首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Summary The actin-binding protein caldesmon (CaD) exists both in smooth muscle (the heavy isoform, h-CaD) and non-muscle cells (the light isoform, l-CaD). In smooth muscles h-CaD binds to myosin and actin simultaneously and modulates the actomyosin interaction. In non-muscle cells l-CaD binds to actin and stabilizes␣the actin stress fibers; it may also mediate the interaction between actin and non-muscle myosins. Both h- and l-CaD are phosphorylated in vivo upon stimulation. The major phosphorylation sites of h-CaD when activated by phorbol ester are the Erk-specific sites, modification of which is attenuated by the MEK inhibitor PD98059. The same sites in l-CaD are also phosphorylated when cells are stimulated to migrate, whereas in dividing cells l-CaD is phosphorylated more extensively, presumably by cdc2 kinase. Both Erk and cdc2 are members of the MAPK family. Thus it appears that CaD is a downstream effector of the Ras signaling pathways. Significantly, the phosphorylatable serine residues shared by both CaD isoforms are in the C-terminal region that also contains the actin-binding sites. Biochemical and structural studies indicated that phosphorylation of CaD at the Erk sites is accompanied by a conformational change that partially dissociates CaD from actin. Such a structural change in h-CaD exposes the myosin-binding sites on the actin surface and allows actomyosin interactions in smooth muscles. In the case of non-muscle cells, the change in l-CaD weakens the stability of the actin filament and facilitates its disassembly. Indeed, the level of l-CaD modification correlates very well in a reciprocal manner with the level of actin stress fibers. Since both cell migration and cell division require dynamic remodeling of actin cytoskeleton that leads to cell shape changes, phosphorylation of CaD may therefore serve as a plausible means to regulate these processes. Thus CaD not only links the smooth muscle contractility and non-muscle motility, but also provides a common mechanism for the regulation of cell migration and cell proliferation.  相似文献   

2.
PFTK1 is a Cdc2-related protein kinase that is frequently upregulated in human hepatocellular carcinoma (HCC) where it correlates with metastatic features and motile phenotypes. To understand the modulated pathway underlining the PFTK1 action, here we show a physical interaction between PFTK1 and cyclin Y (CCNY) in promoting noncanonical Wnt signaling. In HCC cells, we found PFTK1 forms a direct complex with CCNY, and together readily upregulate key components of Wnt signaling (Dvl2 and Naked1). Exogenous expression of PFTK1 and CCNY activated Rho GTPases, which are known targets of the noncanonical path. In line with Rho GTPases activation, we also found marked actin polymerizations in cells with PFTK1–CCNY co-expressions. Our findings highlight a PFTK1–CCNY complex in activating noncanonical Wnt signaling in HCC cells.  相似文献   

3.
Caldesmon is believed to be one of the key regulators for actin dynamics and thereby cell polarity, membrane extension, and cell motility. We have shown previously that stress fiber formation and cell movement are severely impaired in the cells expressing human fibroblast caldesmon fragment defective in Ca2+/CaM binding sites. Both Ser458 and Ser489, adjacent to the Ca2+/CaM-binding sites, are phosphorylated by p21-activated kinase (PAK) in vitro. Here we report that Ser458 is phosphorylated in response to cell movement. We substituted Ser458 and Ser489 on C-terminal caldesmon (CaD39) with alanine or glutamic acid to mimic under-phosphorylated (CaD39-PAKA) or constitutively phosphorylated (CaD39-PAKE) caldesmon. In vitro, CaD39-PAKE, but not CaD39-PAKA, fails to inhibit myosin ATPase activity and exhibits reduced binding to Ca2+/CaM. When stably expressed in Chinese Hamster Ovary cells, both CaD39-PAKA and CaD39-PAKE incorporate into stress fibers and localize to the leading edge of the migrating cell. Expression of CaD39-PAKE, but not CaD39-PAKA, fails to protect stress fibers from cytochalasin depolymerization. However, both mutations inhibit cell polarization and lead to defects in membrane extension and cell migration. We conclude that phosphorylation of caldesmon by PAK is a dynamic process required to regulate actin dynamics and membrane protrusions in wound-induced cell migration.  相似文献   

4.
The actin-binding protein caldesmon (CaD) reversibly inhibits smooth muscle contraction. In non-muscle cells, a shorter CaD isoform co-exists with microfilaments in the stress fibers at the quiescent state, but the phosphorylated CaD is found at the leading edge of migrating cells where dynamic actin filament remodeling occurs. We have studied the effect of a C-terminal fragment of CaD (H32K) on the kinetics of the in vitro actin polymerization by monitoring the fluorescence of pyrene-labeled actin. Addition of H32K or its phosphorylated form either attenuated or accelerated the pyrene emission enhancement, depending on whether it was added at the early or the late phase of actin polymerization. However, the CaD fragment had no effect on the yield of sedimentable actin, nor did it affect the actin ATPase activity. Our findings can be explained by a model in which nascent actin filaments undergo a maturation process that involves at least two intermediate conformational states. If present at early stages of actin polymerization, CaD stabilizes one of the intermediate states and blocks the subsequent filament maturation. Addition of CaD at a later phase accelerates F-actin formation. The fact that CaD is capable of inhibiting actin filament maturation provides a novel function for CaD and suggests an active role in the dynamic reorganization of the actin cytoskeleton.  相似文献   

5.
Glucocorticoids (GCs) play important roles in numerous cellular processes, including growth, development, homeostasis, inhibition of inflammation, and immunosuppression. Here we found that GC-treated human lung carcinoma A549 cells exhibited the enhanced formation of the thick stress fibers and focal adhesions, resulting in suppression of cell migration. In a screen for GC-responsive genes encoding actin-interacting proteins, we identified caldesmon (CaD), which is specifically up-regulated in response to GCs. CaD is a regulatory protein involved in actomyosin-based contraction and the stability of actin filaments. We further demonstrated that the up-regulation of CaD expression was controlled by glucocorticoid receptor (GR). An activated form of GR directly bound to the two glucocorticoid-response element-like sequences in the human CALD1 promoter and transactivated the CALD1 gene, thereby up-regulating the CaD protein. Forced expression of CaD, without GC treatment, also enhanced the formation of thick stress fibers and focal adhesions and suppressed cell migration. Conversely, depletion of CaD abrogated the GC-induced phenotypes. The results of this study suggest that the GR-dependent up-regulation of CaD plays a pivotal role in regulating cell migration via the reorganization of the actin cytoskeleton.  相似文献   

6.

Background

Studies conducted at the whole muscle level have shown that smooth muscle can maintain tension with low Adenosine triphosphate (ATP) consumption. Whereas it is generally accepted that this property (latch-state) is a consequence of the dephosphorylation of myosin during its attachment to actin, free dephosphorylated myosin can also bind to actin and contribute to force maintenance. We investigated the role of caldesmon (CaD) in regulating the binding force of unphosphorylated tonic smooth muscle myosin to actin.

Methods

To measure the effect of CaD on the binding of unphosphorylated myosin to actin (in the presence of ATP), we used a single beam laser trap assay to quantify the average unbinding force (Funb) in the absence or presence of caldesmon, extracellular signal-regulated kinase (ERK)-phosphorylated CaD, or CaD plus tropomyosin.

Results

Funb from unregulated actin (0.10 ± 0.01 pN) was significantly increased in the presence of CaD (0.17 ± 0.02 pN), tropomyosin (0.17 ± 0.02 pN) or both regulatory proteins (0.18 ± 0.02 pN). ERK phosphorylation of CaD significantly reduced the Funb (0.06 ± 0.01 pN). Inspection of the traces of the Funb as a function of time suggests that ERK phosphorylation of CaD decreases the binding force of myosin to actin or accelerates its detachment.

Conclusions

CaD enhances the binding force of unphosphorylated myosin to actin potentially contributing to the latch-state. ERK phosphorylation of CaD decreases this binding force to very low levels.

General significance

This study suggests a mechanism that likely contributes to the latch-state and that explains the muscle relaxation from the latch-state.  相似文献   

7.
8.
9.
NatB is an N-terminal acetyltransferase consisting of a catalytic Nat5 subunit and an auxiliary Mdm20 subunit. In yeast, NatB acetylates N-terminal methionines of proteins during de novo protein synthesis and also regulates actin remodeling through N-terminal acetylation of tropomyosin (Trpm), which stabilizes the actin cytoskeleton by interacting with actin. However, in mammalian cells, the biological functions of the Mdm20 and Nat5 subunits are not well understood. In the present study, we show for the first time that Mdm20-knockdown (KD), but not Nat5-KD, in HEK293 and HeLa cells suppresses not only cell growth, but also cellular motility. Although stress fibers were formed in Mdm20-KD cells, and not in control or Nat5-KD cells, the localization of Trpm did not coincide with the formation of stress fibers in Mdm20-KD cells. Notably, knockdown of Mdm20 reduced the expression of Rictor, an mTORC2 complex component, through post-translational regulation. Additionally, PKCαS657 phosphorylation, which regulates the organization of the actin cytoskeleton, was also reduced in Mdm20-KD cells. Our data also suggest that FoxO1 phosphorylation is regulated by the Mdm20-mTORC2-Akt pathway in response to serum starvation and insulin stimulation. Taken together, the present findings suggest that Mdm20 acts as a novel regulator of Rictor, thereby controlling mTORC2 activity, and leading to the activation of PKCαS657 and FoxO1.  相似文献   

10.
This study, using mouse embryonic fibroblast (MEF) cells derived from ROCK1−/− and ROCK2−/− mice, is designed to dissect roles for ROCK1 and ROCK2 in regulating actin cytoskeleton reorganization induced by doxorubicin, a chemotherapeutic drug. ROCK1−/− MEFs exhibited improved actin cytoskeleton stability characterized by attenuated periphery actomyosin ring formation and preserved central stress fibers, associated with decreased myosin light chain 2 (MLC2) phosphorylation but preserved cofilin phosphorylation. These effects resulted in a significant reduction in cell shrinkage, detachment, and predetachment apoptosis. In contrast, ROCK2−/− MEFs showed increased periphery membrane folding and impaired cell adhesion, associated with reduced phosphorylation of both MLC2 and cofilin. Treatment with inhibitor of myosin (blebbistatin), inhibitor of actin polymerization (cytochalasin D), and ROCK pan-inhibitor (Y27632) confirmed the contributions of actomyosin contraction and stress fiber instability to stress-induced actin cytoskeleton reorganization. These results support a novel concept that ROCK1 is involved in destabilizing actin cytoskeleton through regulating MLC2 phosphorylation and peripheral actomyosin contraction, whereas ROCK2 is required for stabilizing actin cytoskeleton through regulating cofilin phosphorylation. Consequently, ROCK1 and ROCK2 can be functional different in regulating stress-induced stress fiber disassembly and cell detachment.  相似文献   

11.
The actin- and myosin-binding protein, caldesmon (CaD) is an essential component of the cytoskeleton in smooth muscle and non-muscle cells and is involved in the regulation of cell contractility, division, and assembly of actin filaments. CaD is abundantly present in endothelial cells (EC); however, the contribution of CaD in endothelial cytoskeletal arrangement is unclear. To examine this contribution, we generated expression constructs of l-CaD cloned from bovine endothelium. Wild-type CaD (WT-CaD) and truncated mutants lacking either the N-terminal myosin-binding site or the C-terminal domain 4b (containing actin- and calmodulin-binding sites) were transfected into human pulmonary artery EC. Cell fractionation experiments and an actin overlay assay demonstrated that deleting domain 4b, but not the N-terminal myosin-binding site, resulted in decreased affinity to both the detergent-insoluble cytoskeleton and soluble actin. Recombinant WT-CaD co-localized with acto-myosin filaments in vivo, but neither of CaD mutants did. Thus both domain 4b and the myosin-binding site are essential for proper localization of CaD in EC. Overexpression of WT-CaD led to cell rounding and formation of a thick peripheral subcortical actin rim in quiescent EC, which correlated with decreased cellular migration. Pharmacological inhibition of p38 MAPK, but not ERK MAPK, caused disassembly of this peripheral actin rim in CaD-transfected cells and decreased CaD phosphorylation at Ser531 (Ser789 in human h-CaD). These results suggest that CaD is critically involved in the regulation of the actin cytoskeleton and migration in EC, and that p38 MAPK-mediated CaD phosphorylation may be involved in endothelial cytoskeletal remodeling.  相似文献   

12.
The actin-, myosin-, and calmodulin-binding protein caldesmon (CaD) is expressed in two splice isoforms: h-CaD, which is an integral part of the actomyosin domain of smooth muscle cells, and l-CaD, which is widely expressed and is involved in many cellular functions. Despite extensive research for many years, CaD''s in vivo function has remained elusive. To explore the role of CaD in smooth muscle contraction in vivo, we generated a mutant allele that ablates both isoforms. Heterozygous animals were viable and had a normal life span, but homozygous mutants died perinatally, likely because of a persistent umbilical hernia. The herniation was associated with hypoplastic and dysmorphic abdominal wall muscles. We assessed mechanical parameters in isometrically mounted longitudinal strips of E18.5 urinary bladders and in ring preparations from abdominal aorta using wire myography. Ca2+ sensitivity was higher and relaxation rate was slower in Cald1/ compared with Cald1+/+ skinned bladder strips. However, we observed no change in the content and phosphorylation of regulatory proteins of the contractile apparatus and myosin isoforms known to affect these contractile parameters. Intact fibers showed no difference in actin and myosin content, regardless of genotype, although KCl-induced force tended to be lower in homozygous and higher in heterozygous mutants than in WTs. Conversely, in skinned fibers, myosin content and maximal force were significantly lower in Cald1/ than in WTs. In KO abdominal aortas, resting and U46619 elicited force were lower than in WTs. Our results are consistent with the notion that CaD impacts smooth muscle function dually by (1) acting as a molecular brake on contraction and (2) maintaining the structural integrity of the contractile machinery. Most importantly, CaD is essential for resolution of the physiological umbilical hernia and ventral body wall closure.  相似文献   

13.
Accumulating evidence suggests that p21(Cip1) located in the cytoplasm might play a role in promoting transformation and tumor progression. Here we show that oncogenic H-RasV12 contributes to the loss of actin stress fibers by inducing cytoplasmic localization of p21(Cip1), which uncouples Rho-GTP from stress fiber formation by inhibiting Rho kinase (ROCK). Concomitant with the loss of stress fibers in Ras-transformed cells, there is a decrease in the phosphorylation level of cofilin, which is indicative of a compromised ROCK/LIMK/cofilin pathway. Inhibition of MEK in Ras-transformed NIH3T3 results in restoration of actin stress fibers accompanied by a loss of cytoplasmic p21(Cip1), and increased phosphorylation of cofilin. Ectopic expression of cytoplasmic but not nuclear p21(Cip1) in Ras-transformed cells was effective in preventing stress fibers from being restored upon MEK inhibition and inhibited phosphorylation of cofilin. p21(Cip1) was also found to form a complex with ROCK in Ras-transformed cells in vivo. Furthermore, inhibition of the PI 3-kinase pathway resulted in loss of p21(Cip1) expression accompanied by restoration of phosphocofilin, which was not accompanied by stress fiber formation. These results suggest that restoration of cofilin phosphorylation in Ras-transformed cells is necessary but not sufficient for stress fiber formation. Our findings define a novel mechanism for coupling cytoplasmic p21(Cip1) to the control of actin polymerization by compromising the Rho/ROCK/LIMK/cofilin pathway by oncogenic Ras. These studies suggest that localization of p21(Cip1) to the cytoplasm in transformed cells contributes to pathways that favor not only cell proliferation, but also cell motility thereby contributing to invasion and metastasis.  相似文献   

14.
To investigate the role of nonreceptor protein tyrosine phosphatase 1B (PTP1B) in β1-integrin– mediated adhesion and signaling, we transfected mouse L cells with normal and catalytically inactive forms of the phosphatase. Parental cells and cells expressing the wild-type or mutant PTP1B were assayed for (a) adhesion, (b) spreading, (c) presence of focal adhesions and stress fibers, and (d) tyrosine phosphorylation. Parental cells and cells expressing wild-type PTP1B show similar morphology, are able to attach and spread on fibronectin, and form focal adhesions and stress fibers. In contrast, cells expressing the inactive PTP1B have a spindle-shaped morphology, reduced adhesion and spreading on fibronectin, and almost a complete absence of focal adhesions and stress fibers. Attachment to fibronectin induces tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin in parental cells and cells transfected with the wild-type PTP1B, while in cells transfected with the mutant PTP1B, such induction is not observed. Additionally, in cells expressing the mutant PTP1B, tyrosine phosphorylation of Src is enhanced and activity is reduced. Lysophosphatidic acid temporarily reverses the effects of the mutant PTP1B, suggesting the existence of a signaling pathway triggering focal adhesion assembly that bypasses the need for active PTP1B. PTP1B coimmunoprecipitates with β1-integrin from nonionic detergent extracts and colocalizes with vinculin and the ends of actin stress fibers in focal adhesions. Our data suggest that PTP1B is a critical regulatory component of integrin signaling pathways, which is essential for adhesion, spreading, and formation of focal adhesions.  相似文献   

15.
SEPT2 plays an important role in cell division through its effect on cytoskeletons. It is a GTP-binding protein and can also form filament with SEPT6 and SEPT7. Knockdown of SEPT2, 6, and 7 causes stress fibers to disintegrate and then cells lose polarity and divide abnormally. Increasing evidence has shown that septins are related to the regulation of cell proliferation. In this study, the expression of SEPT2 was first identified to be up-regulated in human hepatoma carcinoma cells (HCC). In addition, SEPT2 was found to be phosphorylated on Ser218 by casein kinase 2 (CK2), which was also overexpressed in HCC. By overexpressing SEPT2 and its S218A mutant in SMMC7721 and L02 cell lines, we confirmed that the phosphorylation of SEPT2 on Ser218 by CK2 was crucial to the proliferation of HCC. These results suggest that SEPT2 might be a promising target for liver cancer therapy.  相似文献   

16.
This study was performed to define the roles of actin‐binding proteins in the regulation of actin filament assembly associated with cellular signal transduction pathways in stromal cell proliferation. Genistein, a tyrosine protein kinase inhibitor, decreased the intracellular Ca2+ and attenuated cell proliferation and DNA synthesis through the β‐catenin and cyclin D1 pathway in human umbilical CD105‐positive cells. Immunoprecipitation studies using anti‐β‐actin antibody revealed that several actin‐binding proteins implicated in cells include formin‐2 (FMN‐2), caldesmon (CaD), tropomyosin (Tm), and profilin. Protein levels of these proteins in whole cell lysates were not significantly changed by genistein. Three Tm isoforms, Tm‐1, Tm‐2, and Tm‐4, were found to be present in cells. Genistein caused a reduction in levels of mRNAs coding for Tm‐1 and Tm‐4, but had no significant effect on Tm‐2 mRNA levels. Immunofluorescence confocal scanning microscopy indicated that changes in the subcellular distribution of Tm and CaD, in which the diffuse cytosolic staining was shifted to show colocalization with actin stress fibers. In contrast, genistein‐induced accumulation of FMN‐2 and profilin in the peri‐nuclear area. Silencing of FMN‐2 by small interfering RNA resulted in increases of intracellular Ca2+ and rendered genistein resistance in decreasing intracellular Ca2+ in cells. These results provide the novel findings that genistein acts by modulating the cellular distribution of actin‐binding proteins in association with alterations of cellular signal transduction pathways in human stromal cell proliferation. J. Cell. Physiol. 223: 423–434, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Caldesmon (CaD) is an important actin modulator that associates with actin filaments to regulate cell morphology and motility. Although extensively studied in cultured cells, there is little functional information regarding the role of CaD in migrating cells in vivo. Here we show that nonmuscle CaD is highly expressed in both premigratory and migrating cranial neural crest cells of Xenopus embryos. Depletion of CaD with antisense morpholino oligonucleotides causes cranial neural crest cells to migrate a significantly shorter distance, prevents their segregation into distinct migratory streams, and later results in severe defects in cartilage formation. Demonstrating specificity, these effects are rescued by adding back exogenous CaD. Interestingly, CaD proteins with mutations in the Ca(2+)-calmodulin-binding sites or ErK/Cdk1 phosphorylation sites fail to rescue the knockdown phenotypes, whereas mutation of the PAK phosphorylation site is able to rescue them. Analysis of neural crest explants reveals that CaD is required for the dynamic arrangements of actin and, thus, for cell shape changes and process formation. Taken together, these results suggest that the actin-modulating activity of CaD may underlie its critical function and is regulated by distinct signaling pathways during normal neural crest migration.  相似文献   

18.
Protein phosphatase 1I (PP-1I) is a major endogenous form of protein phosphatase 1 (PP-1) that consists of the core catalytic subunit PP-1c and the regulatory subunit inhibitor 2 (I-2). Phosphorylation of the Thr-72 residue of I-2 is required for activation of PP-1I. We studied the effects of two protein kinases identified previously in purified brain PP-1I by mass spectrometry, Cdc25C-associated kinase 1 (C-TAK1) and PFTAIRE (PFTK1) kinase, for their ability to regulate PP-1I. Purified C-TAK1 phosphorylated I-2 in reconstituted PP-1I (PP-1c·I-2) on Ser-71, which resulted in partial inhibition of its ATP-dependent phosphatase activity and inhibited subsequent phosphorylation of Thr-72 by the exogenous activating kinase GSK-3. In contrast, purified PFTK1 phosphorylated I-2 at Ser-86, a site known to potentiate Thr-72 phosphorylation and activation of PP-1I phosphatase activity by GSK-3. These findings indicate that brain PP-1I associates with and is regulated by the associated protein kinases C-TAK1 and PFTK1. Multisite phosphorylation of the I-2 regulatory subunit of PP-1I leads to activation or inactivation of PP-1I through bidirectional modulation of Thr-72 phosphorylation, the critical activating residue of I-2.  相似文献   

19.
轻链钙调蛋白结合蛋白(light-chain caldesmon,l-CaD)是一种肌动蛋白结合蛋白,它通过与肌动蛋白结合而稳定胞内微丝结构,在磷酸化作用下则能从微丝上脱离.在众多非转移性癌细胞以及永生化的正常细胞系中,l-CaD的表达量很低甚至没有,但在高迁移活性的转移性癌细胞中,l-CaD表达量显著上升,因此l-CaD可能是维持转移性癌细胞高迁移能力的重要因素.为了探索l-CaD如何调节转移性癌细胞迁移活性及其所处地位,以人源转移性乳腺癌细胞MDAMB-231作为载体,一方面,在胞内高表达外源野生型l-CaD及其磷酸化突变株,干扰胞内l-CaD的磷酸化进程,从而考察l-CaD磷酸化对细胞迁移的调节,另一方面,利用siRNA技术,抑制l-CaD在MDAMB-231细胞内的表达量,检测l-CaD对转移性癌细胞迁移活性的总体影响.通过细胞骨架荧光染色、细胞迁移小室、单细胞层次上的牵张力测定以及细胞基底脱黏附能力测定,结果显示:a.阻断MDAMB-231胞内l-CaD的磷酸化进程将显著抑制细胞的迁移能力,细胞骨架调整受阻,基底牵张力增加,细胞基底脱附能力下降;b.l-CaD表达抑制的MDAMB-231细胞失去了完...  相似文献   

20.
We have previously identified 1 241 regions of somatic copy number alterations (CNAs) in hepatocellular carcinoma (HCC). In the present study, we found that a novel recurrent focal amplicon, 1q24.1-24.2, targets the MPZL1 gene in HCC. Notably, there is a positive correlation between the expression levels of MPZL1 and intrahepatic metastasis of the HCC specimens. MPZL1 can significantly enhance the migratory and metastatic potential of the HCC cells. Moreover, we found that one of the mechanisms by which MPZL1 promotes HCC cell migration is by inducing the phosphorylation and activation of the pro-metastatic protein, cortactin. Additionally, we found that Src kinase mediates the phosphorylation and activation of cortactin induced by MPZL1 overexpression. Taken together, these findings suggest that MPZL1 is a novel pro-metastatic gene targeted by a recurrent region of copy number amplification at 1q24.1-24.2 in HCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号