首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tau filaments are the pathological hallmark of numerous neurodegenerative diseases including Alzheimer disease, Pick disease, and progressive supranuclear palsy. In the adult human brain, six isoforms are expressed that differ by the presence or absence of the second of four semiconserved repeats. As a consequence, half of the tau isoforms have three repeats (3R tau), whereas the other half of the isoforms have four repeats (4R tau). Tauopathies can be characterized based on the isoform composition of their filaments. Alzheimer disease filamentous inclusions contain all isoforms. Pick disease filaments contain 3R tau. Progressive supranuclear palsy filaments contain 4R tau. Here, we used site-directed spin labeling of recombinant tau in conjunction with electron paramagnetic resonance spectroscopy to obtain structural insights into these filaments. We find that filaments of 4R tau and 3R tau share a highly ordered core structure in the third repeat with parallel, in-register arrangement of β-strands. This structure is conserved regardless of whether full-length isoforms (htau40 and htau23) or truncated constructs (K18 and K19) are used. When mixed, 3R tau and 4R tau coassemble into heterogeneous filaments. These filaments share the highly ordered core in the third repeat; however, they differ in their overall composition. Our findings indicate that at least three distinct types of filaments exist: homogeneous 3R tau, homogeneous 4R tau, and heterogeneous 3R/4R tau. These results suggest that individual filaments found in Alzheimer disease are structurally distinct from those in the 3R and 4R tauopathies.  相似文献   

2.
Tau, MAP2, and MAP4 are members of a microtubule-associated protein (MAP) family that are each expressed as "3-repeat" and "4-repeat" isoforms. These isoforms arise from tightly controlled tissue-specific and/or developmentally regulated alternative splicing of a 31-amino acid long "inter-repeat:repeat module," raising the possibility that different MAP isoforms may possess some distinct functional capabilities. Consistent with this hypothesis, regulatory mutations in the human tau gene that disrupt the normal balance between 3-repeat and 4-repeat tau isoform expression lead to a collection of neurodegenerative diseases known as FTDP-17 (fronto-temporal dementias and Parkinsonism linked to chromosome 17), which are characterized by the formation of pathological tau filaments and neuronal cell death. Unfortunately, very little is known regarding structural and functional differences between the isoforms. In our previous analyses, we focused on 4-repeat tau structure and function. Here, we investigate 3-repeat tau, generating a series of truncations, amino acid substitutions, and internal deletions and examining the functional consequences. 3-Repeat tau possesses a "core microtubule binding domain" composed of its first two repeats and the intervening inter-repeat. This observation is in marked contrast to the widely held notion that tau possesses multiple independent tubulin-binding sites aligned in sequence along the length of the protein. In addition, we observed that the carboxyl-terminal sequences downstream of the repeat region make a strong but indirect contribution to microtubule binding activity in 3-repeat tau, which is in contrast to the negligible effect of these same sequences in 4-repeat tau. Taken together with previous work, these data suggest that 3-repeat and 4-repeat tau assume complex and distinct structures that are regulated differentially, which in turn suggests that they may possess isoform-specific functional capabilities. The relevance of isoform-specific structure and function to normal tau action and the onset of neurodegenerative disease are discussed.  相似文献   

3.
R Jakes  M Novak  M Davison    C M Wischik 《The EMBO journal》1991,10(10):2725-2729
The microtubule associated protein tau is incorporated into the pronase resistant core of the paired helical filament (PHF) in such a way that the repeat region is protected from proteases, but can be released as a major 12 kDa species from the PHF core by formic acid treatment and by boiling in SDS. This fragment retains the ability to aggregate in the presence of SDS. Detailed sequence analysis of the 12 kDa species shows that it consists of a mixture of peptides derived from the repeat region of 3- and 4-repeat tau isoforms comigrating as a single electrophoretic band. However, the 4-repeat isoforms released from the core lack either the first or the last repeat. The pronase-protected region of tau within the PHF core is therefore restricted to three repeats, regardless of isoform. The alignment of cleavage sites at homologous positions within tandem repeats after protease treatment indicates that the tau-core association is precisely constrained by the tandem repeat structure of the tau molecule.  相似文献   

4.
Tau isoforms, 3-repeat (3R) and 4-repeat tau (4R), are differentially involved in neuronal development and in several tauopathies. 14-3-3 protein binds to tau and 14-3-3/tau association has been found both in the development and in tauopathies. To understand the role of 14-3-3 in the differential regulation of tau isoforms, we have performed studies on the interaction and aggregation of 3R-tau and 4R-tau, either phosphorylated or unphosphorylated, with 14-3-3ζ. We show by surface plasmon resonance studies that the interaction between unphosphorylated 3R-tau and 14-3-3ζ is ∼3-folds higher than that between unphosphorylated 4R-tau and 14-3-3ζ. Phosphorylation of tau by protein kinase A (PKA) increases the affinity of both 3R- and 4R-tau for 14-3-3ζ to a similar level. An in vitro aggregation assay employing both transmission electron microscopy and fluorescence spectroscopy revealed the aggregation of unphosphorylated 4R-tau to be significantly higher than that of unphosphorylated 3R-tau following the induction of 14-3-3ζ. The filaments formed from 3R- and 4R-tau were almost similar in morphology. In contrast, the aggregation of both 3R- and 4R-tau was reduced to a similar low level after phosphorylation with PKA. Taken together, these results suggest that 14-3-3ζ exhibits a similar role for tau isoforms after PKA-phosphorylation, but a differential role for unphosphorylated tau. The significant aggregation of 4R-tau by 14-3-3ζ suggests that 14-3-3 may act as an inducer in the generation of 4R-tau-predominant neurofibrillary tangles in tauopathies.  相似文献   

5.
The microtubule-associated protein tau is implicated in the pathogenesis of many neurodegenerative diseases, including fronto-temporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), in which both RNA splicing and amino acid substitution mutations in tau cause dominantly inherited early onset dementia. RNA-splicing FTDP-17 mutations alter the wild-type approximately 50:50 3-repeat (3R) to 4-repeat (4R) tau isoform ratio, usually resulting in an excess of 4R tau. To examine further how splicing mutations might cause dysfunction by misregulation of microtubule dynamics, we used video microscopy to determine the in vitro behavior of individual microtubules stabilized by varying amounts of human 4R and 3R tau. At low tau:tubulin ratios (1:55 and 1:45), all 3R isoforms reduced microtubule growth rates relative to the no-tau control, whereas all 4R isoforms increased them; however, at a high tau:tubulin ratio (1:20), both 4R and 3R tau increased the growth rates. Further analysis revealed two distinct subpopulations of growing microtubules in the absence of tau. Increasing concentrations of both 4R and 3R tau resulted in an increase in the size of the faster growing subpopulation of microtubules; however, 4R tau caused a redistribution to the faster growing subpopulation at lower tau:tubulin ratios than 3R tau. This modulation of discrete growth rate subpopulations by tau suggests that tau causes a conformational shift in the microtubule resulting in altered dynamics. Quantitative and qualitative differences observed between 4R and 3R tau are consistent with a "microtubule misregulation" model in which abnormal tau isoform expression results in the inability to properly regulate microtubule dynamics, leading to neuronal death and dementia.  相似文献   

6.
The specific functions of greater than 40 vertebrate nonmuscle tropomyosins (Tms) are poorly understood. In this article we have tested the ability of two Tm isoforms, TmBr3 and the human homologue of Tm5 (hTM5(NM1)), to regulate actin filament function. We found that these Tms can differentially alter actin filament organization, cell size, and shape. hTm5(NM1) was able to recruit myosin II into stress fibers, which resulted in decreased lamellipodia and cellular migration. In contrast, TmBr3 transfection induced lamellipodial formation, increased cellular migration, and reduced stress fibers. Based on coimmunoprecipitation and colocalization studies, TmBr3 appeared to be associated with actin-depolymerizing factor/cofilin (ADF)-bound actin filaments. Additionally, the Tms can specifically regulate the incorporation of other Tms into actin filaments, suggesting that selective dimerization may also be involved in the control of actin filament organization. We conclude that Tm isoforms can be used to specify the functional properties and molecular composition of actin filaments and that spatial segregation of isoforms may lead to localized specialization of actin filament function.  相似文献   

7.
The neural microtubule-associated protein tau binds to and stabilizes microtubules. Because of alternative mRNA splicing, tau is expressed with either 3 or 4 C-terminal repeats. Two observations indicate that differences between these tau isoforms are functionally important. First, the pattern of tau isoform expression is tightly regulated during development. Second, mutation-induced changes in tau RNA splicing cause neuronal cell death and dementia simply by altering the isoform expression ratio. To investigate whether 3- and 4-repeat tau differentially regulate microtubule behavior in cells, we microinjected physiological levels of these two isoforms into EGFP-tubulin-expressing cultured MCF7 cells and measured the effects on the dynamic instability behavior of individual microtubules by time-lapse microscopy. Both isoforms suppressed microtubule dynamics, though to different extents. Specifically, 4-repeat tau reduced the rate and extent of both growing and shortening events. In contrast, 3-repeat tau stabilized most dynamic parameters about threefold less potently than 4-repeat tau and had only a minimal ability to suppress shortening events. These differences provide a mechanistic rationale for the developmental shift in tau isoform expression and are consistent with a loss-of-function model in which abnormal tau isoform expression results in the inability to properly regulate microtubule dynamics, leading to neuronal cell death and dementia.  相似文献   

8.
Tau, a family of microtubule-associated proteins (MAPs), stabilizes microtubules (MTs) and regulates their dynamics. Tau isoforms regulate MT dynamic instability differently: 3-repeat tau is less effective than 4-repeat tau at suppressing the disassembly of MTs. Here, we report another tau-isoform-dependent phenomenon, revealed by fluorescence recovery after photobleaching measurements on a BODIPY-conjugated taxol bound to MTs. Saturating levels of recombinant full-length 3-repeat and 4-repeat tau both cause taxol mobility to be remarkably sensitive to taxol concentration. However, 3-repeat tau induces 2.5-fold faster recovery (∼450 s) at low taxol concentrations (∼100 nM) than 4-repeat tau (∼1000 s), indicating that 3-repeat tau decreases the probability of taxol rebinding to its site in the MT lumen. Finding no tau-induced change in the MT-binding affinity of taxol, we conclude that 3-repeat tau either competes for the taxol binding site with an affinity of ∼1 μM or alters the MT structure so as to facilitate the passage of taxol through pores in the MT wall.  相似文献   

9.
Tropomyosins are believed to function in part by stabilizing actin filaments. However, accumulating evidence suggests that fundamental differences in function exist between tropomyosin isoforms, which contributes to the formation of functionally distinct filament populations. We investigated the functions of the high-molecular-weight isoform Tm3 and examined the molecular properties of Tm3-containing actin filament populations. Overexpression of the Tm3 isoform specifically induced the formation of filopodia and changes in actin solubility. We observed alterations in actin-binding protein recruitment to filaments, co-incident with changes in expression levels, which can account for this functional outcome. Tm3-associated filaments recruit active actin depolymerizing factor and are bundled into filopodia by fascin, which is both up-regulated and preferentially associated with Tm3-containing filaments in the Tm3 overexpressing cells. This study provides further insight into the isoform-specific roles of different tropomyosin isoforms. We conclude that variation in the tropomyosin isoform composition of microfilaments provides a mechanism to generate functionally distinct filament populations.  相似文献   

10.
We report functional differences between tau isoforms with 3 or 4 C-terminal repeats and a difference in susceptibility to oxidative conditions, with respect to the regulation of microtubule dynamics in vitro and tau-microtubule binding in cultured cells. In the presence of dithiothreitol in vitro, a 3-repeat tau isoform promotes microtubule nucleation, reduces the tubulin critical concentration for microtubule assembly, and suppresses dynamic instability. Under non-reducing conditions, threshold concentrations of 3-repeat tau and tubulin exist below which this isoform still promotes microtubule nucleation and assembly but fails to reduce the tubulin critical concentration or suppress dynamic instability; above these threshold concentrations, amorphous aggregates of 3-repeat tau and tubulin can be produced at the expense of microtubule formation. A 4-repeat tau isoform is less sensitive to the oxidative potential of the environment, behaving under oxidative conditions similarly to the 3-repeat isoform under reducing conditions. Under conditions of oxidative stress, in Chinese hamster ovary cells stably expressing either 3- or 4-repeat tau, 3-repeat tau disassociates from microtubules more readily than the 4-repeat isoform, and tau-containing high molecular weight aggregates are preferentially observed in lysates from the Chinese hamster ovary cells expressing 3-repeat tau, indicating greater susceptibility of 3-repeat tau to oxidative conditions, compared with 4-repeat tau in vivo.  相似文献   

11.
Combs B  Voss K  Gamblin TC 《Biochemistry》2011,50(44):9446-9456
The microtubule-associated protein tau exists as six isoforms created through the splicing of the second, third, and tenth exons. The isoforms are classified by their number of N-terminal exons (0N, 1N, or 2N) and by their number of microtubule-binding repeat regions (3R or 4R). Hyperphosphorylated isoforms accumulate in insoluble aggregates in Alzheimer's disease and other tauopathies. These neurodegenerative diseases can be categorized based on the isoform content of the aggregates they contain. Hyperphosphorylated tau has the general characteristics of an upward electrophoretic shift, decreased microtubule binding, and an association with aggregation. Previously we have shown that a combination of seven pseudophosphorylation mutations at sites phosphorylated by GSK-3β, referred to as 7-Phos, induced several of these characteristics in full-length 2N4R tau and led to the formation of fewer but longer filaments. We sought to determine whether the same phosphorylation pattern could cause differential effects in the other tau isoforms, possibly through varied conformational effects. Using in vitro techniques, we examined the electrophoretic mobility, aggregation properties, and microtubule stabilization of all isoforms and their pseudophosphorylated counterparts. We found that pseudophosphorylation affected each isoform, but in several cases certain isoforms were affected more than others. These results suggest that hyperphosphorylation of tau isoforms could play a major role in determining the isoform composition of tau aggregates in disease.  相似文献   

12.
The neural microtubule-associated protein Tau binds directly to microtubules and regulates their dynamic behavior. In addition to being required for normal development, maintenance, and function of the nervous system, Tau is associated with several neurodegenerative diseases, including Alzheimer disease. One group of neurodegenerative dementias known as FTDP-17 (fronto-temporal dementia with Parkinsonism linked to chromosome 17) is directly linked genetically to mutations in the tau gene, demonstrating that Tau misfunction can cause neuronal cell death and dementia. These mutations result either in amino acid substitutions in Tau or in altered Tau mRNA splicing that skews the expression ratio of wild-type 3-repeat and 4-repeat Tau isoforms. Because wild-type Tau regulates microtubule dynamics, one possible mechanism underlying Tau-mediated neurodegeneration is aberrant regulation of microtubule behavior. In this study, we microinjected normal and mutated Tau protein into cultured cells expressing fluorescent tubulin and measured the effects on the dynamic instability of individual microtubules. We found that the FTDP-17 amino acid substitutions G272V (in both 3-repeat and 4-repeat Tau contexts), DeltaK280, and P301L all exhibited markedly reduced abilities to regulate dynamic instability relative to wild-type Tau. In contrast, the FTDP-17 R406W mutation (which maps in a regulatory region outside the microtubule binding domain of Tau) did not significantly alter the ability of 3-repeat or 4-repeat Tau to regulate microtubule dynamics. Overall, these data are consistent with a loss-of-function model in which both amino acid substitutions and altered mRNA splicing in Tau lead to neurodegeneration by diminishing the ability of Tau to properly regulate microtubule dynamics.  相似文献   

13.
Double immunofluorolabeling for 3-repeat (3R) and 4-repeat (4R) tau was performed with two monoclonal antibodies, RD3 and RD4, after an additional pretreatment with potassium permanganate and oxalic acid to eliminate nonspecific 3R tau cytoplasmic staining. This method involves hyperdilution of one of the primary monoclonal antibodies (≥100-fold), making it undetectable by usual secondary antibodies. The hyperdiluted primary antibody can then only be detected after tyramide amplification. Subsequent application of the other monoclonal antibody at its usual concentration allows double immunofluorolabeling without cross-reaction. This novel method revealed that tau immunoreactivity (IR) in the hippocampal pyramidal neurons of Alzheimer’s disease (AD) brains is heterogeneous in that pretangle neurons exhibit 4R-selective (3R−/4R+) IR, ghost tangles exhibit 3R-selective (3R+/4R−) IR, and neurofibrillary tangles exhibit both 3R and 4R (3R+/4R+) IR. Some nigral neurons exhibited RD3 IR in both AD and corticobasal degeneration/progressive supranuclear palsy (CBD/PSP) brains. However, in CBD/PSP cases, 3R IR was always superimposed on 4R IR, while 3R-selective neurons were present in AD cases. These differential isoform profiles may provide a pivotal molecular reference, closely related to the morphological evolution of tau-positive neurons, which may be variable according to disease (CBD/PSP vs. AD), lesion site (cerebral cortex and substantia nigra), or the stage of evolution (from pretangles to ghost tangles). These findings should provide a more comprehensive understanding of the histological differentiation of various tau deposits in human neurodegenerative disease.  相似文献   

14.
Alzheimer's disease is characterised by the degeneration of selected populations of nerve cells that develop filamentous inclusions prior to degeneration. The neuronal inclusions of Alzheimer's disease are made of the microtubule-associated protein tau, in a hyperphosphorylated state. Abundant filamentous tau inclusions are not limited to Alzheimer's disease. They are the defining neuropathological characteristic of frontotemporal dementias, such as Pick's disease, and of progressive supranuclear palsy and corticobasal degeneration. The discovery of mutations in the tau gene in familial frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) has provided a direct link between tau dysfunction and dementing disease. Known mutations produce either a reduced ability of tau to interact with microtubules, or an overproduction of tau isoforms with four microtubule-binding repeats. This leads in turn to the assembly of tau into filaments similar or identical to those found in Alzheimer's disease brain. Several missense mutations also have a stimulatory effect on heparin-induced tau filament formation. Assembly of tau into filaments may be the gain of toxic function that is believed to underlie the demise of affected brain cells.  相似文献   

15.
Human brain encompasses six tau isoforms, containing either three (3R) or four (4R) repeat domains, all of which participate in the pathogenesis of human tauopathies. To investigate the role of tau protein in the disease, transgenic rat models have been created. However, unlike humans, it has been suggested that rat brain expresses only three 4R tau isoforms. Because of the significance of the number of tau isoforms for faithful reproducibility of neurofibrillary pathology in transgenic rat models, we reopened this issue. Surprisingly, our results showed that adult rat brain contains six tau isoforms like humans. Protein expression of 4R tau isoforms was ninefold higher than 3R isoforms. Furthermore, the protein levels of tau isoforms with none, one or two N-terminal inserts were 30%, 35%, and 35% of total tau, respectively. Moreover, amount and ratio of tau isoforms were developmentally regulated. The levels of 4R tau isoforms progressively increased from early postnatal period until adulthood, whereas the expression of 3R tau isoforms reached maximum at P10 and then gradually declined. Our results show that rat brain encompasses full tau proteome similar to humans. These findings support the use of rat as an animal model in human tauopathies research.  相似文献   

16.
Six tau isoforms arise from the alternative splicing of a single gene in humans. Insoluble, filamentous deposits of tau protein occur in a number of neurodegenerative diseases, and in some of these diseases, the deposition of polymers enriched in certain tau isoforms has been documented. Because of these findings, we have undertaken studies on the efficacy of fatty acid-induced polymerization of the individual tau isoforms found in the adult human CNS. The polymerization of each tau isoform in the presence of two concentrations of arachidonic acid indicated that isoforms lacking N-terminal exons e2 and e3 formed small, globular oligomers that did not go on to elongate into straight (SF) or paired helical (PHF) filaments under our buffer conditions. The polymerization of all isoforms containing e2 or e2 and e3 occurred readily at a high arachidonic acid concentration. Conversely, at a lower arachidonic acid concentration, only tau isoforms containing four microtubule binding repeats assembled well. Under all buffer conditions employed, filaments formed from three of the isoforms containing e2 and e3 resembled SFs in morphology but began to form PHF-like structures following extended incubation at 37 degrees C. These results indicate that polymerization of the intact tau molecule may be facilitated by e2 and e3. Moreover, tau isoforms containing three versus four microtubule binding repeats display different assembly properties depending on the solvent conditions employed.  相似文献   

17.
Microtubule-associated protein tau was purified from bovine brain microtubules by either (1) phosphocellulose chromatography, (2) heat treatment at pH 6.4, (3) heat treatment at pH 2.7, (4) heat treatment at pH 2.7 followed by extraction with perchloric acid and precipitation with glycerol, or (5) by precipitation with ammonium sulfate followed by extraction with perchloric acid. All of these tau preparations reacted specifically with antibodies to Alzheimer paired helical filaments. Affinity purified antibodies to tau labeled both Alzheimer neurofibrillary tangles and plaque neurites but not amyloid in Alzheimer brain tissue sections and labeled paired helical filament polypeptides on Western blots. Human brain tau and paired helical filament polypeptides co-migrated on sodium dodecyl sulfate-polyacrylamide gels. These results suggest that tau is a major component of Alzheimer paired helical filaments.  相似文献   

18.
Although one of the priorities in Alzheimer's research is to clarify the filament formation mechanism of the tau protein, it is currently unclear how it is transformed from a normal structure in a neuron. To examine which part and what structural change in the tau protein are involved in its transformation into a pathological entity, the initial in vitro self-aggregation features of each repeat peptide (R1-R4) constituting a three- or four-repeat microtubule-binding domain (3RMBD or 4RMBD) in the tau protein was investigated by measuring both the fluorescence and light scattering (LS) spectra on the same instrument, because these MBD domains constitute the core moiety of the tau paired helical filament (PHF) structure. The conformational features of the R1 and R4 peptides in trifluoroethanol were also investigated by (1)H-NMR and molecular modeling analyses and compared with those of the R2 and R3 peptides. The analyses of the LS spectra clarified (i) the self-aggregation rates of R1-R4, 3RMBD and 4RMBD at a fixed concentration (15 mM), (ii) their minimum concentrations for starting filament extension, and (iii) the concentration dependence of their self-aggregations. The fluorescence analyses showed that the R2 and R3 peptides have high self-aggregation abilities at the extension and nucleation steps, respectively, in their filament formation processes. It was shown that the R2 repeat exhibits a positive synergistic effect on the aggregation of 4RMBD. The R1 and R4 repeats, despite their weak self-aggregation abilities, are necessary for the intact PHF formation of tau MBD, whereas they exerted a negative effect on the R3-driven aggregation of 3RMBD. The conformational analyses showed the importance of the amphipathic conformational features of the R1 to R4 peptides, and the intermolecular disulfide bonding abilities of the R2 and R3 peptides for the PHF formation. On the basis of the present spectral and conformational results, the possible role of each repeat structure in the dimeric formation of MBD at the initial in vitro aggregation stage is discussed.  相似文献   

19.
Frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), an autosomal, dominantly inherited neurodegenerative disorder caused by tau gene mutations, is neuropathologically characterized by intraneuronal filamentous inclusions of hyperphosphorylated tau protein. Biochemical and immunocytochemical analyses have shown that only mutant tau is deposited in patients harboring P301L missense mutation, whereas both wild-type and mutant tau are deposited in patients harboring R406W mutation (Miyasaka, T., Morishima-Kawashima, M., Ravid, R., Kamphorst, W., Nagashima, K., and Ihara, Y. (2001) J. Neuropathol. Exp. Neurol. 60, 872- 884 and Miyasaka, T., Morishima-Kawashima, M., Ravid, R., Heutink, P., van Swieten, J. C., Nagashima, K., and Ihara, Y. (2001) Am. J. Pathol. 158, 373-379). Here we have tested the nucleation ability of monomeric tau and the seeding ability of fibrillogenic nuclei obtained from bacterially expressed human tau. P301L mutant tau showed a higher nucleation ability than wild-type tau, whereas R406W mutant tau shows similar ability to wild-type tau. Surprisingly, fibrillogenic nuclei composed of P301L mutant tau enhanced the assembly of P301L mutant tau into filaments but did not promote filament formation from wild-type tau. In contrast, nuclei composed of R406W mutant tau supported filament formation from both wild-type tau and R406W mutant tau, as did nuclei composed of wild-type tau. Proteolytic analyses indicated that the substructure of nuclei composed of P301L mutant tau was different from that of nuclei composed of wild-type or R406W mutant tau. Thus, the interaction between fibrillogenic nuclei and monomeric protein appears to play an important role in the mechanism of tau filament assembly.  相似文献   

20.
Although one of the priorities in Alzheimer's research is to clarify the filament formation mechanism for the tau protein, it is still unclear how it is transformed from a normal structure in a neuron. To examine the linkage-dependent contribution of each repeat peptide (R1-R4) to filament formation of the three- or four-repeat microtubule-binding domain (MBD) in the tau protein, four two-repeat peptides (R12, R13, R23 and R34) and two three-repeat peptides (R123 and R234) were prepared, and their in vitro self-aggregation was investigated by thioflavin S fluorescence and circular dichroism measurements, and by electron microscopy in neutral buffer (pH 7.6). Comparison of these aggregation behaviors with previous results for single-repeat peptides and wild-type 3RMBD (R134) and 4RMBD (R1234) indicated that (a) the two-repeat R23, not the R2 or R3 single repeat, forms the core structure in self-aggregation of 4RMBD, whereas that of 3RMBD comprises the R3 single repeat, (b) co-existence of R1 and R4 repeats is necessary for the aggregation behavior inherent in 3RMBD and 4RMBD, whereas the R1 or R4 repeat alone functions as a repressor or modifier of the filament formation, (c) 4RMBD aggregation is accompanied by R1-driven transition from random and alpha-helix structures to a beta-sheet structure, whereas 3RMBD aggregation involves three-repeat R134-specific transition from a random structure to an alpha-helix structure without the participation of a beta-sheet structure, and (d) the peptides that include the R1 repeat form a long filament irrespective of the absence or presence of the R4 repeat, whereas those that include the R4 repeat, but not the R1 repeat, form a relatively short filament. To the best of our knowledge, a systematic study of the linkage-dependent contribution of each repeat peptide to the paired helical filament formation of tau MBD has not been carried out previously, and thus the present information is useful for understanding the essence of the filament formation of tau MBD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号