首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
阿维灭幼脲对马尾松毛虫幼虫的毒力测定   总被引:1,自引:0,他引:1  
运用阿维灭幼脲生物复合剂对3-4龄的马尾松毛虫幼虫进行毒力测定,用机率分析法求得马尾松毛虫的死亡率与阿维灭幼脲剂量对数—机率直线,建立毒力回归线。研究表明,25%阿维灭幼脲悬浮剂对3-4龄幼虫的致死中稀释浓度为49.6倍液,即LC50=5.04 mg.L-1;阿维灭幼脲悬浮剂与尿素混合剂对3-4龄的致死中稀释浓度为52.5倍液,即LC50=4.76 mg.L-1;25%阿维灭幼脲悬浮剂10倍稀释液对3-4龄马尾松毛虫幼虫的LT50为0.57 d,到50倍稀释液时LT50为7.35 d;25%阿维灭幼脲悬浮剂与尿素混合剂10倍稀释液对3-4龄马尾松毛虫幼虫的LT50为0.71 d,到50倍稀释液时LT为6.13 d,随着浓度稀释倍数的增加,致死中时间延长。研究结果可为今后马尾松毛虫的林间防治提供科学依据。  相似文献   

2.
采用域性状分析法 ,估算了朱砂叶螨对 5种杀螨剂 (3种单剂和 2种混剂 )的抗性现实遗传力 ,并对 5种药剂的抗性风险进行了评估。把采自重庆北碚田间的朱砂叶螨种群 ,在室内不施药情况下饲养 6 0余代 ,以此作为抗性筛选的敏感品系。分别单一连续汰选近 30代 ,朱砂叶螨对甲氰菊酯、阿维菌素、哒螨灵、哒螨 -阿维 (哒螨灵 :阿维菌素 =7 4 :0 1,m m)和甲氰 -阿维 (甲氰菊酯 :阿维菌素 =8 9:0 1,m m)的抗性分别达 6 5 5 5、5 82、1 2 3、5 2 0和 1 4 2 倍 ;抗性现实遗传力分别为 0 2 16 7、0 0 96 7、0 0 130、0 0 80 0和 0 0 172。在实验室选择条件下 ,预计抗性增长 10倍时 ,甲氰菊酯、阿维菌素、哒螨灵、哒螨 -阿维 (哒螨灵 :阿维菌素 =7 4 :0 1,m m)和甲氰 -阿维 (甲氰菊酯 :阿维菌素 =8 9:0 1,m m)分别需要 15、34、333、4 2和 2 0 0代。甲氰菊酯抗性风险较高 ,其次是阿维菌素、哒螨 -阿维 (哒螨灵 :阿维菌素 =7 4 :0 1,m m)、甲氰 阿维 (甲氰菊酯 :阿维菌素 =8 9:0 1,m m) ,哒螨灵抗性风险较低。混剂哒螨 阿维 (哒螨灵 :阿维菌素 =7 4 :0 1,m m)不能延缓朱砂叶螨对两单剂哒螨灵和阿维菌素的抗性发展 ,而混剂甲氰 阿维 (甲氰菊酯 :阿维菌素 =8 9:0 1,m m)却能有效延缓朱砂叶螨对两单剂  相似文献   

3.
《环境昆虫学报》2014,(4):549-554
为明确生物杀虫剂多杀霉素及其3种混剂对蜜蜂和赤眼蜂Trichogrammatid spp的毒性,采用摄入法、接触法和药膜法分别测定4种制剂对意大利工蜂Apis mellifera L成蜂和玉米螟赤眼蜂Trichogramma ostriniae成峰的毒性。结果表明:摄入法测定,25 g/L多杀霉素悬浮剂、4%阿维菌素·多杀霉素水乳剂、3%甲阿维·多杀霉素悬浮剂、6%甲阿维·多杀霉素水分散粒剂,对蜜蜂半致死浓度LC50(48 h)分别为593、145×10-1、304×10-1、466×10-1 aimg/L。25 g/L多杀霉素悬浮剂对蜜蜂摄入毒性为高毒,其余为剧毒;接触法测定,4种制剂半致死剂量LD50(48 h)分别为00887、0289、00046、00053 aiμg/蜂,对蜜蜂的接触毒性均为高毒;药膜法测定,4种制剂对玉米螟赤眼蜂成蜂的半致死浓度LC50(24 h)分别为012、0097、022、033 aimg/L,安全性评价结果表明,4种制剂对玉米螟赤眼蜂成蜂均为极高风险性。  相似文献   

4.
为筛选对入侵害虫木瓜秀粉蚧毒力较好的农药及复配增效配比,为该虫的化学药剂防治提供理论依据,本文采用叶面喷雾法测定了11种农药对木瓜秀粉蚧2龄若虫的室内毒力,挑选毒力较好的两种药剂进行复配,筛选增效配比,并进行田间药效试验。结果表明,11种农药对木瓜秀粉蚧的毒力大小依次为:螺螨酯>哒螨灵>噻虫胺>联苯菊酯>矿物油>高效氯氰菊酯>炔螨特>啶虫脒>吡虫啉>噻螨酮>四螨嗪。哒螨灵与螺螨酯(60∶40)复配共毒系数最大,为182.47。田间药效试验发现,混配药剂防效均高于单剂且达到差异显著。  相似文献   

5.
以甜菜夜蛾 (SpodopteraexiguaH櫣bner) 2龄幼虫为试虫 ,测定了 5种配比的甲胺基阿维菌素苯甲酸盐(简称甲维盐 )与氟铃脲混配剂的毒力 ,测定结果建立了“时间 -剂量 -死亡率”模型。根据模型分析结果 ,甲维盐与氟铃脲混配后增效显著 ,5种配比中以甲维盐∶氟铃脲 =1∶10为最佳配比。其 2 4~ 6 0h 4个时段的共毒系数在 4 0 0~ 6 0 0之间 ,用 2 0、 1 0 μg·mL- 1浓度处理后的LT50 分别为 18 4 6和 30 5 8h  相似文献   

6.
枇杷瘤蛾室内药效试验研究   总被引:1,自引:1,他引:0  
枇杷瘤蛾(Melanographia flexilineata Hampson)为枇杷上的重要害虫,为害叶脉、嫩梢的皮部和果皮及全树的叶片,严重影响产量,损失严重。本研究对供试4种药剂——阿维菌素、灭幼脲、杀灭菊酯和敌百虫进行不同浓度的室内药效实验,并进行了统计分析。结果表明,供试4种药剂浓度间不存在显差异,而药剂种类间差异显,其中阿维菌素和灭幼脲致死时间较长,杀灭菊酯和敌百虫致死时间较短。为减缓害虫抗性的产生,建议在枇杷成熟期使用阿维菌素和灭幼脲防治枇杷瘤蛾。  相似文献   

7.
十一种农药对小菜蛾的毒力及其天敌草间小黑蛛的安全性   总被引:1,自引:0,他引:1  
通过室内试验,评价了11种农药对3龄小菜蛾Plutella xylostella(L.)幼虫的毒性及其天敌草间小黑蛛的安全性。研究结果表明,苏云金杆菌、氟虫腈、溴虫腈、多杀菌素和丁醚脲对小菜蛾3龄幼虫的杀虫效果最好,致死率达100%;啶虫隆和巴丹效果次之,致死率分别为90.0%和87.5%。对于草间小黑蛛Erigonidium graminicolum(Sunderall)幼蛛,丁醚脲、苏云金杆菌、虫酰肼、啶虫隆的初始毒性和持续毒性均较低,接触药膜48h后致死率都低于30%;而对于草间小黑蛛成蛛,除阿维菌素、高效氯氰菊酯和巴丹外,其余8种农药毒性较低,死亡率低于20%;综合11种农药对小菜蛾和蜘蛛的毒性,苏云金杆菌、丁醚脲、多杀菌素的选择毒性最好,优先推荐在蜘蛛等天敌多的季节使用。  相似文献   

8.
陈达荣  吴清正 《昆虫知识》1992,29(4):213-214
室内毒力测定结果表明,叶蝉散与杀虫双混配剂对稻褐飞虱表现有增效作用。其中以1:1混配剂增效作用较为明显,共毒系数为175.6,增效倍数约为1.8倍;1:2和1:3混配剂的共毒系数分别为150.7和137.3,增效倍数约为1.5倍和1.4倍。从而为叶蝉散与杀虫双混剂的开发提供了科学依据。  相似文献   

9.
【目的】阿维菌素和高效氯氰菊酯作为作用机制不同的2种杀虫剂,常被种植户用于红脉穗螟的防治;但是2种药剂的混配增效作用如何尚不明确。【方法】采用室内生物测定的方法,研究了阿维菌素和高效氯氰菊酯对红脉穗螟的生物活性,同时开展了2种药剂混配增效作用的研究。【结果】阿维菌素和高效氯氰菊酯均对红脉穗螟表现出胃毒活性,LC50值分别为22.24和18.18 mg·L~(-1)。阿维菌素(A)和高效氯氰菊酯(B)以质量浓度比(ρA∶ρB)4∶5和9∶5混配,对红脉穗螟表现出联合作用,共毒系数分别为93.78和107.78;以ρA∶ρB=5∶1混配后共毒系数达259.07,表现出显著的增效作用;而以ρA∶ρB=3∶10混配表现出拮抗作用,共毒系数仅为76.72。【结论】阿维菌素和高效氯氰菊酯在不同的混配比例下,会表现出不同的混配效果。其中,以质量浓度比5∶1混配表现出增效作用。  相似文献   

10.
桉树同安钮夜蛾生物学特性及防治的研究   总被引:1,自引:0,他引:1  
同安钮夜蛾(Anua indiscriminata Moore)是近年来桉树产区出现的重要害虫之一。该虫在广东蕉岭1年发生4代,以蛹越冬,幼虫6-7龄。每年仅有1个发生高峰期,一般在9月出现。室内药效测定表明:高效氯氰菊酯、保尔、锐劲特、阿维菌素、印楝素、鱼藤氰和吡虫啉对同安钮夜蛾幼虫的毒杀效果均达100%;而Bt和灭幼脲Ⅲ号的杀虫效果分别为96.3%和92.6%。林间试验表明:高效氯氰菊酯、阿维烟剂和Bt对同安钮夜蛾幼虫的杀死率分别为100%、96.6%和89.7%;用烟雾机喷施阿维烟剂10倍柴油溶液,其杀虫率为82.2%。  相似文献   

11.
噻虫嗪及其混配制剂是防治刺吸式口器害虫的常用药剂,但对中华蜜蜂的生存风险尚未明确。在实验室条件下通过模拟中华蜜蜂授粉期间农药暴露的3种方式(蜂体接触、取食接触、植株接触),评估了噻虫嗪及其4种混配制剂,在田间最高推荐剂量下对中华蜜蜂采集蜂的毒性。结果表明,无论哪种暴露方式,噻虫嗪及其混配制剂均显著影响中华蜜蜂采集蜂的生存,且噻虫嗪混配制剂毒性高于单剂。在直接喷洒蜂体处理中,25%噻虫嗪·异丙威可湿性粉剂表现出最高毒性,其致死中时间(LT_(50)值)为1.23 h;在摄入和接触植株残留处理中,40%氯虫·噻虫嗪水分散粒剂和25%噻虫嗪·异丙威可湿性粉剂均表现出最高毒性,LT_(50)值分别为2.09、6.75 h和2.15、6.77 h。在3种暴露方式下,25%噻虫嗪水分散粒剂的LT_(50)值分别为6.50、17.24和8.90 h,明显低于对照。因此建议蜜蜂授粉期间禁止施用噻虫嗪及其混配制剂,为更好地推进蜜蜂授粉与绿色防控技术的研究与示范提供安全保障。  相似文献   

12.
《Biological Control》2000,17(2):125-131
Residual toxicities of avermectin b1 and pyridaben for 2- to 28-day exposure periods were assessed in laboratory and greenhouse trials for eight species of beneficial arthropods that are commercially produced for greenhouse pest management. In laboratory trials, Amblyseius degenerans Berlese, Aphidius colemani Viereck, Aphidoletes aphidimyza (Rondani), Dacnusa sibirica Telenga, Encarsia formosa (Gahan), and Orius insidiosus (Say) showed high mortality (>85%) when exposed to ≤6-day residues of both acaricides. Lower toxicities were observed for pyridaben to the predatory mites Amblyseius cucumeris (Oudermans) and Phytoseiulus persimilis Athias-Henroit and for avermectin b1 to A. cucumeris after exposure to ≤6-day residues. In greenhouse trials, pyridaben showed significantly higher residual toxicity to all beneficial species than avermectin b1. Pyridaben had high residual toxicity (40–60% mortality) to E. formosa, A. colemani, A. aphidimyza, A. degenerans, and P. persimilis 6 days after treatment. Residual toxicity of pyridaben to D. sibirica, A. cucumeris, and O. insidiosus decreased to a low level (<15% mortality) after 6 days. Avermectin b1 was slightly toxic or nontoxic to the predaceous mites A. cucumeris, A. degenerans, and P. persimilis. Toxicity of avermectin b1 to E. formosa, A. colemani, D. sibirica, and O. insidiosus rapidly decreased to <25% mortality 6 days after application. Based on the results of the greenhouse trials, avermectin b1 was considered suitable for use with predacious mites and could be combined in integrated pest management (IPM) programs with other beneficial species after residual toxicity is taken into consideration. Pyridaben can also be combined in IPM programs with A. cucumeris, O. insidiosus, and D. sibirica after a 6-day residual period.  相似文献   

13.
【目的】明确截形叶螨Tetranychus truncatus Ehara对哒螨灵、阿维菌素和阿维·哒螨灵3种田间常用药剂产生抗性的速率和稳定性,为叶螨的抗性综合治理提供一定的理论依据。【方法】采用室内生测法,对截形叶螨进行药剂的抗性筛选、衰退和再恢复规律研究。【结果】经过连续30代的药剂汰选,截形叶螨对哒螨灵、阿维菌素和阿维·哒螨灵3种药剂产生了不同程度的抗药性,抗性指数分别达到197.50、19.56和12.57;停止喷药后,其抗性都有所下降,其中截形叶螨对哒螨灵的抗性最不稳定,培育至30代后,抗性衰退率达到63.54%,对阿维菌素的抗性较为稳定,抗性衰退率为23.30%;再次恢复用药后,截形叶螨对哒螨灵、阿维菌素和阿维哒螨灵抗性再度回升,以抗哒螨灵品系的抗性恢复最快,药剂汰选30代后,增长率达到了58.47%,阿维·哒螨灵次之(增长率为38.67%),抗阿维菌素的品系抗性恢复最慢,增长率仅为22.86%。【结论】截形叶螨对哒螨灵抗性不稳定,停止用药后,敏感性易恢复,对阿维菌素和阿维·哒螨灵的抗性较稳定,一旦抗性产生不易衰退,故田间应用时应交替轮换用药。  相似文献   

14.
The resistance to and the effects of synergists on the toxicity of six insecticides in Diaeretiella rapae (M'Intosh) (Hymenoptera: Aphidiidae), a parasitoid of vegetable aphid collected in Jianxin at Fuzhou-City, Fujian, China, were studied. In comparison with susceptible F21 progeny, the resistance ratios in resistant F0 parents were 27.6 for methamidophos, 20.8 for fipronil, 47.5 for avermectin, 3.3 for fenvalerate, 4.5 for cypermethrin, and 74.7 for imidacloprid. Piperonyl butoxide (PB), triphenyl phosphate (TPP), and diethyl maleate (DEM) were chosen to be applied in susceptible F21 progeny, as well as in resistant F11 progeny and F0 parents. Significant synergistic effects on the toxicity of the six insecticides were found by using PB, TPP, and DEM in F0 parents; on methamidophos, avermectin, and imidacloprid by PB, TPP, and DEM in F11 progeny; on fipronil by PB and DEM in F11 progeny; and on fenvalerate and cypermethrin by PB in F11 progeny. PB also showed significant synergism on the six insecticides in susceptible F21 progeny, although the synergism was far less in F21 progeny than those in resistant F0 parents. TPP and DEM showed little or no synergistic effects on the toxicity of the six insecticides in F21 progeny. Compared with TPP and DEM, the highest synergistic ratios of PB for methamidophos, fipronil, avermectin, fenvalerate, cypermethrin, and imidacloprid were observed in F0 parents, and F11 and F21 progeny. The resistance levels to methamidophos, fipronil, avermectin, fenvalerate, and cypermethrin could be inhibited strongly by applying PB in F0 parents. From the results, oxidative degradation is believed to play a critical role in resistance to methamidophos, fipronil, avermectin, fenvalerate, and cypermethrin in D. rapae. To a lesser extent, hydrolytic reactions also were partially involved in the resistance to these five insecticides by using the synergists PB, TPP, and DEM. However, although high synergism of PB, TPP, and DEM on imidacloprid was found, the resistance levels to imidacloprid remained high in the presence of PB, TPP, and DEM. The mediated detoxification of oxidative degradation and hydrolytic reactions was thought to be involved in the resistance to imidacloprid in F0 parents.  相似文献   

15.
蜜蜂是最重要的农业授粉昆虫之一,蜜蜂在授粉过程中极有可能接触到广泛使用的广谱杀虫剂-拟除虫菊酯,大多数拟除虫菊酯对蜜蜂等农业授粉昆虫有较高的毒性.本文对拟除虫菊酯类杀虫剂的作用机理进行了综述;总结了蜂群及蜂产品中拟除虫菊酯类杀虫剂的残留现状、拟除虫菊酯对蜜蜂的急性毒性以及亚致死效应,讨论了拟除虫菊酯类杀虫剂复配农药对蜜...  相似文献   

16.
Dissipation behavior and hazard assessment of the insecticide/acaricide pyridaben applied to strawberries were investigated under the climatic conditions of Egypt. A validated gas chromatographic method (GC-μECD) was used to determine pyridaben residues when applied at the recommended rate and twice this rate. The average recoveries were in the range between 95.8% and 103% with associated relative standard deviation not exceeding 14.5%. The estimated limit of quantification for pyridaben was 0.005 mg/kg. The field results showed that pyridaben dissipated rapidly in strawberries and had a half-life of approximately 2.3 days. The hazard assessment was evaluated by using the hazard quotient (HQ). The results showed that the HQ value was significantly less than HQ = 1. This result implied that the hazard of pyridaben use in strawberries even at double the recommended dosage was negligible to human. This study could provide guidance for the safe and reasonable use of pyridaben in strawberries and to prevent health problems to consumers; however, further hazard assessment studies are needed to ascertain the hazard of pyridaben residues on strawberries to vulnerable groups, including children, pregnant women, and elderly consumers.  相似文献   

17.
In order to investigate possible synergistic or antagonistic (more or less than additive) toxicity effects, mixtures of chemicals were tested in water using a microbial bioassay. Ten toxicants (3,4-dichloroaniline, 3,5-dichlorophenol, cadmium, chromium, copper, Lindane, linear alkylbenzene sulphonate, pentachlorophenol, toluene, zinc) were chosen on the basis of their common occurrence in industrial effluents within local waste water treatment plants. These toxicants also cover a wide range of modes of toxic action, namely, polar and non-polar narcosis, membrane disruption, respiratory disruption, uncouplers of oxidative phosphorylation, biochemical disruption and enzyme inhibition. Efficient screening for possible combination toxicity between toxicants involved testing the chemicals both singly and in triplet combinations. The triplets were based on four replicates of a balanced incomplete block design (BIB). A standardised Vibrio fischeri rapid toxicity bioluminescence assay was used. The combinations tested showed that only one mixture was found to be significantly more toxic than expected from the pure single-toxicant results. Two triplets were significantly less toxic. Further tests on the more toxic triplet showed that the effect was due to only one of the 45 pairs originally screened. It is concluded that synergistic effects in combinations of toxicants are rather rare in bioluminescence systems utilising common effluents discharged to sewer. Electronic Publication  相似文献   

18.
为了得到对朱砂叶螨(Tetranychuscinnabarinus)具有较好杀螨活性的植物精油与阿维菌素复配配方,并为杀螨剂开发应用提供指导,本研究采用喷雾法测定了柠檬草、广藿香、山鸡椒、亚洲薄荷植物精油及阿维菌素对朱砂叶螨的毒力,分别采用共毒因子法和共毒系数法评价了山鸡椒和亚洲薄荷精油对阿维菌素的增效作用和复配最佳配比.结果表明,柠檬草精油和广藿香精油基本无杀螨活性,山鸡椒精油、亚洲薄荷精油处理朱砂叶螨24h后LC50分别为772.801mg/L和1040.187mg/L.阿维菌素与亚洲薄荷1∶272,1∶679复配具有增效作用.阿维菌素与亚洲薄荷1∶400复配时共毒系数最大,可达160.因此,阿维菌素与亚洲薄荷1∶400复配防治朱砂叶螨具有明显增效作用,这为杀螨剂的开发应用研究提供了参考.  相似文献   

19.
Bees are essential pollinators of many plants in natural ecosystems and agricultural crops alike. In recent years the decline and disappearance of bee species in the wild and the collapse of honey bee colonies have concerned ecologists and apiculturalists, who search for causes and solutions to this problem. Whilst biological factors such as viral diseases, mite and parasite infections are undoubtedly involved, it is also evident that pesticides applied to agricultural crops have a negative impact on bees. Most risk assessments have focused on direct acute exposure of bees to agrochemicals from spray drift. However, the large number of pesticide residues found in pollen and honey demand a thorough evaluation of all residual compounds so as to identify those of highest risk to bees. Using data from recent residue surveys and toxicity of pesticides to honey and bumble bees, a comprehensive evaluation of risks under current exposure conditions is presented here. Standard risk assessments are complemented with new approaches that take into account time-cumulative effects over time, especially with dietary exposures. Whilst overall risks appear to be low, our analysis indicates that residues of pyrethroid and neonicotinoid insecticides pose the highest risk by contact exposure of bees with contaminated pollen. However, the synergism of ergosterol inhibiting fungicides with those two classes of insecticides results in much higher risks in spite of the low prevalence of their combined residues. Risks by ingestion of contaminated pollen and honey are of some concern for systemic insecticides, particularly imidacloprid and thiamethoxam, chlorpyrifos and the mixtures of cyhalothrin and ergosterol inhibiting fungicides. More attention should be paid to specific residue mixtures that may result in synergistic toxicity to bees.  相似文献   

20.
The suggestion that adding a light oil to avermectin B1 would increase the toxicity of avermectin to spider mites and reduce its effect on predaceous mites was tested in laboratory trials withTetranychus urticae Koch andMetaseiulus occidentalis (Nesbitt) on almond and bean foliage. No differences were found in the toxicity of avermectin + oil vs. avermectin alone at the doses tested forT. urticae; all (0.025, 0.5, 1, and 5 ppm) were highly toxic. Mortality ofM. occidentalis females and larvae was not different on avermectin + oil vs. avermectin alone, but females produced more progeny on the avermectin + oil-treated foliage. At doses of 0.5 to 5 ppm, avermectin was sufficiently toxic to deplete predator populations in the field. Development of predator larvae on avermectin + oil and on avermectin alone was not different. Avermectin + oil on almond foliage aged outdoors was highly toxic after 96 h toT. urticae adults butM. occidentalis larvae survived well on residues by 96 h.M. occidentalis female survival and productivity were not different from the controls by 48 h. Hence a predator mite population might recover through larvae hatching onto residues. Avermectin + oil (3 ppm) residue on bean foliage held outdoors was still highly toxic toT. urticae after 33 days. In contrast,M. occidentalis females and larvae survived well on 48-to 96-hour-old residues. Neither predators nor spider mites placed on treated foliage (3 ppm) were able to reach untreated foliage in tests using bean plant seedlings with one leaf sprayed and one left unsprayed. Furthermore, whenM. occidentalis females were exposed to 3 ppm avermectin for 300 s or longer, mortality was significant and the fecundity of females that had been exposed for as few as 30 s was reduced significantly. Thus, while avermectin is significantly more toxic toT. urticae than toM. occidentalis, its value as a selective acaricide will depend upon learning to use it at rates that will allow the retention of sufficient prey so that surviving predators can persist. Based on these laboratory tests, such selective doses are likely to lie below 1 ppm and can best be determined in field trials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号