首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA barcoding has become a promising means for identifying organisms of all life stages. Currently, phenetic approaches and tree-building methods have been used to define species boundaries and discover 'cryptic species'. However, a universal threshold of genetic distance values to distinguish taxonomic groups cannot be determined. As an alternative, DNA barcoding approaches can be 'character based', whereby species are identified through the presence or absence of discrete nucleotide substitutions (character states) within a DNA sequence. We demonstrate the potential of character-based DNA barcodes by analysing 833 odonate specimens from 103 localities belonging to 64 species. A total of 54 species and 22 genera could be discriminated reliably through unique combinations of character states within only one mitochondrial gene region (NADH dehydrogenase 1). Character-based DNA barcodes were further successfully established at a population level discriminating seven population-specific entities out of a total of 19 populations belonging to three species. Thus, for the first time, DNA barcodes have been found to identify entities below the species level that may constitute separate conservation units or even species units. Our findings suggest that character-based DNA barcoding can be a rapid and reliable means for (i) the assignment of unknown specimens to a taxonomic group, (ii) the exploration of diagnosability of conservation units, and (iii) complementing taxonomic identification systems.  相似文献   

2.
Genetic tools are increasingly used to identify and discriminate between species. One key transition in this process was the recognition of the potential of the ca 658bp fragment of the organelle cytochrome c oxidase I (COI) as a barcode region, which revolutionized animal bioidentification and lead, among others, to the instigation of the Barcode of Life Database (BOLD), containing currently barcodes from >7.9 million specimens. Following this discovery, suggestions for other organellar regions and markers, and the primers with which to amplify them, have been continuously proposed. Most recently, the field has taken the leap from PCR‐based generation of DNA references into shotgun sequencing‐based “genome skimming” alternatives, with the ultimate goal of assembling organellar reference genomes. Unfortunately, in genome skimming approaches, much of the nuclear genome (as much as 99% of the sequence data) is discarded, which is not only wasteful, but can also limit the power of discrimination at, or below, the species level. Here, we advocate that the full shotgun sequence data can be used to assign an identity (that we term for convenience its “DNA‐mark”) for both voucher and query samples, without requiring any computationally intensive pretreatment (e.g. assembly) of reads. We argue that if reference databases are populated with such “DNA‐marks,” it will enable future DNA‐based taxonomic identification to complement, or even replace PCR of barcodes with genome skimming, and we discuss how such methodology ultimately could enable identification to population, or even individual, level.  相似文献   

3.
The philosophical basis and utility of DNA barcoding have been a subject of numerous debates. While most literature embraces it, some studies continue to question its use in dipterans, butterflies and marine gastropods. Here, we explore the utility of DNA barcoding in identifying spider species that vary in taxonomic affiliation, morphological diagnosibility and geographic distribution. Our first test searched for a ‘barcoding gap’ by comparing intra‐ and interspecific means, medians and overlap in more than 75 000 computed Kimura 2‐parameter (K2P) genetic distances in three families. Our second test compared K2P distances of congeneric species with high vs. low morphological distinctness in 20 genera of 11 families. Our third test explored the effect of enlarging geographical sampling area at a continental scale on genetic variability in DNA barcodes within 20 species of nine families. Our results generally point towards a high utility of DNA barcodes in identifying spider species. However, the size of the barcoding gap strongly depends on taxonomic groups and practices. It is becoming critical to define the barcoding gap statistically more consistently and to document its variation over taxonomic scales. Our results support models of independent patterns of morphological and molecular evolution by showing that DNA barcodes are effective in species identification regardless of their morphological diagnosibility. We also show that DNA barcodes represent an effective tool for identifying spider species over geographic scales, yet their variation contains useful biogeographic information.  相似文献   

4.
DNA barcoding is based on the use of short DNA sequences to provide taxonomic tags for rapid, efficient identification of biological specimens. Currently, reference databases are being compiled. In the future, it will be important to facilitate access to these databases, especially for nonspecialist users. The method described here provides a rapid, web-based, user-friendly link between the DNA sequence from an unidentified biological specimen and various types of biological information, including the species name. Specifically, we use a customized, Google-type search algorithm to quickly match an unknown DNA sequence to a list of verified DNA barcodes in the reference database. In addition to retrieving the species name, our web tool also provides automatic links to a range of other information about that species. As the DNA barcode database becomes more populated, it will become increasingly important for the broader user community to be able to exploit it for the rapid identification of unknown specimens and to easily obtain relevant biological information about these species. The application presented here meets that need.  相似文献   

5.
What can biological barcoding do for marine biology?   总被引:1,自引:0,他引:1  
The idea of using nucleotide sequences as barcodes for species identification has stirred up debates in the community of taxonomists and systematists. We argue that barcodes are potentially extremely useful tools for taxonomy for several reasons. Barcodes may, for example, help to identify cryptic and polymorphic species and give means to associate life history stages of unknown identity. Barcode systems would thus be particularly helpful in cases when morphology is ambiguous or uninformative and would provide tools for higher taxonomic resolution of disparate life forms. Comparative analysis of short DNA sequences may also represent heuristic access cards to a deeper understanding of evolutionary relationships between organisms. However, barcodes are the “essence” of species identities no more than taxonomic holotypes are “the species”. It makes no sense to think that morphology and other biological information about organisms can be made obsolete by barcode systems. The biological significance of matching or diverging nucleotide sequences will still have to be the subject of taxonomic decisions that must be open for scrutiny. It is imperative, therefore, that barcodes are associated with specimen vouchers.  相似文献   

6.
DNA barcoding has become a useful system for linking different biological life stages, and for identification of species within a known taxonomic framework. In this study, we generated mitochondrial DNA COI barcodes using adult specimens of all 22 species of the hoverfly genus Merodon (Diptera, Syrphidae) occurring on Lesvos island (Greece). The generated COI barcodes could well discriminate between all Merodon taxa of Lesvos, except for M. loewi and M. papillus that shared the same haplotype, despite their clear morphological differences. In addition, the barcodes revealed two cases of hitherto unknown morphologically cryptic species close to M. avidus and M. nigritarsis, respectively. Because only few successful rearings of immature stages of Merodon hoverflies are available, the larval host plant remains unknown for these phytophagous taxa. The obtained COI barcode library for the Merodon spp. of Lesvos will constitute a tool to link any unknown immature stages with already known species, and thus provide important life-history information and promise for ecological studies.  相似文献   

7.
Among the 899 species of freshwater fishes reported from Sundaland biodiversity hotspot, nearly 50% are endemics. The functional integrity of aquatic ecosystems is currently jeopardized by human activities, and landscape conversion led to the decline of fish populations in several part of Sundaland, particularly in Java. The inventory of the Javanese ichthyofauna has been discontinuous, and the taxonomic knowledge is scattered in the literature. This study provides a DNA barcode reference library for the inland fishes of Java and Bali with the aim to streamline the inventory of fishes in this part of Sundaland. Owing to the lack of available checklist for estimating the taxonomic coverage of this study, a checklist was compiled based on online catalogues. A total of 95 sites were visited, and a library including 1046 DNA barcodes for 159 species was assembled. Nearest neighbour distance was 28‐fold higher than maximum intraspecific distance on average, and a DNA barcoding gap was observed. The list of species with DNA barcodes displayed large discrepancies with the checklist compiled here as only 36% (i.e. 77 species) and 60% (i.e. 24 species) of the known species were sampled in Java and Bali, respectively. This result was contrasted by a high number of new occurrences and the ceiling of the accumulation curves for both species and genera. These results highlight the poor taxonomic knowledge of this ichthyofauna, and the apparent discrepancy between present and historical occurrence data is to be attributed to species extirpations, synonymy and misidentifications in previous studies.  相似文献   

8.
Biologists frequently sort specimen‐rich samples to species. This process is daunting when based on morphology, and disadvantageous if performed using molecular methods that destroy vouchers (e.g., metabarcoding). An alternative is barcoding every specimen in a bulk sample and then presorting the specimens using DNA barcodes, thus mitigating downstream morphological work on presorted units. Such a “reverse workflow” is too expensive using Sanger sequencing, but we here demonstrate that is feasible with an next‐generation sequencing (NGS) barcoding pipeline that allows for cost‐effective high‐throughput generation of short specimen‐specific barcodes (313 bp of COI; laboratory cost <$0.50 per specimen) through next‐generation sequencing of tagged amplicons. We applied our approach to a large sample of tropical ants, obtaining barcodes for 3,290 of 4,032 specimens (82%). NGS barcodes and their corresponding specimens were then sorted into molecular operational taxonomic units (mOTUs) based on objective clustering and Automated Barcode Gap Discovery (ABGD). High diversity of 88–90 mOTUs (4% clustering) was found and morphologically validated based on preserved vouchers. The mOTUs were overwhelmingly in agreement with morphospecies (match ratio 0.95 at 4% clustering). Because of lack of coverage in existing barcode databases, only 18 could be accurately identified to named species, but our study yielded new barcodes for 48 species, including 28 that are potentially new to science. With its low cost and technical simplicity, the NGS barcoding pipeline can be implemented by a large range of laboratories. It accelerates invertebrate species discovery, facilitates downstream taxonomic work, helps with building comprehensive barcode databases and yields precise abundance information.  相似文献   

9.
DNA条形码是一段短的、标准化的DNA序列,DNA条形码技术通过对DNA条形码序列分析实现物种的有效鉴定.随着生物DNA条形码序列的大量测定,DNA条形码分析方法得到迅速发展,推动了其在生物分子鉴定中的应用.2003年以来,DNA条形码技术已广泛应用于动物、植物和真菌等物种的鉴定,并有力地推动了生物分类学、生物多样性和生态学等学科的发展.本文在综述DNA条形码技术的基础上,总结了5类主要的DNA条形码分析方法,即基于遗传距离的分析、基于遗传相似度的分析、基于系统发育树的分析、基于序列特征的分析和基于统计分类法的分析,并进一步展望了DNA条形码技术的发展与应用.  相似文献   

10.
Small portions of the barcode region – mini‐barcodes – may be used in place of full‐length barcodes to overcome DNA degradation for samples with poor DNA preservation. 591,491,286 rbcL mini‐barcode primer combinations were electronically evaluated for PCR universality, and two novel highly universal sets of priming sites were identified. Novel and published rbcL mini‐barcode primers were evaluated for PCR amplification [determined with a validated electronic simulation (n = 2765) and empirically (n = 188)], Sanger sequence quality [determined empirically (n = 188)], and taxonomic discrimination [determined empirically (n = 30 472)]. PCR amplification for all mini‐barcodes, as estimated by validated electronic simulation, was successful for 90.2–99.8% of species. Overall Sanger sequence quality for mini‐barcodes was very low – the best mini‐barcode tested produced sequences of adequate quality (B20 ≥ 0.5) for 74.5% of samples. The majority of mini‐barcodes provide correct identifications of families in excess of 70.1% of the time. Discriminatory power noticeably decreased at lower taxonomic levels. At the species level, the discriminatory power of the best mini‐barcode was less than 38.2%. For samples believed to contain DNA from only one species, an investigator should attempt to sequence, in decreasing order of utility and probability of success, mini‐barcodes F (rbcL1/rbcLB), D (F52/R193) and K (F517/R604). For samples believed to contain DNA from more than one species, an investigator should amplify and sequence mini‐barcode D (F52/R193).  相似文献   

11.
Lichens are major components of high altitude/latitude ecosystems. However, accurately characterizing their biodiversity is challenging because these regions and habitats are often underexplored, there are numerous poorly known taxonomic groups, and morphological variation in extreme environments can yield conflicting interpretations. Using an iterative taxonomic approach based on over 800 specimens and incorporating both traditional morphology‐based identifications and information from the standard fungal DNA barcoding marker, we compiled a voucher‐based inventory of biodiversity of lichen‐forming fungi in a geographically limited and vulnerable alpine community in an isolated sky island in the Colorado Plateau, USA—the La Sal Mountains. We used the newly proposed Assemble Species by Automatic Partitioning (ASAP) approach to empirically delimit candidate species‐level lineages from family‐level multiple sequence alignments. Specimens comprising DNA‐based candidate species were evaluated using traditional taxonomically diagnostic phenotypic characters to identify specimens to integrative species hypotheses and link these, where possible, to currently described species. Despite the limited alpine habitat (ca. 3,250 ha), we document the most diverse alpine lichen community known to date from the southern Rocky Mountains, with up to 240 candidate species/species‐level lineages of lichen‐forming fungi. 139 species were inferred using integrative taxonomy, plus an additional 52 candidate species within 29 different putative species complexes. Over 68% of sequences could not be assigned to species‐level rank with statistical confidence, corroborating the limited utility of current sequence repositories for species‐level DNA barcoding of lichen‐forming fungi. By integrating vouchered specimens, DNA sequence data, and photographic documentation, we provide an important baseline of lichen‐forming fungal diversity for the limited alpine habitat in the Colorado Plateau. These data provide an important resource for subsequent research in the ecology and evolution of lichens alpine habitats, including DNA barcodes for most putative species/species‐level lineages occurring in the La Sal Mountains, and vouchered collections representing any potentially undescribed species that can be used for future taxonomic studies.  相似文献   

12.
DNA barcoding allows the identification of an organism by comparing the sequence of selected DNA regions (barcodes) with a previously compiled database, and it can be useful for taxonomic identification of species in complex genera, such as Tamarix. Many species of this genus show convergent morphology, which leads to frequent errors in their identification. Highly variable genetic markers, such as microsatellites or short sequence repeats (SSR), could be used to differentiate species where DNA barcodes fail. Here, we tested the ability of both, 5 different marker regions (rbcL, matK, ITS, trnH-psbA, and ycf1), and 14 microsatellites, to properly identify Tamarix species, especially those from the Mediterranean Basin, and compared the pros and cons of the different analytical methods for species identification. DNA barcoding allows the genetic identification of certain species in Tamarix. The two-locus barcodes matK + ITS and ITS + ycf1 were the best-performing combinations, allowing up to 69% and 70%, respectively, correct identification. However, DNA barcoding failed in phylogenetically close groups, such as many Mediterranean species. The use of SSR can aid the identification of species, and the combination of both types of data (DNA barcoding and SSR) improved the success. The combination of data was especially relevant in detecting the presence of hybridization processes, which are common in the genus. However, caution must be exercised when choosing the clustering methods for the SSR datasince different methods can lead to very different results.  相似文献   

13.
DNA barcodes have proved to be efficient for plants species discrimination and identification using short and standardized genomic regions. The genus Sinosenecio(Asteraceae) is used for traditional medicinal purposes in China. Most species of the genus occur in restricted geographical regions and exhibit a wide range of morphological variations within species, making them difficult to differentiate in the field. Previously, taxonomic revisions have been made based on morphological and cytological evidence. In the present study, barcoding analysis was performed on 107 individuals representing 38 species in this genus to evaluate the performance of four candidate barcoding loci (matK, rbcL, trnH-psbA and internal transcribed spacer [ITS]) and detect geographical patterns. Three different methods based on genetic distance, sequence similarity, and the phylogenetic tree were used. Comparably high species discrimination power was detected in species-level taxonomic process by the ITS dataset alone or combined with other loci, which was suggested to be the most suitable barcode for Sinosenecio. Our results are congruent with previous taxonomic studies concerning the monophyly of the S. oldhamianus group. The present study provides an empirical paradigm for the identification of medicinal plant species and their geographical patterns, ascertaining the congruence between taxonomical studies and barcoding analysis inSinosenecio.  相似文献   

14.
This study presents DNA barcode records for 4118 specimens representing 561 species of bees belonging to the six families of Apoidea (Andrenidae, Apidae, Colletidae, Halictidae, Megachilidae and Melittidae) found in Central Europe. These records provide fully compliant barcode sequences for 503 of the 571 bee species in the German fauna and partial sequences for 43 more. The barcode results are largely congruent with traditional taxonomy as only five closely allied pairs of species could not be discriminated by barcodes. As well, 90% of the species possessed sufficiently deep sequence divergence to be assigned to a different Barcode Index Number (BIN). In fact, 56 species (11%) were assigned to two or more BINs reflecting the high levels of intraspecific divergence among their component specimens. Fifty other species (9.7%) shared the same Barcode Index Number with one or more species, but most of these species belonged to a distinct barcode cluster within a particular BIN. The barcode data contributed to clarifying the status of nearly half the examined taxonomically problematic species of bees in the German fauna. Based on these results, the role of DNA barcoding as a tool for current and future taxonomic work is discussed.  相似文献   

15.
DNA barcodes are increasingly used to provide an estimate of biodiversity for small, cryptic organisms like nematodes. Nucleotide sequences generated by the barcoding process are often grouped, based on similarity, into molecular operational taxonomic units (MOTUs). In order to get a better understanding of the taxonomic resolution of a 3' 592-bp 18S rDNA barcode, we have analyzed 100 MOTUs generated from 214 specimens in the nematode suborder Criconematina. Previous research has demonstrated that the primer set for this barcode reliably amplifies all nematodes in the Phylum Nematoda. Included among the Criconematina specimens were 25 morphologically described species representing 12 genera. Using the most stringent definition of MOTU membership, where a single nucleotide difference is sufficient for the creation of a new MOTU, it was found that an MOTU can represent a subgroup of a species (e.g. Discocriconemella limitanea), a single species (Bakernema inaequale), or a species complex (MOTU 76). A maximum likelihood phylogenetic analysis of the MOTU dataset generated four major clades that were further analyzed by character-based barcode analysis. Fourteen of the 25 morphologically identified species had at least one putative diagnostic nucleotide identified by this character-based approach. These diagnostic nucleotides could be useful in biodiversity assessments when ambiguous results are encountered in database searches that use a distance-based metric for nucleotide sequence comparisons. Information and images regarding specimens examined during this study are available online.  相似文献   

16.
DNA barcoding of stylommatophoran land snails: a test of existing sequences   总被引:1,自引:0,他引:1  
DNA barcoding has attracted attention because it is a potentially simple and universal method for taxonomic assignment. One anticipated problem in applying the method to stylommatophoran land snails is that they frequently exhibit extreme divergence of mitochondrial DNA sequences, sometimes reaching 30% within species. We therefore trialled the utility of barcodes in identifying land snails, by analysing the stylommatophoran cytochrome oxidase subunit I sequences from GenBank. Two alignments of 381 and 228 base pairs were used to determine potential error rates among a test data set of 97 or 127 species, respectively. Identification success rates using neighbour‐joining phylogenies were 92% for the longer sequence and 82% for the shorter sequence, indicating that a high degree of mitochondrial variation may actually be an advantage when using phylogeny‐based methods for barcoding. There was, however, a large overlap between intra‐ and interspecific variation, with assignment failure (per cent of samples not placed with correct species) particularly associated with a low degree of mitochondrial variation (Kimura 2‐parameter distance < 0.05) and a small GenBank sample size (< 25 per species). Thus, while the optimum intra/interspecific threshold value was 4%, this was associated with an overall error of 32% for the longer sequences and 44% for the shorter sequences. The high error rate necessitates that barcoding of land snails is a potentially useful method to discriminate species of land snail, but only when a baseline has first been established using conventional taxonomy and sample DNA sequences. There is no evidence for a barcoding gap, ruling out species discovery based on a threshold value alone.  相似文献   

17.
Mitochondrial DNA barcodes provide a simple taxonomic tool for systematic and ecological research, with particular benefit for poorly studied or species-rich taxa. Barcoding assumes genetic diversity follows species boundaries; however, many processes disrupt species-level monophyly of barcodes leading to incorrect classifications. Spatial population structure, particularly when shared across closely related and potentially hybridizing taxa, can invalidate barcoding approaches yet few data exist to examine its impacts. We test how shared population structure across hybridizing species impacts upon mitochondrial barcodes by sequencing the cytochrome b gene for 518 individuals of four well-delimited Western Palaearctic gallwasp species within the Andricus quercuscalicis species group. Mitochondrial barcodes clustered individuals into mixed-species clades corresponding to refugia, with no difference in within- and between-species divergence. Four nuclear genes were also sequenced from 4 to 11 individuals per refugial population of each species. Multi-locus analyses of these data supported established species, with no support for the refugial clustering across species seen in mitochondrial barcodes. This pattern is consistent with mitochondrial introgression among populations of species sharing the same glacial refugium, such that mitochondrial barcodes identify a shared history of population structure rather than species. Many taxa show phylogeographic structure across glacial refugia, suggesting that mitochondrial barcoding may fail when applied to other sets of co-distributed, closely related species. Robust barcoding approaches must sample extensively across population structure to disentangle spatial from species-level variation. Methods incorporating multiple unlinked loci are also essential to accommodate coalescent variation among genes and provide power to resolve recently diverged species.  相似文献   

18.
DNA barcodes for species identification and the analysis of human mitochondrial variation have developed as independent fields even though both are based on sequences from animal mitochondria. This study finds questions within each field that can be addressed by reference to the other. DNA barcodes are based on a 648‐bp segment of the mitochondrially encoded cytochrome oxidase I. From most species, this segment is the only sequence available. It is impossible to know whether it fairly represents overall mitochondrial variation. For modern humans, the entire mitochondrial genome is available from thousands of healthy individuals. SNPs in the human mitochondrial genome are evenly distributed across all protein‐encoding regions arguing that COI DNA barcode is representative. Barcode variation among related species is largely based on synonymous codons. Data on human mitochondrial variation support the interpretation that most – possibly all – synonymous substitutions in mitochondria are selectively neutral. DNA barcodes confirm reports of a low variance in modern humans compared to nonhuman primates. In addition, DNA barcodes allow the comparison of modern human variance to many other extant animal species. Birds are a well‐curated group in which DNA barcodes are coupled with census and geographic data. Putting modern human variation in the context of intraspecies variation among birds shows humans to be a single breeding population of average variance.  相似文献   

19.
Recent studies indicate that the discriminatory power of the core DNA barcodes (rbcLa + matK) for land plants may have been overestimated since their performance have been tested only on few closely related species. In this study we focused mainly on how the addition of complementary barcodes (nrITS and trnH-psbA) to the core barcodes will affect the performance of the core barcodes in discriminating closely related species from family to section levels. In general, we found that the core barcodes performed poorly compared to the various combinations tested. Using multiple criteria, we finally advocated for the use of the core + trnH-psbA as potential DNA barcode for the family Combretaceae at least in southern Africa. Our results also indicate that the success of DNA barcoding in discriminating closely related species may be related to evolutionary and possibly the biogeographic histories of the taxonomic group tested.  相似文献   

20.
Numerous studies have demonstrated that DNA barcoding is an effective tool for detecting DNA clusters, which can be viewed as operational taxonomic units (OTUs), useful for biodiversity research. Frequently, the OTUs in these studies remained unnamed, not connected with pre-existing taxonomic hypotheses, and thus did not really contribute to feasible estimation of species number and adjustment of species boundaries. For the majority of organisms, taxonomy is very complicated with numerous, often contradictory interpretations of the same characters, which may result in several competing checklists using different specific and subspecific names to describe the same sets of populations. The highly species-rich genus Parnassius (Lepidoptera: Papilionidae) is but one example, such as several mutually exclusive taxonomic systems have been suggested to describe the phenotypic diversity found among its populations. Here we provide an explicit flow chart describing how the DNA barcodes can be combined with the existing knowledge of morphology-based taxonomy and geography (sympatry versus allopatry) of the studied populations in order to support, reject or modify the pre-existing taxonomic hypotheses. We then apply this flow chart to reorganize the taxa within the Parnassius delphius species group, solving long-standing taxonomic problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号