首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
M R Wenk  T Alt  A Seelig    J Seelig 《Biophysical journal》1997,72(4):1719-1731
The interaction of the nonionic detergent octyl-beta-D-glucopyranoside (OG) with lipid bilayers was studied with high-sensitivity isothermal titration calorimetry (ITC) and solid-state 2H-NMR spectroscopy. The transfer of OG from the aqueous phase to lipid bilayers composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) can be investigated by employing detergent at concentrations below the critical micellar concentration; it can be defined by a surface partition equilibrium with a partition coefficient of K = 120 +/- 10 M-1, a molar binding enthalpy of delta H degrees D = 1.3 +/- 0.15 kcal/mol, and a free energy of binding of delta G degrees D = -5.2 kcal/mol. The heat of transfer is temperature dependent, with a molar heat capacity of delta CP = -75 cal K-1 mol-1. The large heat capacity and the near-zero delta H are typical for a hydrophobic binding equilibrium. The partition constant K decreased to approximately 100 M-1 for POPC membranes mixed with either negatively charged lipids or cholesterol, but was independent of membrane curvature. In contrast, a much larger variation was observed in the partition enthalpy. delta H degrees D increased by about 50% for large vesicles and by 75% for membranes containing 50 mol% cholesterol. Structural changes in the lipid bilayer were investigated with solid-state 2H-NMR. POPC was selectively deuterated at the headgroup segments and at different positions of the fatty acyl chains, and the measurement of the quadrupolar splittings provided information on the conformation and the order of the bilayer membrane. Addition of OG had almost no influence on the lipid headgroup region, even at concentrations close to bilayer disruption. In contrast, the fluctuations of fatty acyl chain segments located in the inner part of the bilayer increased strongly with increasing OG concentration. The 2H-NMR results demonstrate that the headgroup region is the most stable structural element of the lipid membrane, remaining intact until the disordering of the chains reaches a critical limit. The perturbing effect of OG is thus different from that of another nonionic detergent, octaethyleneglycol mono-n-dodecylether (C12E8), which produces a general disordering at all levels of the lipid bilayer. The OG-POPC interaction was also investigated with POPC monolayers, using a Langmuir trough. In the absence of lipid, the measurement of the Gibbs adsorption isotherm for pure OG solutions yielded an OG surface area of AS = 51 +/- 3 A2. On the other hand, the insertion area AI of OG in a POPC monolayer was determined by a monolayer expansion technique as AI = 58 +/- 10 A2. The similar area requirements with AS approximately AI indicate an almost complete insertion of OG into the lipid monolayer. The OG partition constant for a POPC monolayer at 32 mN/m was Kp approximately 320 M-1 and thus was larger than that for a POPC bilayer.  相似文献   

2.
Interleukin-2 binds to gangliosides in micelles and lipid bilayers   总被引:2,自引:0,他引:2  
Gangliosides shed from the surface of tumour cells may be involved in tumour-induced immunosuppression. These anionic sialoglycolipids are known to be potent inhibitors of lymphocyte proliferation, and it has been suggested that they interfere with processes mediated by the growth factor interleukin-2 (IL-2). We have thus investigated the interaction of IL-2 with gangliosides in micelles and lipid bilayers. Gel filtration FPLC showed that 125I-IL-2 can bind to micellar gangliosides in aqueous solution, and this interaction was strongly promoted by low concentrations of serum. Binding to ganglioside micelles was specific in that it required a native IL-2 molecule. IL-2 binding remained unchanged in the presence of 40% ethylene glycol, suggesting that it was not due to hydrophobic interactions. Ganglioside oligosaccharides alone were not able to bind to IL-2. Direct binding studies and gel filtration chromatography indicated that both multilamellar liposomes and 100 nm unilamellar vesicles containing gangliosides were able to interact with IL-2. Bilayers of lipid alone showed no binding. The interaction of IL-2 with bilayer gangliosides was highly dependent on the bilayer lipid composition, but appeared independent of lipid phase state. These results suggest that gangliosides may be a physiologically relevant target for IL-2 binding.  相似文献   

3.
A theoretical approach for estimating association free energies of alpha-helices in nonpolar media has been developed. The parameters of energy functions have been derived from DeltaDeltaG values of mutants in water-soluble proteins and partitioning of organic solutes between water and nonpolar solvents. The proposed approach was verified successfully against three sets of published data: (1) dissociation constants of alpha-helical oligomers formed by 27 hydrophobic peptides; (2) stabilities of 22 bacteriorhodopsin mutants, and (3) protein-ligand binding affinities in aqueous solution. It has been found that coalescence of helices is driven exclusively by van der Waals interactions and H-bonds, whereas the principal destabilizing contributions are represented by side-chain conformational entropy and transfer energy of atoms from a detergent or lipid to the protein interior. Electrostatic interactions of alpha-helices were relatively weak but important for reproducing the experimental data. Immobilization free energy, which originates from restricting rotational and translational rigid-body movements of molecules during their association, was found to be less than 1 kcal/mole. The energetics of amino acid substitutions in bacteriorhodopsin was complicated by specific binding of lipid and water molecules to cavities created in certain mutants.  相似文献   

4.
Properties influencing fluorophore lifetime distributions in lipid bilayers   总被引:3,自引:0,他引:3  
B W Williams  C D Stubbs 《Biochemistry》1988,27(21):7994-7999
The fluorescence lifetime of the membrane fluorophore 1,6-diphenyl-1,3,5-hexatriene has been analyzed according to the distributional approach in a number of lipid bilayer systems. The systems included vesicles of 16:0/18:1-phosphatidylcholine (POPC), egg phosphatidylcholine (EYPC), microsomal phospholipids, and also intact microsomal membranes. With increasing complexity of composition, an increasingly broader width was found in the major component of a bimodal Lorentzian fluorescence lifetime distribution. In order to explain these findings, we propose a model based on environmental heterogeneity and environmental sampling, where the environment is defined as the lipid molecules immediately surrounding the fluorophore. Environmental heterogeneity is thought of as arising from organizational, compositional, and solvent factors. Environmental sampling pertains to the ability of a fluorophore to detect environments in a system and is a function of the fluorophore lifetime and the lipid dynamics. If the fluorescence lifetime is sufficiently short, the fluorophore will only sample a particular environment, and great compositional complexity will mean that each fluorophore in an ensemble will decay to the ground state with a different time. This appears to explain why in our results with DPH a narrow width is obtained for POPC, where vesicles are composed of a single phospholipid molecular species, compared to EYPC and microsomal phospholipid vesicles having complex molecular species composition. This model should serve as a basis for understanding the interrelationships of environmental complexity and lipid dynamics in membranes.  相似文献   

5.
Fertilin is a transmembrane protein heterodimer formed by the two subunits fertilin alpha and fertilin beta that plays an important role in sperm-egg fusion. Fertilin alpha and beta are members of the ADAM family, and contain each one transmembrane alpha-helix, and are termed ADAM 1 and ADAM 2, respectively. ADAM 1 is the subunit that contains a putative fusion peptide, and we have explored the possibility that the transmembrane alpha-helical domain of ADAM 1 forms homotrimers, in common with other viral fusion proteins. Although this peptide was found to form various homooligomers in SDS, the infrared dichroic data obtained with the isotopically labeled peptide at specific positions is consistent with the presence of only one species in DMPC or POPC lipid bilayers. Comparison of the experimental orientational data with molecular dynamics simulations performed with sequence homologues of ADAM 1 show that the species present in lipid bilayers is only consistent with an evolutionarily conserved homotrimeric model for which we provide a backbone structure. These results support a model where ADAM 1 forms homotrimers as a step to create a fusion active intermediate.  相似文献   

6.
We have used fluorescence-quenching measurements to characterize the partitioning of a variety of indolyl-labeled phospho- and sphingolipids between gel or liquid-ordered and liquid-disordered lipid domains in several types of lipid bilayers where such domains coexist. In both cholesterol-free and cholesterol-containing lipid mixtures, sphingolipids with diverse polar headgroups (ranging from sphingomyelin and monoglycosylceramides to ganglioside GM1) show a net preference for partitioning into ordered domains, which varies modestly in magnitude with varying headgroup structure. The affinities of different sphingolipids for ordered lipid domains do not vary in a consistent manner with the size or other simple structural properties of the polar headgroup, such that for example ganglioside GM1 partitions between ordered and disordered lipid domains in a manner very similar to sphingomyelin. Ceramide exhibits a dramatically higher affinity for ordered lipid domains in both cholesterol-free and cholesterol-containing bilayers than do other sphingolipids. Our findings suggest that sphingolipids with a variety of headgroup structures will be enriched by substantial factors in liquid-ordered versus liquid-disordered regions of membranes, in a manner that is only modestly dependent on the nature of the polar headgroup. Ceramide is predicted to show a very strong enrichment in such domains, supporting previous suggestions that ceramide-mediated signaling may be compartmentalized to liquid-ordered (raft and raft-related) domains in the plasma membrane.  相似文献   

7.
The transmembrane domain of Klebsiella pneumoniae OmpA (KpOmpA) possesses four long extracellular loops that exhibit substantial sequence variability throughout OmpA homologs in Enterobacteria, in comparison with the highly conserved membrane-embedded β-barrel core. These loops are responsible for the immunological properties of the protein, including cellular and humoral recognition. In addition to key features revealed by structural elucidation of the KpOmpA transmembrane domain in detergent micelles, studies of protein dynamics provide insight into its function and/or mechanism of action. We have investigated the dynamics of KpOmpA in a lipid bilayer, using magic angle spinning solid-state NMR. The dynamics of the β-barrel and loop regions were probed by the spin-lattice relaxation times of the C(α) and C(β) atoms of the serine and threonine residues, and by cross-polarization dynamics. The β-barrel core of the protein is rigid; the C-terminal halves of two of the four extracellular loops (L1 and L3), which are particularly long in KpOmpA, are highly mobile. The other two loops (L2 and L4), which are very similar to their homologs in Escherichia coli OmpA, and the N-terminal halves of L1 and L3 exhibit more restricted motions. We suggest a correlation between the sequence variability and the dynamics of certain loop regions, which accounts for their respective contributions to the structural and immunological properties of the protein.  相似文献   

8.
Myelin basic protein isolated by a single step with the cationic detergent cethyltrimethylammonium bromide in a lipid-bound form is able to induce structural transition of lysophosphatydilcholine micelles into multi-laminar vesicles. This finding, observed through electron microscopy, is discussed in the light of the assumed ability of the basic protein to organize myelin lipids.  相似文献   

9.
Dynamic quenching of fluorophores and quenchers in lipid micelles and bilayers can yield information about the bimolecular rate constant for the quenching reaction, and hence information about the microviscosity of the fluorophore-quencher environment. When the fluorophore and quencher have relatively fixed transverse positions in the bilayer, the analysis of Sikaris et al. (Chem. Phys. Lipids. 29 (1981) 23) can be used to separate the microviscosity and proximity contributions to quenching. We now extend this method to show explicitly the effect of static quenching on the analysis. We show by simulation and experiment that a correction factor must be included when static quenching contributes to the observed quenching efficiency.  相似文献   

10.
To probe structural changes that occur when a membrane protein is transferred from lipid bilayers to SDS micelles, a fragment of bacteriorhodopsin containing transmembrane helical segments A and B was studied by fluorescence spectroscopy, molecular dynamics (MD) simulation, and stopped flow kinetics. In lipid bilayers, F?rster resonance energy transfer (FRET) was observed between tyrosine 57 on helix B and tryptophans 10 and 12 on helix A. FRET efficiency decreased substantially when the peptide was transferred to SDS. MD simulation showed no evidence for significant disruption of helix-helix interactions in SDS micelles. However, a cluster of water molecules was observed to form a hydrogen-bonded network with the phenolic hydroxyl group of tyrosine 57, which probably causes the disappearance of tyrosine-to-tryptophan FRET in SDS. The tryptophan quantum yield decreased in SDS, and the change occurred at nearly the same rate as membrane solubilization. The results provide a clear example of the importance of corroborating distance changes inferred from FRET by using complementary methods.  相似文献   

11.
Elucidation of the molecular mechanism leading to biomembrane fusion is a challenging issue in current biomedical research in view of its involvement in controlling cellular functions and in mediating various important diseases. According to the generally admitted stalk mechanism described for membrane fusion, negatively curved lipids may play a central role during the early steps of the process. In this study, we used atomic force microscopy (AFM) to address the crucial question of whether negatively curved lipids influence the interaction of the simian immunodeficiency virus (SIV) fusion peptide with model membranes. To this end, dioleoylphosphatidylcholine/dipalmitoylphosphatidylcholine (DOPC/DPPC) bilayers containing 0.5 mol % dioleoylphosphatidic acid (DOPA) were incubated with the SIV peptide and imaged in real time using AFM. After a short incubation time, we observed a 1.9 nm reduction in the thickness of the DPPC domains, reflecting either interdigitation or fluidization of lipids. After longer incubation times, these depressed DPPC domains evolved into elevated domains, composed of nanorod structures protruding several nanometers above the bilayer surface and attributed to cylindrical reverse micelles. Such DOPC/DPPC/DOPA bilayer modifications were never observed with nontilted peptides. Accordingly, this is the first time that AFM reveals the formation of cylindrical reverse micelles in lipid bilayers promoted by fusogenic peptides.  相似文献   

12.
The interaction of gramicidin A with lysolecithin micelles and with lecithin liposomes is demonstrated by circular dichroism to result in several metastable conformational states. A stable state can be obtained after extensive heating when the gramicidin A was added dry or in ethanol solution to the phospholipid dispersion but the stable state is readily obtained when gramicidin A is added in a trifluoroethanol solution. The circular dichroism of the stable conformational states is characterized by negative ellipticity below 205 nm and principally by a positive 220 nm band on which is superposed a weak 230 nm band (the latter likely arising from tryptophan side chains). The stable conformational state is considered to be that of the functional transmembrane channel primarily on the basis of extensive studies on its interaction with sodium ions.  相似文献   

13.
The interaction of gramicidin A with lysolecithin micelles and with lecithin liposomes is demonstrated by circular dichroism to result in several metastable conformational states. A stable state can be obtained after extensive heating when the gramicidin A was added dry or in ethanol solution to the phospholipid dispersion but the stable state is readily obtained when gramicidin A is added in a trifluoroethanol solution. The circular dichroism of the stable conformational state is characterized by negative ellipticity below 205 nm and principally by a positive 220 nm band on which is superposed a weak 230 nm band (the latter likely arising from tryptophan side chains). The stable conformational state is considered to be that of the functional transmembrane channel primarily on the basis of extensive studies on its interaction with sodium ions.  相似文献   

14.
Bin/Amphiphysin/Rvs-homology (BAR) domains generate and sense membrane curvature by binding the negatively charged membrane to their positively charged concave surfaces. N-BAR domains contain an N-terminal extension (helix-0) predicted to form an amphipathic helix upon membrane binding. We determined the NMR structure and nano-to-picosecond dynamics of helix-0 of the human Bin1/Amphiphysin II BAR domain in sodium dodecyl sulfate and dodecylphosphocholine micelles. Molecular dynamics simulations of this 34-amino acid peptide revealed electrostatic and hydrophobic interactions with the detergent molecules that induce helical structure formation from residues 8-10 toward the C-terminus. The orientation in the micelles was experimentally confirmed by backbone amide proton exchange. The simulation and the experiment indicated that the N-terminal region is disordered, and the peptide curves to adopted the micelle shape. Deletion of helix-0 reduced tubulation of liposomes by the BAR domain, whereas the helix-0 peptide itself was fusogenic. These findings support models for membrane curving by BAR domains in which helix-0 increases the binding affinity to the membrane and enhances curvature generation.  相似文献   

15.
A theoretical model is proposed for the association of trans-bilayer peptides in lipid bilayers. The model is based on a lattice model for the pure lipid bilayer, which accounts accurately for the most important conformational states of the lipids and their mutual interactions and statistics. Within the lattice formulation the bilayer is formed by two independent monolayers, each represented by a triangular lattice, on which sites the lipid chains are arrayed. The peptides are represented by regular objects, with no internal flexibility, and with a projected area on the bilayer plane corresponding to a hexagon with seven lattice sites. In addition, it is assumed that each peptide surface at the interface with the lipid chains is partially hydrophilic, and therefore interacts with the surrounding lipid matrix via selective anisotropic forces. The peptides would therefore assemble in order to shield their hydrophilic residues from the hydrophobic surroundings. The model describes the self-association of peptides in lipid bilayers via lateral and rotational diffusion, anisotropic lipid-peptide interactions, and peptide-peptide interactions involving the peptide hydrophilic regions. The intent of this model study is to analyse the conditions under which the association of trans-bilayer and partially hydrophilic peptides (or their dispersion in the lipid matrix) is lipid-mediated, and to what extent it is induced by direct interactions between the hydrophilic regions of the peptides. The model properties are calculated by a Monte Carlo computer simulation technique within the canonical ensemble. The results from the model study indicate that direct interactions between the hydrophilic regions of the peptides are necessary to induce peptide association in the lipid bilayer in the fluid phase. Furthermore, peptides within each aggregate are oriented in such a way as to shield their hydrophilic regions from the hydrophobic environment. The average number of peptides present in the aggregates formed depends on the degree of mismatch between the peptide hydrophobic length and the lipid bilayer hydrophobic thickness: The lower the degree of mismatch is the higher this number is. Received: 30 December 1996 / Accepted: 9 May 1997  相似文献   

16.
Two fluorescence-based approaches have been applied to examine the differential partitioning of fluorescent phospho- and sphingolipid molecules into sphingolipid-enriched domains modeling membrane "lipid rafts." Fluorescence-quenching measurements reveal that N-(diphenylhexatrienyl)propionyl- (DPH3:0-)-labeled gluco- and galactocerebroside partition into sphingolipid-enriched domains in sphingolipid/phosphatidylcholine/cholesterol bilayers with substantially higher affinity than do analogous sphingomyelin, ceramide, or phosphatidylcholine molecules. By contrast, the affinity of sphingomyelin and ceramide for such domains is only marginally greater than that of a phosphatidylcholine with similar hydrocarbon chains. By using direct measurements of molecular partitioning between vesicles of different compositions, we show that the relative affinities of different C(6)-NBD- and C(5)-Bodipy-labeled sphingolipids for sphingolipid-enriched domains are quantitatively, and in most circumstances even qualitatively, quite different from those found for species whose N-acyl chains more closely resemble the long saturated chains of cellular sphingolipids. These findings lend support in principle to previous suggestions that differential partitioning of different sphingolipids into "raft" domains could contribute to the differential trafficking of these species in eukaryotic cells. However, our findings also indicate that short-chain sphingolipid probes previously used to examine this phenomenon are in general ill-suited for such applications.  相似文献   

17.
Investigation of interactions between hydrophobic model peptides and lipid bilayers is perhaps the only way to elucidate the principles of the folding and stability of membrane proteins (White, S. H., and Wimley, W. C. (1998) Biochim. Biophys. Acta 1367, 339-352). We designed the completely hydrophobic "inert" peptide modeling a transmembrane (TM) helix without any of the specific side-chain interactions expected, X-(LALAAAA)(3)-NH(2) [X = Ac (I), 7-nitro-2-1,3-benzoxadiazol-4-yl (II), or 5(6)-carboxytetramethylrhodamine (III)]. Fourier transform infrared-polarized attenuated total reflection measurements revealed that I as well as II assume a TM helix in hydrated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayers. Dithionite quenching experiments detected no topological change (flip-flop) in the helix II for at least 24 h. Thus, the TM helix itself is a highly stable structure, even in the absence of flanking hydrophilic or aromatic amino acids which are suggested to play important roles in stable TM positioning. Helix self-association in lipid bilayers was detected by fluorescence resonance energy transfer between II and III. The peptide was in a monomer-antiparallel dimer equilibrium with an association free energy of approximately -13 kJ/mol. Electron spin resonance spectra of 1-palmitoyl-2-stearoyl-(14-doxyl)-sn-glycero-3-phosphocholine demonstrated the presence of a motionally restricted component at lower temperatures.  相似文献   

18.
The proteins PLM (phospholemman), CHIF (channel inducing factor), and Mat8 (mammary tumor protein 8 kDa) are members of the FXYD family of ion transport regulatory membrane proteins. Here we describe their cloning and expression in Escherichia coli, and their purification for NMR structural studies in lipid micelles and lipid bilayers. The molecular masses of the purified recombinant FXYD proteins, determined from SDS-PAGE and from MALDI TOF mass spectrometry, reflect monomeric species. The solution NMR and CD spectra in SDS micelles show that they adopt helical conformations. The solid-state NMR spectra in lipid bilayers give the first view of their transmembrane architecture.  相似文献   

19.
The dependence of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) flip-flop kinetics on the lateral membrane pressure in a phospholipid bilayer was investigated by sum-frequency vibrational spectroscopy. Planar-supported lipid bilayers were prepared on fused silica supports using the Langmuir-Blodgett/Langmuir-Schaeffer technique, which allows precise control over the lateral surface pressure and packing density of the membrane. The lipid bilayer deposition pressure was varied from 28 to 42 mN/m. The kinetics of lipid flip-flop in these membranes was measured by sum-frequency vibrational spectroscopy at 37°C. An order-of-magnitude difference in the rate constant for lipid translocation (10.9 × 10−4 s−1 to 1.03 × 10−4 s−1) was measured for membranes prepared at 28 mN/m and 42 mN/m, respectively. This change in rate results from only a 7.4% change in the packing density of the lipids in the bilayer. From the observed kinetics, the area of activation for native phospholipid flip-flop in a protein-free DPPC planar-supported lipid bilayer was determined to be 73 ± 12 Å2/molecule at 37°C. Significance of the observed activation area and potential future applications of the technique to the study of phospholipid flip-flop are discussed.  相似文献   

20.
The excimer/monomer ratio of emission intensities (IE/IM) and the enhancement of the 0-0 vibronic transition in the fluorescence spectra of pyrene (PY) and 16-(1-pyrenyl)hexadecanoic acid (C16PY) were used to investigate the localization of PY in the bilayers of small unilamellar vesicles constituted of phosphatidylcholine (SUV-PC). First, from comparison of the fluorescence characteristics of PY in water with those of PY incorporated into the SUV-PC membranes, we concluded that the probe is incorporated preferentially in the lipid phase of the vesicles and not in the bulk aqueous phase. In addition, we found that, contrary to what happens with the pyrenyl moiety of C16PY the location of PY varies with its relative concentration in the membrane space. The critical concentration was observed to be around 1.0 mol% of incorporated PY. At concentrations below this value, PY is located in the hydrocarbon core of the lipid bilayers. Above 1.0 mol%, the PY molecules reside preferentially in the neighbourhood of the glyceryl moiety region of the PC vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号