首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A nested pattern occurs whenever the species observed in depauperate habitat patches are a subset of those found in more species‐rich patches. Ecologists have documented many instances of nestedness caused by population‐level processes such as colonization and extinction at biogeographic scales. However, few researchers have examined whether nestedness may exist at fine scales due to the ways in which individual organisms discriminate among potential habitat patches. In 1999, we experimentally fragmented an old‐field habitat into patches of varying size to test whether nestedness could exist on a fine spatial scale. Five treatments of differing patch size were replicated five times in a Latin square design by selectively mowing 15×15 m2 plots within an old‐field (patch areas: 225, 180, 135, 90, and 45 m2). Specifically, we tested whether butterflies foraging within a network of patches differing in area conformed to a nested subset structure. We also classified species according to (1) their flight height while foraging (high or low), and (2) their adult habitat breadth (ubiquitous, general, or restricted) to determine whether nestedness could be explained by difference in species’ tendency to discriminate among patches differing in area.
We found significant evidence that a community of foraging Lepidoptera conformed to a nested subset structure based on the difference between the observed nestedness within the butterfly community and the nestedness obtained from randomly generated species presence/absence matrices. Poisson regression analyses demonstrated that high‐flying, habitat‐restricted species avoided the smallest patches (90 and 45 m2) in favor of larger remnants, whereas low‐flying, habitat generalists used all patch sizes. Thus, our study is one of the first to demonstrate that nestedness among species subsets can be observed at fine spatial scales (within a single 1.5 hectare field) and may be maintained by species behavioral differences: discriminating species (i.e. high‐flying, habitat restricted) avoided the smallest patches, and less discriminating species (i.e. low‐flying, ubiquitous) were distributed throughout the field without regard to patch size. Our results also suggest that nestedness should be viewed as yet another scalar pattern in ecology, generated by variation in patch use by individuals at fine‐scales as well as the more traditionally invoked processes of extinction and colonization of species at broad‐scales.  相似文献   

2.
Aim Intraspecific variation in patch occupancy often is related to physical features of a landscape, such as the amount and distribution of habitat. However, communities occupying patchy environments typically exhibit non‐random distributions in which local assemblages of species‐poor patches are nested subsets of assemblages occupying more species‐rich patches. Nestedness of local communities implies interspecific differences in sensitivity to patchiness. Several hypotheses have been proposed to explain interspecific variation in responses to patchiness within a community, including differences in (1) colonization ability, (2) extinction proneness, (3) tolerance to disturbance, (4) sociality and (5) level of adaptation to prevailing environmental conditions. We used data on North American mammals to compare the performance of these ‘ecological’ hypotheses and the ‘physical landscape’ hypothesis. We then compared the best of these models against models that scaled landscape structure to ecologically relevant attributes of individual species. Location North America. Methods We analysed data on prevalence (i.e. proportion of patches occupied in a network of patches) and occupancy for 137 species of non‐volant mammals and twenty networks consisting of four to seventy‐five patches. Insular and terrestrial networks exhibited significantly different mean levels of prevalence and occupancy and thus were analysed separately. Indicator variables at ordinal and family levels were included in models to correct for effects caused by phylogeny. Akaike's information criterion was used in conjunction with ordinary least squares and logistic regression to compare hypotheses. Results A patch network's physical structure, indexed using patch area and isolation, received the greatest support among models predicting the prevalence of species on insular networks. Niche breadth (diet and habitat) received the greatest support for predicting prevalence of species occupying terrestrial networks. For both insular and terrestrial systems, physical features (patch area and isolation) received greater support than any of the ecological hypotheses for predicting species occupancy of individual patches. For terrestrial systems, scaling patch area by its suitability to a focal species and by individual area requirements of the species, and scaling patch isolation by species‐specific dispersal ability and niche breadth, resulted in models of patch occupancy that were superior to models relying solely on physical landscape features. For all selected models, unexplained levels of variation were high. Main conclusions Stochasticity dominated the systems we studied, indicating that random events are probably quite important in shaping local communities. With respect to deterministic factors, our results suggest that forces affecting species prevalence and occupancy may differ between insular and terrestrial systems. Physical features of insular systems appeared to swamp ecological differences among species in determining prevalence and occupancy, whereas species with broad niches were disproportionately represented in terrestrial networks. We hypothesize that differential extinction over long time periods in highly variable networks has driven nestedness of mammalian communities on islands, whereas differential colonization over shorter time‐scales in more homogeneous networks probably governed the local structure of terrestrial communities. Our results also demonstrate that integration of a species' ecological traits with physical features of a patch network is superior to reliance on either factor separately when attempting to predict the species' probability of patch occupancy in terrestrial systems.  相似文献   

3.
Communities in isolated habitat patches surrounded by inhospitable matrices often form a nested subset pattern. However, the underlying causal mechanisms and conservation implications of nestedness in regional communities remain controversial. The nested ranks of species in a nested species‐by‐site matrix may reflect a gradient of species vulnerability to extinction or of colonization ability. However, nestedness analysis has rarely been used to explore determinants of species rank; consequently, little is known of underpinning mechanisms. In this study, we examined nestedness in moorland plant communities widely interspersed within the subalpine zone of northern Japan. Moorland sites differed in area (1000–160 000 m2) and were naturally isolated from one another to various extents within an inhospitable forest matrix. We also determined whether site characteristics (physical and morphometric measures) and species characteristics (niche position and breadth, based on species’ traits) are related to nestedness. Moorland plant communities in the study area were significantly nested. The pH and moorland kernel density (proxy for spatial clustering of moorlands around the focal site) were the most important predictors of moorland site nested rank in a nestedness matrix. Niche breadths of species (measured as variation in leaf mass area and height) predicted species’ nested ranks. Selective environmental tolerances imposed by environmental harshness and selective extinction caused by declines in site carrying capacities probably account for the nested subset pattern in moorland plant communities. The nested rank of species in the nestedness matrix can therefore be translated into the potential order of species loss explainable by species niche breadths (based on variation in functional traits). Complementary understanding of the determinants of site ranking and species ranking in the nestedness matrix provides powerful insight into ecological processes underlying nestedness and into the ways by which communities are assembled or disassembled by such processes.  相似文献   

4.
Question: Herb‐rich patches are biodiversity hotspots for vascular plants in boreal forests. We ask: Do species occurrences on herb‐rich patches show a non‐random, nested structure?; Does patch size relate to richness of edaphically demanding and red‐listed species?; Does a set of small patches support more edaphically demanding and red‐listed species than a few large patches of the equal area? Location: Eastern Finland (63°04′N, 29°52′E), boreal vegetation zone. Data: Vegetation mapping of 90 herb‐rich sites, varying from 0.05 to 6.93 ha in size and belonging to six different, predetermined forest site types. Results: Using the RANDNEST procedure, only one site type showed a significantly nested pattern, and patch area was not related to “nestedness” in any of the site types. The number of edaphically demanding and red‐listed plant species was positively correlated with a patch size in three forest site types. In all site types, a set of small patches had more edaphically demanding and red‐listed species than did a few large patches of the equal total area. Conclusions: For conservation, it is essential to protect representative sets of different herb‐rich forest site types because flora varies between the site types. Within herb‐rich forest site types, several small areas may support representative species composition. However, successful conservation requires thorough species inventories, because of the high level of heterogeneity between the herb‐rich patches.  相似文献   

5.
Nested species subsets are a common pattern of community assembly characteristic of many types of fragmented landscapes and insular systems. Here we describe nested subset patterns of amphibian and reptile occupancy on 23 forest islands in north-eastern Bolivia. We used observed occupancy patterns to differentiate five distributional guilds: widespread species, rare species, poor colonizers, area-sensitive species and supertramps. Amphibian occurrences were nested along a forest island isolation gradient, and when species from each of the distribution classes were removed from subsequent analyses of nestedness, we found that dispersal-limited poor colonizers were responsible for the association between nestedness and isolation. Amphibians associated with the grassland matrix at the study site showed a nested pattern linked with area, although this pattern did not scale up to all amphibians and could not be unequivocally attributed to any of the distributional guilds we recognized. There were no strong associations between two biological characteristics, body size and relative abundance in the matrix, and the likelihood of occupancy along either forest island area or isolation gradients. The relative importance of isolation in shaping nested patterns of amphibians on these forest islands may be a result of either (1) the greater range in isolation values included in this study compared with many others; (2) the long time since isolation in this landscape, manifesting a footprint of isolation not apparent in more recently fragmented patches; (3) the relatively homogeneous grassland matrix surrounding forest islands that likely provides little refuge for animals moving among forest islands.  相似文献   

6.
Aim This paper seeks to investigate whether alpine floras on isolated mountains in boreal forest show nestedness, and, if that is the case, to determine whether selective extinction or colonization is the likely cause of the observed patterns. Location Isolated mountains in the boreal coniferous forests of northern Sweden (province of Norrbotten, c. 66°N; 18°E). The timberline in the region probably has been 300–400 m above the present some thousands of years before present, potentially covering these mountains. Methods A data matrix of twenty‐seven alpine plant species on twenty‐seven isolated mountains was subjected to nested subsets analysis. Extinction probability was assumed to increase with decreasing area, and colonization probability was assumed to decrease with increasing isolation. By sorting the data matrix by these factors and sequentially computing the degree of nestedness, we were able to determine whether the alpine floras were structured mainly by selective extinction or mainly by differential colonization. Results When ordered by decreasing area the data matrix was significantly more nested than random, but that was not the case when ordered by decreasing isolation. Ordering by maximum altitude also produced significant nestedness. Main conclusions Contrary to the conventional view that isolated mountains were completely covered with boreal forest some thousands of years ago, the nestedness patterns of alpine plants indicate that many of them survived the forest period on the isolated mountains, probably on cliffs and slopes too steep for the formation of closed forest.  相似文献   

7.
Can the biotic nestedness matrix be used predictively?   总被引:3,自引:1,他引:3  
The biotas of a suite of neighboring patches of remnant vegetation often form a series of nested sub-sets, in which the species present in species-poor patches are non-random sub-sets of those present in richer patches. There has been recent interest in ways in which this knowledge may be used to aid conservation. We focus here on whether nested patterns can be used predictively. If nestedness in a fragmented system increases over time through biotic relaxation, locations where particular species may become extinct or are likely to colonize might be predictable and this could be useful in threatened-species management. We used the Temperature Calculator of Atmar and Patterson (1995) to arrange a matrix of bird species' occurrences in a series of buloke Allocasuarina leuhmannii woodland remnants so that nestedness was maximized. Probability bands generated by the calculator were used to predict possible colonization and extinction events. We then re-surveyed the avifauna of the fragments after a seven-year interval to test these predictions. Although nestedness increased between the two survey periods, there was no linear relationship between the generated probability of extinctions or colonizations and the accuracy of the predictions. The predictions derived from the calculator were no more accurate than a second set of predictions generated by use of a simple non-nested model. Despite the increase in nestedness, the arrangement of sites in each of the two maximally packed matrices was substantially different. For the nestedness matrix to generate accurate predictions, an increase in nestedness must be due to a minimization of unexpected species presences and absences rather than an extensive redistribution of species among remnants, as we found. The potential utility of nested patterns in predicting systematic colonization and extinction events should be further evaluated in other, less dynamic, fragmented systems such as those undergoing biotic relaxation.  相似文献   

8.
Relatively easy measurable patch characteristics (especially habitat diversity measures) have proven to be valuable indicators of forest plant species richness in forest fragments of relatively undisturbed areas. Urban and suburban forest patches, however, are characterized by a specific landscape ecological context implying that specific processes may influence ecosystem functioning and hence that other abiotic indicators for plant diversity are more appropriate. We studied the relation between functional ecological plant species groups and suburban forest patch characteristics such as patch area, habitat diversity and isolation. Some components of species richness were related to the isolation of the patches. In contrast to previous similar large-scale fragmentation studies in more rural areas, further results stressed the overwhelming importance of patch area relative to habitat variables in determining species richness. This suggests (1) the occurrence of density-dependent species extinction processes in small forest patches; or (2) the existence of external deterministic factors which put a major constraint on species richness in small patches. We tend to support the latter hypothesis and propose forest disturbance and associated black cherry (Prunus serotina Ehrh.) invasion as such a possible external factor. Small forest patches may be more sensitive to disturbance and biological invasion due to various reasons. Hence large forest patches are to be preferred for plant conservation in the suburban area.  相似文献   

9.
Abstract The reduction and fragmentation of forest habitats is expected to have profound effects on plant species diversity as a consequence of the decreased area and increased isolation of the remnant patches. To stop the ongoing process of forest fragmentation, much attention has been given recently to the restoration of forest habitat. The present study investigates restoration possibilities of recently established patches with respect to their geographical isolation. Because seed dispersal events over 100 m are considered to be of long distance, a threshold value of 100 m between recent and old woodland was chosen to define isolation. Total species richness, individual patch species richness, frequency distributions in species occurrences, and patch occupancy patterns of individual species were significantly different among isolated and nonisolated stands. In the short term no high species richness is to be expected in isolated stands. Establishing new forests adjacent to existing woodland ensures higher survival probabilities of existing populations. In the long term, however, the importance of long‐distance seed dispersal should not be underestimated because most species showed occasional long‐distance seed dispersal. A clear distinction should be made between populations colonizing adjacent patches and patches isolated from old woodland. The colonization of isolated stands may have important effects on the dynamics and diversity of forest networks, and more attention should be directed toward the genetic traits and viability of founding populations in isolated stands.  相似文献   

10.
Colonization success of woodland originating after 1850 was determined for seventeen forest plant species having different dispersal strategies. Colonization rate of the studied endo-and exozoochorous species apparently was considerable higher than that of species having short distance dispersal like myrmecochores and species lacking dispersal mechanisms. The occurrence of eight species in this young forest habitat was related to the distance to the nearest source patch (DNS), as well as to the age of the young patches and to their former land use. DNS calculated to old, existent and occupied source patches affected most analysed species. Only Ilex aquifolium L. had a significant higher occurrence in woodland originating before 1916 than in those originating after 1916. Former land use showed significant effects for three species. Although colonization rate and effects of studied parameters on occurrence were different for the studied species, no clear differences were found between different dispersal groups. The consequences of these results for the understanding of colonization processes of the species studied is discussed.  相似文献   

11.
Aim To study the effects of the degree of fragmentation of heathland patches on their species richness and species composition, and to infer the ecological mechanisms behind the observed patterns. Location The heathland patches of the north‐western part of Flanders, Belgium. During the last 200 years, the heathland area in this study area has been reduced from c. 10,000 to c. 40 ha, yielding c. 150 small and highly isolated relic fragments. Methods Different isolation measures were calculated for each of the 153 inventoried heathland patches. The influence of isolation, area and habitat diversity on species richness was investigated using correlation techniques. Community composition of the patches was tested for nestedness, and the mechanisms potentially underlying this pattern were determined. Results and main conclusions Both the analyses at the species richness and community composition level yielded evidence for a positive species–area relation. This relation was not caused by higher habitat heterogeneity in larger patches. Patch isolation, measured in different ways, however seemed much more important in explaining species richness and community composition than fragment area. Our results indicate that area effects are overcompensated by the rescue‐effect: if a patch is close to other patches, species can disperse between them and prevent the species from going extinct. Species having a short living seed bank were also more sensitive to isolation than species with a long living seed bank, indicating that the latter most probably depend on the seed bank to survive periods when environmental conditions are harsh. Analogously to the spatial rescue‐effect, the existence of a persistent seed bank may lead to a sort of temporal rescue‐effect, where the extinction of a plant species is prevented through survival in the seed bank of a patch.  相似文献   

12.
This study examined the changes in distribution patterns of 13 herbaceous plant species from 1998 to 2000 in ditch banks along the edges of arable fields in the Netherlands. The objective was to test if spatial dynamics could be related to spatial isolation and disturbance of habitat and to the dispersal and seed bank characteristics of the species. Knowledge of these relations should be used to increase the effectivity of agri-environmental schemes aiming at an increase of botanical diversity. All species frequently colonized empty patches and populations in occupied patches frequently went extinct. Most colonization events occurred within 50 m of conspecific source patches in the preceding year, but colonization events in patches at distances more than 200 m from conspecific source patches were also observed. The colonization probabilities decreased with isolation distance. For nine species this relation was statistically significant, after correction for year and habitat. The extinction probabilities increased with isolation. For only four species this relation was statistically significant. Both colonization and extinction probabilities were more often statistically significant related to isolation for species with transient seed banks than species with persistent seed banks. Implications for management options aiming at survival of plant species in fragmented landscapes are discussed.  相似文献   

13.
Nested structures of species assemblages have been frequently associated with patch size and isolation, leading to the conclusion that colonization–extinction dynamics drives nestedness. The ‘passive sampling’ model states that the regional abundance of species randomly determines their occurrence in patches. The ‘habitat amount hypothesis’ also challenges patch size and isolation effects, arguing that they occur because of a ‘sample area effect’. Here, we (a) ask whether the structure of the mammal assemblages of fluvial islands shows a nested pattern, (b) test whether species’ regional abundance predicts species’ occurrence on islands, and (c) ask whether habitat amount in the landscape and matrix resistance to biological flow predict the islands’ species composition. We quantified nestedness and tested its significance using null models. We used a regression model to analyze whether a species’ relative regional abundance predicts its incidence on islands. We accessed islands’ species composition by an NMDS ordination and used multiple regression to evaluate how species composition responds to habitat amount and matrix resistance. The degree of nestedness did not differ from that expected by the passive sampling hypothesis. Likewise, species’ regional abundance predicted its occurrence on islands. Habitat amount successfully predicted the species composition on islands, whereas matrix resistance did not. We suggest the application of habitat amount hypothesis for predicting species composition in other patchy systems. Although the island biogeography perspective has dominated the literature, we suggest that the passive sampling perspective is more appropriate for explaining the assemblages’ structure in this and other non‐equilibrium patch systems. Abstract in Portuguese is available with online material.  相似文献   

14.
Several factors, singly or in combination, have proven relevant in promoting nestedness in animal communities (area, isolation, habitat structure, etc.); however, little empirical evidence exists about the role of human disturbance. The goal of this paper was to assess whether human disturbance (pedestrians) may affect bird species composition in such a way as to generate a nested distributional pattern. The study was conducted in an urban fragmented landscape, the city of Madrid, where wooded parks were suitable fragments for many bird species, and had different levels of human visitation. At the community level, the distribution of species was significantly nested in two consecutive breeding seasons. Using two different procedures ("temperature" and "departures" methods) to analyse causality in nestedness, I found that pedestrian rate, fragment size and the diversity of stems were significantly correlated to the nested pattern. When analysed simultaneously, and controlling for their independent effects, these factors still accounted for nestedness. Pedestrian rate was the only factor significantly associated with changes in species composition between years. At the individual species level, 74 and 41% of species were significantly nested in relation to pedestrian rate in 1997 and 1998, respectively; however, these percentages were independent of foraging substrate and body size. Besides the classic area and habitat diversity effects, human disturbance can also promote nestedness: locally, by restraining the time and space of foraging and breeding opportunities, thus reducing fragment suitability, and regionally, by increasing extinction and decreasing colonization probabilities in highly disturbed fragments.  相似文献   

15.
Abstract. Forest patches in central Belgium were inventoried twice for the presence or absence of forest plant species to study the effects of age and distance on species composition. All forests in the study area were subdivided based on their land use history. To avoid effects of autocorrelated environmental characteristics on species composition, habitat homogeneity was indirectly investigated using a TWINSPAN classification of the vegetation data. Two major habitats (alluvial and non‐alluvial forests) were distinguished and analysed separately. Patterns of species composition were investigated at the landscape level using Mantel tests. Species composition similarity measures were calculated between all pairs of fragments based on the floristic data. A highly significant correlation was found between species composition similarity and inter‐patch distance. Difference in age, which we used as a measure for habitat quality, was less important in explaining species composition patterns. The effects of spatial configuration became significant when difference in age was accounted for, and a partial correlation was calculated between inter‐patch distance and species composition similarity. Different results were found for alluvial and non‐alluvial forest types. Alluvial forests were more influenced by the spatial configuration than the non‐alluvial. For the non‐alluvial forest type effects measured with the difference in age between forest fragments obscured the effects of inter‐patch distance. Based on our findings we suggest that species composition is not only internally generated, but external processes such as differential colonization caused by varying degrees of isolation may be of overriding importance.  相似文献   

16.
In present day European landscapes many forest plant species are restricted to isolated remnants of a formerly more or less continuous forest cover. The two major objectives of this study were (1) to determine the relative importance of habitat quality (mainly in terms of soil parameters), habitat configuration (patch size and isolation) and habitat continuity for the distribution of herbaceous forest plant species in a highly fragmented landscape and (2) to examine if groups of species with different habitat requirements are affected differently. Deciduous forest patches in northwestern Germany were surveyed for the presence of a large set of forest species. For each patch, habitat quality, configuration and continuity were determined. Data were analysed by Redundancy Analysis with variation partitioning for effects on total species composition and multivariate logistic regression for effects on individual species, for two different data sets (base‐rich and base‐poor forest patches). Overall, we found strong effects of habitat quality (particularly of soil pH, water content and topographic heterogeneity in the base‐rich forest patches; and of calcium content and disturbance in the base‐poor patches), but only relatively weak effects of habitat configuration and habitat continuity. However, a number of species were positively affected by patch area and negatively affected by patch isolation. Furthermore, the relative importance of habitat configuration tended to be higher for species predominantly growing in closed forests compared to species occurring both in the forest and in the open landscape.  相似文献   

17.
The destruction and fragmentation of tropical forests are major sources of global biodiversity loss. A better understanding of anthropogenically altered landscapes and their relationships with species diversity and composition is needed in order to protect biodiversity in these environments. The spatial patterns of a landscape may control the ecological processes that shape species diversity and composition. However, there is little information about how plant diversity varies with the spatial configuration of forest patches especially in fragmented tropical habitats. The northeastern part of Puerto Rico provides the opportunity to study the relationships between species richness and composition of woody plants (shrubs and trees) and spatial variables [i.e., patch area and shape, patch isolation, connectivity, and distance to the Luquillo Experimental Forest (LEF)] in tropical forest patches that have regenerated from pasturelands. The spatial data were obtained from aerial color photographs from year 2000. Each photo interpretation was digitized into a GIS package, and 12 forest patches (24–34 years old) were selected within a study area of 28 km2. The woody plant species composition of the patches was determined by a systematic floristic survey. The species diversity (Shannon index) and species richness of woody plants correlated positively with the area and the shape of the forest patch. Larger patches, and patches with more habitat edge or convolution, provided conditions for a higher diversity of woody plants. Moreover, the distance of the forest patches to the LEF, which is a source of propagules, correlated negatively with species richness. Plant species composition was also related to patch size and shape and distance to the LEF. These results indicate that there is a link between landscape structure and species diversity and composition and that patches that have similar area, shape, and distance to the LEF provide similar conditions for the existence of a particular plant community. In addition, forest patches that were closer together had more similarity in woody plant species composition than patches that were farther apart, suggesting that seed dispersal for some species is limited at the scale of 10 km.  相似文献   

18.
Frick WF  Hayes JP  Heady PA 《Oecologia》2009,158(4):687-697
Nested patterns of community composition exist when species at depauperate sites are subsets of those occurring at sites with more species. Nested subset analysis provides a framework for analyzing species occurrences to determine non-random patterns in community composition and potentially identify mechanisms that may shape faunal assemblages. We examined nested subset structure of desert bat assemblages on 20 islands in the southern Gulf of California and at 27 sites along the Baja California peninsula coast, the presumable source pool for the insular faunas. Nested structure was analyzed using a conservative null model that accounts for expected variation in species richness and species incidence across sites (fixed row and column totals). Associations of nestedness and island traits, such as size and isolation, as well as species traits related to mobility, were assessed to determine the potential role of differential extinction and immigration abilities as mechanisms of nestedness. Bat faunas were significantly nested in both the insular and terrestrial landscape and island size was significantly correlated with nested structure, such that species on smaller islands tended to be subsets of species on larger islands, suggesting that differential extinction vulnerabilities may be important in shaping insular bat faunas. The role of species mobility and immigration abilities is less clearly associated with nestedness in this system. Nestedness in the terrestrial landscape is likely due to stochastic processes related to random placement of individuals and this may also influence nested patterns on islands, but additional data on abundances will be necessary to distinguish among these potential mechanisms.  相似文献   

19.
We studied population dynamics of red squirrels in a group of small forest fragments, that cover only 6.5% of the total study area (4664 ha) and where distances to the nearest source population were up to 2.2 km. We tested effects of patch size, quality and isolation and supplementary feeding on patch occupation during 1995–99. Larger patches and patches with supplementary feeding had a higher probability of being occupied. No patch <3.5 ha was ever occupied. No effects of isolation were found, suggesting that the forest habitat in the study area is not sufficiently fragmented to influence red squirrel distribution across patches. For medium sized patches (3.7–21 ha), that were occupied some years, there was an increase in patch occupation over the years, even though overall population size tended to decrease. These patches had a high turnover, especially of males. Patches in which the squirrel population went extinct were recolonized within a year. For patches that were at least some years occupied, squirrel density depended on patch quality only. No effects of patch size, isolation and winter temperature on population density were found. These data suggest that in our study area habitat fragmentation has no effect on local squirrel density and that the random sample hypothesis explains the distribution pattern across patches.  相似文献   

20.
Summary The effects of host plant patch size on the abundances of two specialist herbivores (the chrysomelid beetle, Acalymma innubum and the pentatomid bug, Piezosternum subulatum) were investigated in a natural forest community in the Virgin Islands. Abundances were compared early and late in the season in different sized patches of the cucurbit host plant (Cayaponia americana) growing in open habitat (with no surrounding plant community) and forest habitat (with diverse surrounding plant community). For both herbivore species, adult abundances per patch were positively correlated with patch leaf area, but there was a significant patch size effect (i.e., correlation between herbivore density per unit plant and patch leaf area) only for beetles in the forest habitat. Both herbivore species were significantly affected by surrounding plant diversity, but in opposite ways: beetles were more abundant in open patches whereas bugs were more abundant in forest patches. Relationships between abundance and patch size in open and forest patches changed through the season for both herbivore species. These changing abundance patterns are discussed with respect to (1) increases in the diversity of the plant community surrounding host plant patches, and (2) differences in herbivore movement patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号