight also increased (32% at IL-2 concentration of 2000 U/ml, and 26% at IL-2 concentration of 10,000 U/ml) The capillary filtration coefficient did not change with IL-2 infusion. The IL-2 response was prevented using the pulmonary vasodilator, papaverine. The infusion of IL-2 was associated with the generation of thromboxane A2(TxA2) in the effluent perfusate. Inhibition of TxA2 synthetase using Dazoxiben prevented the pulmonary vasoconstriction and edema response to IL-2. In addition, IL-2 had no effect on the transendothelial clearance of 125I-albumin. The results indicate that IL-2 causes pulmonary edema secondary to an increase in Ppc. The response is mediated by IL-2 stimulation of TxA2 generation from the lung.  相似文献   

14.
We studied the effect of mean airway pressure (Paw) on gas exchange during high-frequency oscillatory ventilation in 14 adult rabbits before and after pulmonary saline lavage. Sinusoidal volume changes were delivered through a tracheostomy at 16 Hz, a tidal volume of 1 or 2 ml/kg, and inspired O2 fraction of 0.5. Arterial PO2 and PCO2 (PaO2, PaCO2), lung volume change, and venous admixture were measured at Paw from 5 to 25 cmH2O after either deflation from total lung capacity or inflation from relaxation volume (Vr). The rabbits were lavaged with saline until PaO2 was less than 70 Torr, and all measurements were repeated. Lung volume change was measured in a pressure plethysmograph. Raising Paw from 5 to 25 cmH2O increased lung volume by 48-50 ml above Vr in both healthy and lavaged rabbits. Before lavage, PaO2 was relatively insensitive to changes in Paw, but after lavage PaO2 increased with Paw from 42.8 +/- 7.8 to 137.3 +/- 18.3 (SE) Torr (P less than 0.001). PaCO2 was insensitive to Paw change before and after lavage. At each Paw after lavage, lung volume was larger, venous admixture smaller, and PaO2 higher after deflation from total lung capacity than after inflation from Vr. This study shows that the effect of increased Paw on PaO2 is mediated through an increase in lung volume. In saline-lavaged lungs, equal distending pressures do not necessarily imply equal lung volumes and thus do not imply equal PaO2.  相似文献   

15.
To determine if acute exposure to ozone can cause changes in the production of cyclooxygenase metabolites of arachidonic acid (AA) in the lung which are associated with changes in lung mechanics, we exposed mongrel dogs to 0.5 ppm ozone for two hours. We measured pulmonary resistance (RL) and dynamic compliance (Cdyn) and obtained methacholine dose response curves and bronchoalveolar lavagate (BAL) before and after the exposures. We calculated the provocative dose of methacholine necessary to increase RL 50% (PD50) and analyzed the BAL for four cyclooxygenase metabolites of AA: a stable hydrolysis product of prostacyclin, 6-keto-prostaglandin F1 alpha (6-keto-PgF1 alpha); prostaglandin E2 (PgE2); a stable hydrolysis product of thromboxane A2, thromboxane B2 (TxB2); and prostaglandin F2 alpha (PgF2 alpha). Following ozone exposure, RL increased from 4.75 +/- 1.06 to 6.08 +/- 1.3 cm H2O/L/sec (SEM) (p less than 0.05), Cdyn decreased from 0.0348 +/- 0.0109 TO .0217 +/- .0101 L/cm H2O (p less than 0.05), and PD50 decreased from 4.32 +/- 2.41 to 0.81 +/- 0.49 mg/cc (p less than 0.05). The baseline metabolite levels were as follows: 6-keto PgF1 alpha: 96.1 +/- 28.8 pg/ml; PgE2: 395.8 +/- 67.1 pg/ml; TxB2: 48.5 +/- 11.1 pg/ml; PgF2 alpha: 101.5 +/- 22.6 pg/ml. Ozone had no effect on any of these prostanoids. These studies quantify the magnitude of cyclooxygenase products of AA metabolism in BAL from dog lungs and demonstrate that changes in their levels are not prerequisites for ozone-induced changes in lung mechanics or airway reactivity.  相似文献   

16.
Mice have been widely used in immunologic and other research to study the influence of different diseases on the lungs. However, the respiratory mechanical properties of the mouse are not clear. This study extended the methodology of measuring respiratory mechanics of anesthetized rats and guinea pigs and applied it to the mouse. First, we performed static pressure-volume and maximal expiratory flow-volume curves in 10 anesthetized paralyzed C57BL/6 mice. Second, in 10 mice, we measured dynamic respiratory compliance, forced expiratory volume in 0.1 s, and maximal expiratory flow before and after methacholine challenge. Averaged total lung capacity and functional residual capacity were 1.05 +/- 0.04 and 0.25 +/- 0.01 ml, respectively, in 20 mice weighing 22.2 +/- 0.4 g. The chest wall was very compliant. In terms of vital capacity (VC) per second, maximal expiratory flow values were 13.5, 8.0, and 2.8 VC/s at 75, 50, and 25% VC, respectively. Maximal flow-static pressure curves were relatively linear up to pressure equal to 9 cm H(2)O. In addition, methacholine challenge caused significant decreases in respiratory compliance, forced expiratory volume in 0.1 s, and maximal expiratory flow, indicating marked airway constriction. We conclude that respiratory mechanical parameters of mice (after normalization with body weight) are similar to those of guinea pigs and rats and that forced expiratory maneuver is a useful technique to detect airway constriction in this species.  相似文献   

17.
In 11 isolated dog lung lobes, we studied the size distribution of recruited alveolar volumes that become available for gas exchange during inflation from the collapsed state. Three catheters were wedged into 2-mm-diameter airways at total lung capacity. Small-amplitude pseudorandom pressure oscillations between 1 and 47 Hz were led into the catheters, and the input impedances of the regions subtended by the catheters were continuously recorded using a wave tube technique during inflation from -5 cm H(2)O transpulmonary pressure to total lung capacity. The impedance data were fit with a model to obtain regional tissue elastance (Eti) as a function of inflation. First, Eti was high and decreased in discrete jumps as more groups of alveoli were recruited. By assuming that the number of opened alveoli is inversely proportional to Eti, we calculated from the jumps in Eti the distribution of the discrete increments in the number of opened alveoli. This distribution was in good agreement with model simulations in which airways open in cascade or avalanches. Implications for mechanical ventilation may be found in these results.  相似文献   

18.
The effects of an intravenous methacholine infusion on cardiovascular-pulmonary function were measured in seven mongrel dogs (22.0 +/- 2.8 kg), anesthetized with chloralose and urethan and beta-adrenergically blocked with propranolol. In a volume-displacement plethysmograph, physiological measurements were made at base line and 25 min after establishing a methacholine infusion (0.1-1.0 mg X kg-1 X h-1). Methacholine significantly (P less than 0.05) increased airways resistance (1.9 +/- 0.8 to 8.2 +/- 2.9 cmH2O X l-1 X s), decreased static lung compliance (84.7 +/- 18.5 to 48.2 +/- 9.4 ml/cmH2O), depressed arterial PO2 (81 +/- 17 to 56 +/- 10 Torr), and lowered blood pressure (132 +/- 10 to 69 +/- 18 Torr) and cardiac output (5.7 +/- 1.9 to 4.1 +/- 1.2 l/min). These effects persisted during a further 80 min of methacholine infusion conducted in five of the animals. During the initial 25-min period of methacholine, the end-expired volume (volume-displacement Krogh spirometer) rose in all animals, indicating an increase in functional residual capacity from 997 +/- 115 to 1,623 +/- 259 ml (P less than 0.0005). Analysis of pulmonary pressure-volume curves revealed no change in total lung capacity but an increase in residual volume from 489 +/- 168 to 1,106 +/- 216 ml (P less than 0.001). Thus methacholine caused 617 ml of gas trapping, which was not detected by the Boyle's law principle, presumably because gas was trapped at high transpulmonary pressure. We suggest that intravenous methacholine-induced canine bronchoconstriction, which causes gas trapping and hypoxia, may be a useful animal model of clinical status asthmaticus.  相似文献   

19.
The classic four-zone model of lung blood flow distribution has been questioned. We asked whether the effect of positive end-expiratory pressure (PEEP) is different between the prone and supine position for lung tissue in the same zonal condition. Anesthetized and mechanically ventilated prone (n = 6) and supine (n = 5) sheep were studied at 0, 10, and 20 cm H2O PEEP. Perfusion was measured with intravenous infusion of radiolabeled 15-microm microspheres. The right lung was dried at total lung capacity and diced into pieces (approximately 1.5 cm3), keeping track of the spatial location of each piece. Radioactivity per unit weight was determined and normalized to the mean value for each condition and animal. In the supine posture, perfusion to nondependent lung regions decreased with little relative perfusion in nondependent horizontal lung planes at 10 and 20 cm H2O PEEP. In the prone position, the effect of PEEP was markedly different with substantial perfusion remaining in nondependent lung regions and even increasing in these regions with 20 cm H2O PEEP. Vertical blood flow gradients in zone II lung were large in supine, but surprisingly absent in prone, animals. Isogravitational perfusion heterogeneity was smaller in prone than in supine animals at all PEEP levels. Redistribution of pulmonary perfusion by PEEP ventilation in supine was largely as predicted by the zonal model in marked contrast to the findings in prone. The differences between postures in blood flow distribution within zone II strongly indicate that factors in addition to pulmonary arterial, venous, and alveolar pressure play important roles in determining perfusion distribution in the in situ lung. We suggest that regional variation in lung volume through the effect on vascular resistance is one such factor and that chest wall conformation and thoracic contents determine regional lung volume.  相似文献   

20.
Effective use of high-frequency oscillatory ventilation (HFOV) may require maintenance of adequate lung volume to optimize gas exchange. To determine the impact of inflation during HFOV, sustained inflation was applied at pressures of 5, 10, and 15 cmH2O above mean airway pressure for 3, 10, and 30 s to 15 intubated, paralyzed, anesthetized rabbits after saline lavage to induce surfactant deficiency. Arterial blood gases were recorded in all rabbits while static compliance, resistance, time constant, and changes in functional residual capacity were recorded using the interrupter technique and plethysmograph in seven rabbits. Parameters were recorded before and 2 min after sustained inflation. Arterial PO2, compliance of the respiratory system, and functional residual capacity increased after sustained inflation at pressure levels of at least 10 cmH2O and 10-s duration. As the presence or duration of a sustained inflation was increased, oxygenation improved (P less than or equal to 0.01), but arterial PCO2 increased as longer sustained inflations were used (P less than or equal to 0.005). Sustained inflations of 5 cmH2O above mean airway pressure or of 3-s duration were ineffective. We conclude that either a critical pressure or duration of sustained inflation is needed to improve oxygenation and pulmonary mechanics during HFOV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号