首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
Targeting signals direct proteins to their extra- or intracellular destination such as the plasma membrane or cellular organelles. Here we investigated the structure and function of exceptionally long signal peptides encompassing at least 40 amino acid residues. We discovered a two-domain organization ("NtraC model") in many long signals from vertebrate precursor proteins. Accordingly, long signal peptides may contain an N-terminal domain (N-domain) and a C-terminal domain (C-domain) with different signal or targeting capabilities, separable by a presumably turn-rich transition area (tra). Individual domain functions were probed by cellular targeting experiments with fusion proteins containing parts of the long signal peptide of human membrane protein shrew-1 and secreted alkaline phosphatase as a reporter protein. As predicted, the N-domain of the fusion protein alone was shown to act as a mitochondrial targeting signal, whereas the C-domain alone functions as an export signal. Selective disruption of the transition area in the signal peptide impairs the export efficiency of the reporter protein. Altogether, the results of cellular targeting studies provide a proof-of-principle for our NtraC model and highlight the particular functional importance of the predicted transition area, which critically affects the rate of protein export. In conclusion, the NtraC approach enables the systematic detection and prediction of cryptic targeting signals present in one coherent sequence, and provides a structurally motivated basis for decoding the functional complexity of long protein targeting signals.  相似文献   

2.
《The Journal of cell biology》1994,126(5):1127-1132
Signal peptides (SPs) target proteins to the secretory pathway and are cleaved from the nascent chain once the translocase in the ER has been engaged. Signal-anchor (SA) sequences also interact transiently with the ER translocase, but are not cleaved and move laterally out of the translocase to become permanent membrane anchors. One obvious difference between SP and SA sequences is the considerably longer hydrophobic regions (h regions) of the latter. To study the interaction between SP/SA sequences and the ER translocase, we have constructed signal sequences with poly-Leu h regions ranging in length from 8 to 29 residues and have characterized their locations within the translocase using both a new assay that measures the minimum number of amino acids needed to span the distance between the COOH-terminal end of the h region and the active site of the oligosaccharyl transferase enzyme and an assay where the efficiency of signal peptidase catalyzed cleavage is measured. Our results suggest that SP and SA sequences are positioned differently in the ER translocase.  相似文献   

3.
Signal peptides (SP) and transmembrane segments (TMS) ensure proper subcellular targeting and localization of proteins. Thus, understanding the molecular variability of this targeting information is essential. In this study, we functionally analyzed the predicted SP and the TMS of adherens junction protein, shrew-1 (Bharti et al. Novel membrane protein shrew-1 targets to cadherin-mediated junctions in polarized epithelial cells. Mol Biol Cell 2004:15:397). We used human secreted alkaline phosphatase (SEAP) as reporter protein. The SP of shrew-1 was able to functionally substitute for SEAP's intrinsic SP and was cleaved, indicating that it acts as a start-transfer signal and not a signal anchor. In turn, the TMS of shrew-1 functions as stop-transfer signal. Notably, clearly detectable plasma membrane localization is only achieved when the fusion protein contains both the SP and the TMS of shrew-1. In combination with the intrinsic SP from SEAP, the shrew-1 TMS is unable to promote stable plasma membrane localization. Hence, it may be assumed that this synergism between an SP and a TMS to mediate plasma membrane localization is essential for structural and/or functional integrity of shrew-1.  相似文献   

4.
As part of our continuing program to understand the molecular mechanisms controlling the synthesis of sperm-specific nuclear proteins (SPs1–6) during spermatogenesis in Xenopus, we report here on the isolation of a cDNA clone for SP5, the partial sequencing of the amino acids in the SPs, and the expression of the mRNA for SP5. A cDNA clone (pXSP633) was isolated from a cDNA library, previously prepared from poly (A)+ mRNA obtained from Xenopus round spermatids. Determination of the amino acid sequence of the N-terminal regions of all the SPs(1–6) suggested that pXSP633 encodes SP5, whereas SPs3, 4, and 6 are derived from a second mRNA species, and SPs1 and 2 from a third mRNA species. Thus it seems likely that the six SPs are derived from three different mRNA species. Northern blot analyses of RNA, extracted from primary spermatocytes and round spermatids, was performed with oligonucleotide probes specific for SPs4 and 5 mRNAs. The results showed that whereas both SPs4 and 5 mRNAs are expressed in primary spermatocytes, the amount of SP5 mRNA is only about one-fifth of that of SP4 mRNA. However, both mRNA species undergo a similar size change in the length of their poly (A) tracts during spermatogenesis: the size of the mRNA in cultured round spermatids on day 0 was longer than that in primary spermatocytes, but the size of the mRNA in round spermatids on day 6 was shorter than that in round spermatids on day 0. © 1994 Wiley-Liss, Inc.  相似文献   

5.
We recently identified transmembrane protein shrew-1 and showed that it is able to target to adherens junctions in polarized epithelial cells. This suggested shrew-1 possesses specific basolateral sorting motifs, which we analyzed by mutational analysis. Systematic mutation of amino acids in putative sorting signals in the cytoplasmic domain of shrew-1 revealed three tyrosines and a dileucine motif necessary for basolateral sorting. Substitution of these amino acids leads to apical localization of shrew-1. By applying tannic acid to either the apical or basolateral part of polarized epithelial cells, thereby blocking vesicle fusion with the plasma membrane, we obtained evidence that the apically localized mutants were primarily targeted to the basolateral membrane and were then redistributed to the apical domain. Further support for a postendocytic sorting mechanism of shrew-1 was obtained by demonstrating that mu1B, a subunit of the epithelial cell-specific adaptor complex AP-1B, interacts with shrew-1. In conclusion, our data provide evidence for a scenario where shrew-1 is primarily delivered to the basolateral membrane by a so far unknown mechanism. Once there, adaptor protein complex AP-1B is involved in retaining shrew-1 at the basolateral membrane by postendocytic sorting mechanisms.  相似文献   

6.
Many current and potential drug targets are membrane-bound or secreted proteins that are expressed and transported via the Sec61 secretory pathway. They are targeted to translocon channels across the membrane of the endoplasmic reticulum (ER) by signal peptides (SPs), which are temporary structures on the N-termini of their nascent chains. During translation, such proteins enter the lumen and membrane of the ER by a process known as co-translational translocation. Small molecules have been found that interfere with this process, decreasing protein expression by recognizing the unique structures of the SPs of particular proteins. The SP may thus become a validated target for designing drugs for numerous disorders, including certain hereditary diseases.  相似文献   

7.
小蛋白 ( < 100个氨基酸) 广泛存在于三界生命中,具有重要生物功能.早期涉及小蛋白的研究主要集中于少量特殊物种中的蛋白质家族,以及在全基因组尺度预测短小开放读码框(sORFs)的算法开发,但并无跨真核物种的大规模组学分析来揭示小蛋白的功能和进化特征.通过对已知小蛋白和拥有短小开放读码框的基因进行全基因组尺度的计算分析,长度小于100个氨基酸的RefSeq proteins按照其序列保守性被划分为存在于所有8种真核生物、只存在于脊椎动物和只存在于哺乳动物三个进化分类中,此三个进化分类所对应的生物学功能揭示了小蛋白行使种属特异性功能的特征.进一步研究发现,大多数人类特有的小蛋白也是组织表达特异性的,并且绝大多数古老的小蛋白在人体内普遍表达.因此认为,一些真核小蛋白出现并在自然选择压力下富集,行使种属特异性功能,并且以特殊的方式进化和表达.  相似文献   

8.
Systematic calculations of stopping power (SPs) and inelastic mean free path (IMFP) values for 20–20,000 eV electrons in a group of 15 amino acids and a simple protein have been performed. The calculations are based on the dielectric response model and take into account the exchange effect between the incident electron and target electrons. The optical energy-loss functions for the 15 investigated amino acids and the protein are evaluated by using an empirical approach, because of the lack of experimental optical data. For all the considered materials, the calculated mean ionization potentials are in good agreement with those given by Bragg’s rule, and the evaluated SP values at 20 keV converge well to the Bethe–Bloch predictions. The data shown represent the first results of SP and IMFP, for these 15 amino acids and the protein in the energy range below 20 keV, and might be useful for studies of various radiation effects in these materials. In addition, the average energy deposited by inelastic scattering of the electrons on this group of 15 amino acids, on the protein, on Formvar and on DNA, respectively, has been estimated for energies below 20 keV. The dependences of the average energy deposition on the electron energy are given. These results are important for any detailed studies of radiation-induced inactivation of proteins and the DNA.  相似文献   

9.
《Journal of Asia》2006,9(2):139-143
Storage proteins (SPs) were significantly detected in the hemolymph during the late instar larvae of diamondback moth, Plutella xylostella. These SPs were resolved into three proteins (SP1, SP2, and SP3) at 7% SDS-PAGE. Their apparent molecular sizes were around 80 kDa. SP1 was synthesized later than SP2 and SP3 during the development of the last instar. Total soluble proteins of last instar larvae were extracted and fractionated sequentially with ammonium sulfate, size-exclusion chromatography, and ion-exchange chromatography. The SPs were purified and their developmental expression was discussed.  相似文献   

10.
Previously, we described some structural features of spherical particles (SPs) generated by thermal remodelling of the tobacco mosaic virus. The SPs represent a universal platform that could bind various proteins. Here, we report that entire isometric virions of heterogeneous nature bind non-specifically to the SPs. Formaldehyde (FA) was used for covalent binding of a virus to the SPs surface for stabilizing the SP—virus complexes. Transmission and high resolution scanning electron microscopy showed that the SPs surface was covered with virus particles. The architecture of SP–virion complexes was examined by immunologic methods. Mean diameters of SPs and SP–human enterovirus C and SP–cauliflower mosaic virus (CaMV) compositions were determined by nanoparticle tracking analysis (NTA) in liquid. Significantly, neither free SPs nor individual virions were detected by NTA in either FA-crosslinked or FA-untreated compositions. Entirely, all virions were bound to the SPs surface and the SP sites within the SP–CaMV complexes were inaccessible for anti-SP antibodies. Likewise, the SPs immunogenicity within the FA-treated SPs–CaMV compositions was negligible. Apparently, the SP antigenic sites were hidden and masked by virions within the compositions. Previously, we reported that the SPs exhibited adjuvant activity when foreign proteins/epitopes were mixed with or crosslinked to SPs. We found that immunogenicity of entire CaMV crosslinked to SP was rather low which could be due to the above-mentioned masking of the SPs booster. Contrastingly, immunogenicity of the FA-untreated compositions increased significantly, presumably, due to partial release of virions and unmasking of some SPs-buster sites after animals immunization.  相似文献   

11.
In eukaryotic cells, surface expression of most type I transmembrane proteins requires translation and simultaneous insertion of the precursor protein into the endoplasmic reticulum (ER) membrane for subsequent routing to the cell surface. This co-translational translocation pathway is initiated when a hydrophobic N-terminal signal peptide (SP) on the nascent protein emerges from the ribosome, binds the cytosolic signal recognition particle (SRP), and targets the ribosome-nascent chain complex to the Sec61 translocon, a universally conserved protein-conducting channel in the ER-membrane. Despite their common function in Sec61 targeting and ER translocation, SPs have diverse but unique primary sequences. Thus, drugs that recognise SPs could be exploited to inhibit translocation of specific proteins into the ER. Here, through flow cytometric analysis the small-molecule macrocycle cyclotriazadisulfonamide (CADA) is identified as a highly selective human CD4 (hCD4) down-modulator. We show that CADA inhibits CD4 biogenesis and that this is due to its ability to inhibit co-translational translocation of CD4 into the lumen of the ER, both in cells as in a cell-free in vitro translation/translocation system. The activity of CADA maps to the cleavable N-terminal SP of hCD4. Moreover, through surface plasmon resonance analysis we were able to show direct binding of CADA to the SP of hCD4 and identify this SP as the target of our drug. Furthermore, CADA locks the SP in the translocon during a post-targeting step, possibly in a folded state, and prevents the translocation of the associated protein into the ER lumen. Instead, the precursor protein is routed to the cytosol for degradation. These findings demonstrate that a synthetic, cell-permeable small-molecule can be developed as a SP-binding drug to selectively inhibit protein translocation and to reversibly regulate the expression of specific target proteins.  相似文献   

12.
A C-terminal signal prevents secretion of luminal ER proteins   总被引:260,自引:0,他引:260  
S Munro  H R Pelham 《Cell》1987,48(5):899-907
Proteins that permanently reside in the lumen of the endoplasmic reticulum (ER) must somehow be distinguished from newly synthesized secretory proteins, which pass through this compartment on their way out of the cell. Three luminal ER proteins whose sequence is known, grp78 ("BiP"), grp94, and protein disulphide isomerase, share the carboxy-terminal sequence Lys-Asp-Glu-Leu (KDEL). We show that deletion (or extension) of the carboxyl terminus of grp78 results in secretion of this protein when it is expressed in COS cells. Conversely, a derivative of chicken lysozyme containing the last six amino acids of grp78 fails to be secreted and instead accumulates in the ER. We propose that the KDEL sequence marks proteins that are to be retained in the ER and discuss possible retention mechanisms.  相似文献   

13.
Signal peptides (SPs) direct nascent secretory and membrane proteins to the membrane of the endoplasmic reticulum. They are usually cleaved from the nascent polypeptide by signal peptidase and then further proteolytically processed. The SP of the pre-glycoprotein (pGP-C) of the lymphocytic choriomeningitis virus SPGP-C (signal peptide of pGP-C) shows different properties: 1) The SPGP-C is unusually long (58 amino acid residues) and contains two hydrophobic segments interrupted by a lysine residue. 2) The SPGP-C is cleaved only from a subset of pGP-C proteins. A substantial portion of pGP-C accumulates that still contains the SPGP-C.3)The cleaved SPGP-C is rather long-lived (t(1/2) of more than 6 h). 4) The cleaved SPGP-C resides in the membrane and is resistant to digestion with proteinase K even in the presence of detergents, suggesting a very compact structure. 5) SPGP-C accumulates in virus particles. These unusual features of the cleaved SPGP-C suggest that SPGP-C not only targets the nascent pGP-C to the endoplasmic reticulum membrane but also has additional functions in lymphocytic choriomeningitis virus life cycle.  相似文献   

14.
何崔同  张瑶  姜颖  徐平 《生物工程学报》2018,34(11):1860-1869
小蛋白质 (Small proteins,SPs) 是由小开放阅读框 (Short open reading frames,sORFs) 编码长度小于100个氨基酸的多肽。研究发现小蛋白质参与了基因表达调控、细胞信号转导和代谢等重要生物学过程。然而,生命体中大多数的已注释小蛋白质尚缺少蛋白水平存在的实验证据,被称为漏检蛋白 (Missing proteins,MPs)。小蛋白质的高效鉴定是其功能研究的前提,也有助于挖掘“漏检蛋白”。文中采用小蛋白质富集策略鉴定到72个酵母小蛋白质,验证9个“漏检蛋白”,发现低分子量、高疏水性、膜结合、弱密码子使用偏性及不稳定性是蛋白漏检的主要原因,对进一步的技术优化具有指导意义。  相似文献   

15.
The capacity of proteins of Mycobacterium habana TMC 5135 secreted into culture medium during the mid-exponential growth phase (secretory proteins, SPs) to induce protective immunity against Mycobacterium tuberculosis H37Rv was studied in the mouse model. Mice immunized with SPs followed by a challenge with M. tuberculosis H37Rv showed lesser M. tuberculosis bacilli in their lung and spleen and survived longer than unimmunized controls. The findings suggest that SP antigens of M. habana are protective against tuberculosis infection.  相似文献   

16.
Predicting the function of a protein from its sequence is a long-standing goal of bioinformatic research. While sequence similarity is the most popular tool used for this purpose, sequence motifs may also subserve this goal. Here we develop a motif-based method consisting of applying an unsupervised motif extraction algorithm (MEX) to all enzyme sequences, and filtering the results by the four-level classification hierarchy of the Enzyme Commission (EC). The resulting motifs serve as specific peptides (SPs), appearing on single branches of the EC. In contrast to previous motif-based methods, the new method does not require any preprocessing by multiple sequence alignment, nor does it rely on over-representation of motifs within EC branches. The SPs obtained comprise on average 8.4 +/- 4.5 amino acids, and specify the functions of 93% of all enzymes, which is much higher than the coverage of 63% provided by ProSite motifs. The SP classification thus compares favorably with previous function annotation methods and successfully demonstrates an added value in extreme cases where sequence similarity fails. Interestingly, SPs cover most of the annotated active and binding site amino acids, and occur in active-site neighboring 3-D pockets in a highly statistically significant manner. The latter are assumed to have strong biological relevance to the activity of the enzyme. Further filtering of SPs by biological functional annotations results in reduced small subsets of SPs that possess very large enzyme coverage. Overall, SPs both form a very useful tool for enzyme functional classification and bear responsibility for the catalytic biological function carried out by enzymes.  相似文献   

17.
No systematic searches for differential expression of signaling proteins (SP) in undifferentiated vs. differentiated cell lineages were published and herein we used protein profiling for this purpose. The N1E-115 cell line was cultivated and an aliquot was differentiated with dimethylsulfoxide (DMSO), that is known to lead to a neuronal phenotype. Cell lysates were prepared, run on two-dimensional gel electrophoresis followed by MALDI-TOF-TOF identification of proteins and maps of identified SPs were generated. Seven SPs were comparable, 27 SPs: GTP-binding/Ras-related proteins, kinases, growth factors, calcium binding proteins, phosphatase-related proteins were observed in differentiated N1E-115 cells and eight SPs of the groups mentioned above were observed in undifferentiated cells only. Switching-on/off of several individual SPs from different signaling cascades during the differentiation process is a key to understand mechanisms involved. The findings reported herein are challenging in vitro and in vivo studies to confirm a functional role for deranged SPs.  相似文献   

18.
Although the intact chaperonin machinery is needed to rescue natural substrate proteins (SPs) under non-permissive conditions the "minichaperone" alone, containing only the isolated apical domain of GroEL, can assist folding of a certain class of proteins. To understand the annealing function of the minichaperone, we have carried out molecular dynamics simulations in the NPT ensemble totaling 300ns for four systems; namely, the isolated strongly binding peptide (SBP), the minichaperone, and the SBP and a weakly binding peptide (WBP) in complex with the minichaperone. The SBP, which is structureless in isolation, adopts a beta-hairpin conformation in complex with the minichaperone suggesting that favorable non-specific interactions of the SPs confined to helices H and I of the apical domains can induce local secondary structures. Comparison of the dynamical fluctuations of the apo and the liganded forms of the minichaperone shows that the stability (needed for SP capture) involves favorable hydrophobic interactions and hydrogen bond network formation between the SBP and WBP, and helices H and I. The release of the SP, which is required for the annealing action, involves water-mediated interactions of the charged residues at the ends of H and I helices. The simulation results are consistent with a transient binding release (TBR) model for the annealing action of the minichaperone. According to the TBR model, SP annealing occurs in two stages. In the first stage the SP is captured by the apical domain. This is followed by SP release (by thermal fluctuations) that places it in a different region of the energy landscape from which it can partition rapidly to the native state with probability Phi or be trapped in another misfolded state. The process of binding and release can result in enhancement of the native state yield. The TBR model suggests "that any cofactor that can repeatedly bind and release SPs can be effective in assisting protein folding." By comparing the structures of the non-chaperone alpha-casein (which has no sequence similarity with the apical domain) and the minichaperone and the hydrophobicity profiles we show that alpha-casein has a pair of helices that have similar sequence and structural profiles as H and I. Based on this comparison we identify residues that stabilize (destabilize) alpha-casein-protein complexes. This suggests that alpha-casein assists folding by the TBR mechanism.  相似文献   

19.

Backgroud

Type III secretion systems (T3SSs) are central to the pathogenesis and specifically deliver their secreted substrates (type III secreted proteins, T3SPs) into host cells. Since T3SPs play a crucial role in pathogen-host interactions, identifying them is crucial to our understanding of the pathogenic mechanisms of T3SSs. This study reports a novel and effective method for identifying the distinctive residues which are conserved different from other SPs for T3SPs prediction. Moreover, the importance of several sequence features was evaluated and further, a promising prediction model was constructed.

Results

Based on the conservation profiles constructed by a position-specific scoring matrix (PSSM), 52 distinctive residues were identified. To our knowledge, this is the first attempt to identify the distinct residues of T3SPs. Of the 52 distinct residues, the first 30 amino acid residues are all included, which is consistent with previous studies reporting that the secretion signal generally occurs within the first 30 residue positions. However, the remaining 22 positions span residues 30–100 were also proven by our method to contain important signal information for T3SP secretion because the translocation of many effectors also depends on the chaperone-binding residues that follow the secretion signal. For further feature optimisation and compression, permutation importance analysis was conducted to select 62 optimal sequence features. A prediction model across 16 species was developed using random forest to classify T3SPs and non-T3 SPs, with high receiver operating curve of 0.93 in the 10-fold cross validation and an accuracy of 94.29% for the test set. Moreover, when performing on a common independent dataset, the results demonstrate that our method outperforms all the others published to date. Finally, the novel, experimentally confirmed T3 effectors were used to further demonstrate the model’s correct application. The model and all data used in this paper are freely available at http://cic.scu.edu.cn/bioinformatics/T3SPs.zip.  相似文献   

20.

Background

The human endogenous retrovirus HERV-K(HML-2) family is associated with testicular germ cell tumors (GCT). Various HML-2 proviruses encode viral proteins such as Env and Rec.

Results

We describe here that HML-2 Env gives rise to a 13 kDa signal peptide (SP) that harbors a different C-terminus compared to Rec. Subsequent to guiding Env to the endoplasmatic reticulum (ER), HML-2 SP is released into the cytosol. Biochemical analysis and confocal microscopy demonstrated that similar to Rec, SP efficiently translocates to the granular component of nucleoli. Unlike Rec, SP does not shuttle between nucleus and cytoplasm. SP is less stable than Rec as it is subjected to proteasomal degradation. Moreover, SP lacks export activity towards HML-2 genomic RNA, the main function of Rec in the original viral context, and SP does not interfere with Rec's RNA export activity.

Conclusion

SP is a previously unrecognized HML-2 protein that, besides targeting and translocation of Env into the ER lumen, may exert biological functions distinct from Rec. HML-2 SP represents another functional similarity with the closely related Mouse Mammary Tumor Virus that encodes an Env-derived SP named p14. Our findings furthermore support the emerging concept of bioactive SPs as a conserved retroviral strategy to modulate their host cell environment, evidenced here by a "retroviral fossil". While the specific role of HML-2 SP remains to be elucidated in the context of human biology, we speculate that it may be involved in immune evasion of GCT cells or tumorigenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号