首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CFTR基因突变导致一种常染色体隐性遗传疾病——囊性纤维化(CF)。利用split Ssp DnaB intein的蛋白质反式剪接技术的真核细胞双载体转CFTR基因,旨在研究翻译后水平CFTR的连接,以及由其建立的氯离子通道功能。于CFTR膜内第2个跨膜结构域(TMD2)前的Glu838密码子后将其cDNA断裂为N端和C端两部分,与具有蛋白质反式剪接作用的split Ssp DnaB intein编码序列融合,分别插入到载体pEGFP-N1和pEYFP-N1,构建一对真核表达载体pEGFP-NInt和pEYFP-IntC。用脂质体将这对载体共转染至幼年仓鼠肾细胞(BHK),瞬时表达实验用Western blotting观察CFTR蛋白质的连接,并用膜片钳技术记录Cl-通道电流。结果显示,基因共转染细胞呈现完整的CFTR蛋白条带,膜片钳记录到全细胞Cl-电流和单个Cl-通道开放活性。结果表明split Ssp DnaB intein的蛋白质反式剪接技术可用于双载体共转移CFTR基因,为CF基因治疗应用双腺相关病毒载体(AAV)转运CFTR基因,克服AAV的容量限制提供了依据。  相似文献   

2.
囊性纤维化(CF)基因克隆两年来,对其蛋白质产物的功能不断有新的发现。过去许多研究证明,CF蛋白具有氯离子(Cl~-)通道作用。在CF患者中,CF蛋白发生异常,导致Cl~-分泌失调,不能正常通过细胞膜,水分排出较正常减少,因而形成一些典型体征如咸味皮肤和呼吸道内粘稠浓痰,后者又为致死性感染菌假单胞属细菌提供了滋生场所。最近,Qais Al-Awqati证明,CF蛋白作为跨膜传导调节因子(transmembrane conductance regulator,CFTR)在  相似文献   

3.
利用内含肽(intein)的蛋白质反式剪接技术,研究双载体真核细胞转囊性纤维化跨膜电导调节体(CFTR)基因,通过翻译后连接成为完整的功能性CFTR蛋白.应用基因重组技术,将人CFTRcDNA于剪接反应所需保守残基Ser660前断裂为N端和C端两部分,分别与split Ssp DnaB intein编码序列融合,构建到真核表达载体pEGFP-N1和pEYFP-N1.用脂质体将这对载体共转染至幼年仓鼠肾细胞(BHK),48h后Western印迹观察CFTR蛋白质的连接,并用全细胞和单通道膜片钳技术记录Cl-通道电流.基因共转染细胞可观察到明显的由蛋白质反式剪接形成的完整CFTR蛋白,膜片钳记录到较高的全细胞Cl-电流和与转野生型CFTR基因细胞相似的单Cl-通道开放活性,提示CFTR功能的恢复.内含肽可作为一种技术策略用于双载体转CFTR基因,为应用双腺相关病毒载体(AAV)转基因的囊性纤维化疾病(CF)基因治疗提供了依据.  相似文献   

4.
《生物磁学》2014,(31):I0003-I0003
一项由美国匹兹堡大学医学院多中心团队完成的新研究提示:囊性纤维化(CF)其实是两种不同的疾病。一种影响多个器官包括肺,一种不影响肺。这项研究发表在PLOS Genetics杂志上,揭示了与囊性纤维化相关基因变异中的9个可导致胰腺炎。鼻窦炎和男性不育症。但却不对肺部造成伤害。 CF患者继承分别来自父母各方的CFTR基因的一个严重突变拷贝,CFTR生成那些构成通道来转运氯化物分子进出细胞的蛋白质,研究员David Whitcomb医学博士表示:没有功能性CFTR通道会导致出现问题,例如CF有关的慢性肺阻塞。  相似文献   

5.
CFTR型氯离子通道研究进展   总被引:2,自引:0,他引:2  
郭晓强 《生命科学》2007,19(2):189-193
囊性纤维化跨膜传导调节因子(CFTR)是一种重要的氯离子通道,突变易引起囊性纤维化病变,故得名。一系列研究表明,CFTR由5个结构域组成:两个跨膜结构域形成氯离子通道;两个核苷酸结合结构域调节通道的开闭;一个调节结构域主要影响氯通道的活动。这些结构域通过协同作用共同控制了氯离子的跨膜流动,而一些突变可以影响细胞功能而导致囊性纤维化的发生。本文通过介绍CFTR基本结构、调节机制、与囊性纤维化病变的关系及针对CFTR的治疗而对CFTR型氯离子通道有一个的全面的理解。  相似文献   

6.
囊性纤维化跨膜电导调节因子(CFTR)是一种c AMP依赖的Cl-通道蛋白,其在上皮液体分泌过程中具有重要作用。本研究组在前期工作中观察到两种甲氧基黄酮类化合物3’,4’,5,5’,6,7-六甲氧基黄酮(HMF)和5-羟基-6,7,3’,4’-四甲氧基黄酮(HTF)能够有效地激活CFTR Cl-通道,但是作用机制尚不清楚。本研究旨在利用细胞荧光淬灭模型和短路电流技术系统研究HMF和HTF对CFTR Cl-通道的激活作用。荧光淬灭实验结果显示两种化合物均能以剂量依赖的方式激活CFTR Cl-通道,该激活作用具有快速、可逆的特点,可被CFTR特异性抑制剂CFTRinh-172完全抑制;引人注目的是,HMF(EC50=2μmol/L)是迄今发现的亲和力最高的黄酮类CFTR Cl-通道激活剂。HMF和HTF对CFTR Cl-通道的激活作用具毛喉素(forskolin,FSK)依赖特性,与FSK和3-异丁基-1-甲基黄嘌呤(3-Isobutyl-1-methylx,IBMX)的作用存在相加效应,但是与三羟基异黄酮(genistein,GEN)的作用之间不存在协同效应。离体组织研究结果显示,HMF和HTF能够显著促进大鼠结肠粘膜Cl-电流及小鼠气管粘膜下腺液体分泌。以上结果提示,HMF和HTF能够通过提高c AMP水平和直接与CFTR蛋白作用两条途径发挥CFTR Cl-通道激活作用。本研究为深入揭示黄酮类CFTR Cl-通道激活剂结构与功能之间的关系奠定了基础。  相似文献   

7.
囊性纤维化跨膜传导调节因子(CFTR),是一种特殊的氯离子通道,主要的生理功能是调节生物体内液体分泌及维持电解质的平衡。该通道活动异常可导致多种疾病,本文概述了几种典型的CFTR功能异常所引发的疾病的发病机理、临床表现及治疗方法。  相似文献   

8.
氯离子通道是一类分布广泛的阴离子选择性通道家族蛋白,在细胞容积维持、细胞质内pH调节、蛋白运输、细胞迁移、增殖及分化等重要生理过程中扮演着多种角色。然而,目前有关其功能调控研究较少。本研究构建了表达电压门控氯离子通道CLH-1融合绿色荧光蛋白(CLH-1::GFP)的转基因线虫。CLH-1::GFP主要表达在线虫头部神经元和身体后部肠道细胞中。利用最近发展起来的捕获GFP的GFP-Trap技术,从转基因线虫裂解液中捕获了可能调控氯离子通道CLH-1功能的相互作用蛋白。通过质谱鉴定,共有27个蛋白和CLH-1::GFP一起被捕获下来。生化实验显示其中真核生物延伸因子1(EEF-1)与CLH-1蛋白直接相互作用;并且,在和EEF-1共表达的情况下,CLH-1的蛋白水平显著上调。本结果表明利用线虫表达氯离子通道GFP融合蛋白,结合GFP-Trap和质谱分析技术,可以识别和电压门控氯离子通道相互作用蛋白,同时也表明EEF-1可以调控线虫CLH-1通道功能。  相似文献   

9.
研究利用内含肽(intein)的蛋白质反式剪接功能在大肠杆菌中对囊性纤维化跨膜传导调节因子(cystic fibrosis transmembrane regulator, CFTR)的反式剪接作用.CFTR基因突变导致一种常染色体隐性遗传疾病囊性纤维化(cystic fibrosis, CF).将CFTR的cDNA于剪接反应所需的保守性氨基酸残基Ser-660前断裂为N端和C端,分别与split mini Ssp DnaB 内含肽的106个氨基酸残基的N端和48个氨基酸残基的C端编码序列融合,构建到原核表达载体pBV220 诱导表达后SDS-PAGE可见预期大小剪接形成的CFTR蛋白条带,Western印迹用CFTR特异性抗体进一步证明为剪接所产生的CFTR蛋白,表明内含肽可有效催化CFTR的反式剪接.  相似文献   

10.
Bompadre SG  Hwang TC 《生理学报》2007,59(4):431-442
囊性纤维化跨膜电导调节体(cystic fibrosis transmembrane conductance regulator,CFTR)是一种Cl^-通道,属于ATP结合(ATP-binding cassette,ABC)转运体超家族。CFTR功能缺陷是高加索人种中普遍存在的致死性常染色体隐性遗传疾病囊性纤维化(cystic fibrosis,CF)发生的主要原因。这种疾病患者各组织上皮细胞内Cl^-转运失调。目前,与CF相关的不同突变超过1400种。CFTR调节(regulatory,R)域负责调控,核苷酸结合域(nucleotide-binding domains,NBDs)NBD1和NBD2负责ATP结合和水解门控。近期研究发现CFFR的NBDs与其它ABC蛋白一样可以二聚化。二聚化过程中,NBD1和NBD2首-尾相连,一个NBD上的WalkerA和B模块与另一个NBD提供的标签序列(signature sequence)形成ATP结合袋(ATP-binding pockets,ABPs)ABP1和ABP2。ABPs中与ATP结合相关的氨基酸突变实验揭示,ABP1和ABP2在CFTR的ATP依赖门控中发挥不同作用。ABP2由NBD2上的WalkA和B模块与NBD1提供的标签序列形成,它与ATP结合催化通道开放,而ABP1单独与ATP结合不能促进通道开放,只能稳定通道构象。有一些CFrR突变相关疾病的特征就是门控失调,进一步深入研究CFTR的NBD1和NBD2如何通过相互作用而达到通道门控,将为药理学研究提供更多所需的机制信息,有利于为CF治疗的药物设计铺平道路。  相似文献   

11.
FK-506结合蛋白对钙释放通道的调控   总被引:1,自引:0,他引:1  
细胞内自由钙作为一种重要的细胞信使广泛地参与细胞生理功能调控.胞内钙库(内质网系和肌浆网系)对调节细胞内自由钙水平起着重要的作用.钙库膜上的钙释放通道(ryanodine受体和三磷酸肌醇受体)受许多因素调控,其中之一就是新近研究得相当多的FK506结合蛋白.免疫抑制剂FK506能特异地结合钙库上一种分子质量为12 ku左右的蛋白,这种FK506结合蛋白与钙释放通道形成一种紧密连接的复合体,在正常生理情况下对钙释放通道起着十分重要的调控作用.  相似文献   

12.
水通道蛋白   总被引:5,自引:0,他引:5  
水通道蛋白 (aquaporin,AQP)是对水专一的通道蛋白 ,普遍存在于动、植物及微生物中。它所介导的自由水快速被动的跨生物膜转运 ,是水进出细胞的主要途径。1 水通道蛋白的发现长期以来 ,普遍认为细胞内外的水分子是以简单的跨膜扩散方式来透过脂双层膜。后来由于在生物物理学研究中发现红细胞及近端肾小管对渗透压改变引起的水的通透性很高 ,很难单纯以弥散来解释。因此 ,一些学者推测水的跨膜转运除了简单扩散外 ,还存在某种特殊的机制 ,并提出了水通道的概念。1988年 ,Agre等在鉴定人类 Rh血型抗原时 ,偶然在红细胞膜上发现了 1种新的 2…  相似文献   

13.
Li H  Cai Z  Chen JH  Ju M  Xu Z  Sheppard DN 《生理学报》2007,59(4):416-430
囊性纤维化跨膜转运调节体(cystic fibrosis transmembrane conductance regulator,CFTR)是ATP结合转运体超家族(ATP-binding cassette transporter superfamily)的一名特殊成员,因为它是一个具有相当复杂调控机制的氯离子通道。CFTR由五个结构域(domain)组成:两个跨膜结构域(membrane-spanning domains,MSDs),两个核苷酸结合域(nucleotide-binding domains.NBDs)和一个特殊的调控域(regulatory domain,RD)。MSDs构成一个低电导(6-12pS)的阴离子选择性孔道(pore),其形状如同不对称的沙漏,胞外小胞内大,狭窄部分为离子筛。两个NBDs组成头尾相对的二聚体,在二聚体之间的接触面上有两个能和ATP结合的位点(位点1和位点2)。CFTR的门控机制是:ATP分子与位点1和2相互作用促使NBD二聚体的结合与解离,从而引起MSDs的构象发生变化进而使通道孔打开和关闭。RD具有多样化的结构,它含有多个磷酸化共有位点(consensus phosphorylation sites)。RD的磷酸化促进NBDs与ATP的结合,从而使CFTR得以激活。CFTR通过支架蛋白与其它膜受体以及蛋白激酶、磷酸酶形成大分子信号复合体。在复杂的细胞信号系统参与下,CFTR的功能活动在时间和空间上得到精确的调控。此外,CFTR的活动与细胞代谢有紧密联系:CFTR与代谢酶形成大分子复合体,当细胞能量需求增加时,CFTR活动会受到抑制而使细胞能量得以保存。CFTR广泛分布于机体上皮组织,它通过促进水盐转运而控制上皮细胞分泌物的量与组成。值得注意的是,在呼吸道,CFTR还对机体的防御机制起重要作用。CFTR功能失常严重影响跨上皮离子转运,进而引起或加重某些疾病。  相似文献   

14.
从中国东亚钳蝎ButhusmartensiiKarsch的毒腺cDNA文库中分离得到了一个编码毒素蛋白多肽 (命名为BmKCT)前体的全长cDNA序列 .该毒素多肽与已报道的氯毒素 (chlorotoxin)高度同源 ,其蛋白质一级序列有 6 8%的同源性 .为了鉴定BmKCT的生物学功能 ,通过pGEX系统成功地表达了BmKCT ,并用GST亲和层析和凝胶过滤的方法获得了纯化的重组BmKCT毒素蛋白 (rBmKCT) .通过膜片钳实验 ,记录了rBmKCT对人脑星型胶质瘤细胞 (gliomascell)表面的氯离子通道电流的作用 .结果显示 ,BmKCT可以显著抑制人脑星型胶质瘤细胞表面的氯离子通道电流 ,并且这种抑制作用在一定程度上是可逆的 .实验证明 ,在细胞水平上 ,BmKCT是一种新的短链氯离子通道抑制剂 .  相似文献   

15.
目的:探讨辛伐他汀对急性肺损伤大鼠囊性纤维化跨膜传导调节体(CFTR氯离子通道)的影响及其对减轻急性肺损伤的作用。方法:40只雄性SD大鼠随机分为空白组、模型组、辛伐他汀低剂量组(20 mg/kg)、辛伐他汀中剂量组(40 mg/kg)、辛伐他汀高剂量组(80 mg/kg);气道内滴注脂多糖(10 mg/kg)制备急性肺损伤模型。进行肺湿/干重比、肺泡灌洗液蛋白检测,HE染色观察肺组织的病理变化;实时荧光定量PCR检测肺组织匀浆CFTR mRNA表达。结果:结果显示,模型组的肺湿干重比,肺泡灌洗液蛋白较空白组高(P0.05),病理示肺泡膈增厚,大量炎性细胞浸润,肺泡腔内可见红细胞及血肿,提示模型复制成功。辛伐他汀低剂量组的肺湿/干重比、肺泡灌洗液蛋白与模型组相比无明显差异,病理可见肺损伤较重,与模型组相比无改善;CFTR mRNA表达与模型组相比稍高但无明显差异(P0.05)。辛伐他汀中高剂量组中肺湿/干重比、肺泡灌洗液蛋白与模型组相比有所降低,肺组织CFTRmRNA表达较模型组明显增加(P0.05),但中高剂量组之间无明显差异(P0.05);病理可见肺泡膈增厚,极少见炎性细胞浸润及透明膜,肺泡腔内未见明显出血和水肿,肺损伤程度较模型组减轻。结论:中高剂量的辛伐他汀(40 mg/kg)对急性肺损伤有一定保护作用,并上调CFTR的表达。  相似文献   

16.
改造细胞的排斥作用是基因疗法中的一个大问题,这是在95年对囊纤维化(CF)基因疗法研究的结果。在研究中,最高剂量组CF缺陷病人由于对输送CFTR基因的病毒载体产生局部免疫排斥而患粘膜性炎症。在以前的试验中也有这种情况发生,只是程度较轻。  相似文献   

17.
Zhang XD  Zang YM  Zhou SS  Zang WJ  Yu XJ  Wang YM 《生理学报》2002,54(3):196-200
为探讨C1C-1通道的门控机制,实验应用爪蟾母细胞异源性表达大鼠野生型C1C-1(WT RC1C-1)通道基因,并使用双电极电压钳法记录通道电流。通过改变细胞外氯离子浓度,采用双指数拟合的方法分析通道去激活电流,对其去激活门控动力学特性进行了研究。结果表明,降低细胞外氯离子浓度可增加快速去激活电流成分,减少慢速去激活成分;同时,慢速去激活和快速去激活电流的时间常数都显著减小,说明细胞外氯离子浓度的改变可影响通道去激活动力学参数,从而改变通道的门控过程。  相似文献   

18.
2003年,PeterAgre因发现细胞膜水通道而获得诺贝尔化学奖。水是所有细胞中、血液中以及植物汁液中的溶剂,既是生物体内各种化学反应的介质,自身也参与各种反应。因此,水的代谢对于生物个体来说至关重要。就水进出细胞的方式、水通道蛋白的发现过程及其现状进行简单介绍。  相似文献   

19.
目的:建立一种定量检测囊性纤维化跨膜传导调节因子(CFTR)的生物素-亲和素ELISA(BA-ELISA)方法并评价其可靠性。方法:优选设计CFTR三个表位的大肠杆菌表达抗原,免疫新西兰白兔获得CFTR多克隆抗体,用纯化后的抗体包被酶标板,并用生物素对其标记,从人精子提取CFTR作为抗原,用辣根过氧化物酶偶联的亲和素检测,优化两种抗体浓度及实验参数,建立可定量检测CFTR蛋白的双抗体夹心BA-ELISA方法;用临床精子标本评估所建立方法的重复性、特异性等。结果:CFTR包被抗体和生物素化CFTR抗体最适浓度分别为4μg/ml和10μg/ml,最佳封闭液为1%BSA-PBST,抗原与包被抗体最佳反应时间60 min,底物显色最佳时间15 min。批内、批间变异系数分别为2.16%~9.23%和2.29%~11.71%,包被的CFTR抗体与精子胞浆蛋白无交叉反应,最低检出下限为0.15 ng/ml,标准反应曲线具有良好的线性关系R2=0.962。结论:成功创建了定量检测CFTR蛋白的ELISA方法,具有特异性强、灵敏度高等特点。  相似文献   

20.
编码蚕豆和玉米叶绿体ATP合酶ε亚基的atpE基因分别在大肠杆菌中获得了高效表达 ,两种表达的ε亚基蛋白分别与来自蚕豆、玉米和菠菜的缺失ε亚基的CF1重组后 ,发现玉米的ε亚基蛋白在抑制CF1 ATP酶水解ATP、阻塞类囊体膜质子通道以及它促进光合磷酸化等方面均明显地强于蚕豆的ε亚基蛋白。该结果表明 :( 1)ε亚基对ATP合酶活性的调节作用与其同ATP合酶其他亚基间的亲和力大小密切相关 ;( 2 )ε亚基抑制CF1水解ATP和阻塞质子通道两个功能是呈正相关的。圆二色性 (circulardichroism)的分析结果表明 ,玉米CF1ε亚基的 4种二级结构比例为α 螺旋 2 2 .6% ,β 折叠 3 0 .6% ,β 转角 9.3 % ,无规则结构 3 7.7% ;蚕豆CF1ε亚基的 4种二级结构比例为α 螺旋 3 1.4 % ,β 折叠 2 2 .3 % ,β 转角 13 .8% ,无规则结构 3 2 .4 %  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号