首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oscillatory shear stress occurs at sites of the circulation that are vulnerable to atherosclerosis. Because oxidative stress contributes to atherosclerosis, we sought to determine whether oscillatory shear stress increases endothelial production of reactive oxygen species and to define the enzymes responsible for this phenomenon. Bovine aortic endothelial cells were exposed to static, laminar (15 dyn/cm2), and oscillatory shear stress (+/-15 dyn/cm2). Oscillatory shear increased superoxide (O2.-) production by more than threefold over static and laminar conditions as detected using electron spin resonance (ESR). This increase in O2*- was inhibited by oxypurinol and culture of endothelial cells with tungsten but not by inhibitors of other enzymatic sources. Oxypurinol also prevented H2O2 production in response to oscillatory shear stress as measured by dichlorofluorescin diacetate and Amplex Red fluorescence. Xanthine-dependent O2*- production was increased in homogenates of endothelial cells exposed to oscillatory shear stress. This was associated with decreased xanthine dehydrogenase (XDH) protein levels and enzymatic activity resulting in an elevated ratio of xanthine oxidase (XO) to XDH. We also studied endothelial cells lacking the p47phox subunit of the NAD(P)H oxidase. These cells exhibited dramatically depressed O2*- production and had minimal XO protein and activity. Transfection of these cells with p47phox restored XO protein levels. Finally, in bovine aortic endothelial cells, prolonged inhibition of the NAD(P)H oxidase with apocynin decreased XO protein levels and prevented endothelial cell stimulation of O2*- production in response to oscillatory shear stress. These data suggest that the NAD(P)H oxidase maintains endothelial cell XO levels and that XO is responsible for increased reactive oxygen species production in response to oscillatory shear stress.  相似文献   

2.
3.
Initial adhesion of B16 melanoma variants to non-activated endothelial cells is mediated through specific interaction between GM3 (NeuAc alpha 2----3Gal beta 1----4Glc beta 1----Cer) expressed on melanoma cells and lactosylceramide (LacCer, Gal beta 1----4Glc beta 1----Cer) expressed on endothelial cells. This adhesion is predominant over integrin- or lectin-mediated adhesion in a dynamic flow experimental system employing a parallel plate laminar flow chamber (Lawrence, M. B., Smith, C. W., Eskin, S. G., and McIntire, L. V. (1990) Blood 75, 227-237). In this system, a tumor cell suspension flows over a glass plate coated with glycosphingolipid, lectin, or fibronectin, and adhesion is recorded on videotape. These conditions were designed to mimic the microvascular environment in which tumor metastatic deposition takes place. In contrast, lectin- and fibronectin-based mechanisms are predominant in previously used static adhesion systems. Under static conditions, the relative degree of adhesion of the four B16 variants to endothelial cells or to LacCer-coated plates was the same as their relative degree of GM3 expression (i.e. BL6 approximately F10 greater than F1 greater than WA4), and adhesion was inhibited in the presence of methyl-beta-lactoside, or liposomes containing LacCer or GM3. Adhesion was also inhibited by pretreatment of B16 cells with anti-GM3 antibody DH2 or sialidase and by pretreatment of endothelial cells with anti-LacCer antibody T5A7. Under dynamic flow conditions, WA4 cells did not adhere to mouse endothelial cells at high shear stress (greater than 2.5 dynes/cm2) but did adhere at lower shear stress. In contrast, BL6 and F10 cells adhered strongly at both low and high shear stress. BL6 cell adhesion to endothelial cells at both low and high shear stress was inhibited in the presence of antibody DH2, ethyl-beta-lactoside, or lactose, as well as by pretreatment of BL6 cells with sialidase. Thus, some clear differences, as well as similarities, in cell adhesion under static versus dynamic conditions are demonstrated. These findings suggest that melanoma cell adhesion to endothelial cells, based on GM3/LacCer interaction, initiates metastatic deposition, which may trigger a series of "cascade" reactions leading to activation of endothelial cells and expression of Ig family or selectin receptors, thereby promoting adhesion and migration of tumor cells.  相似文献   

4.
Shear stress plays a significant role in endothelial cell biology and atherosclerosis development. Previous work by our group has shown that fluid flow stimulates important functional changes in cells through protein expression regulation. Peroxiredoxins (PRX) are a family of antioxidant enzymes but have yet to be investigated in response to shear stress. Studies have shown that oscillatory shear stress (OS) increases reactive oxygen species (ROS) levels in endothelial cells, whereas laminar shear stress (LS) blocks this response. We hypothesized that PRX are responsible for the anti-oxidative effect of LS. To test this hypothesis, bovine aortic endothelial cells (BAEC) were subjected to LS (15 dyn/cm(2)), OS (+/-5 dyn/cm(2), 1 Hz), or static conditions for 24 h. Using Western blot and immunofluorescence staining, all six isoforms of PRX were identified in BAEC. When compared with OS and static, exposure to chronic LS up-regulated PRX 1 levels intracellularly. LS also increased expression of PRX 5 relative to static controls, but not OS. PRX exhibited broad subcellular localization, with distribution in the cytoplasm, Golgi, mitochondria, and intermediate filaments. In addition, PRX 1 knock down, using specific small interference RNA, attenuated LS-dependent reactive oxygen species reduction in BAEC. However, PRX 5 depletion did not. Together, these results suggest that PRX 1 is a novel mechanosensitive antioxidant, playing an important role in shear-dependent regulation of endothelial biology and atherosclerosis.  相似文献   

5.
We previously demonstrated that laminar shear stress enhances human coronary artery endothelial cell (HCAEC) wound closure via the mechanisms of cell spreading and migration. Because cell-cell junctional proteins such as vascular endothelial cell cadherin (VE-cadherin) are critical to cell-cell adhesion and motility, we tested the hypothesis that modulation of VE-cadherin expression under shear stress may be linked to this enhancement in wound closure. HCAEC monolayers were preconditioned to attain cellular alignment by shearing at 12 dynes/cm(2) for 18 hr in a parallel-plate flow chamber. Subsequently, they were divided into the following three groups: (i) control; (ii) treated with anti-cadherin-5 antibody; or (iii) treated with the calcium chelating agent EGTA. Next, the monolayers were wounded with a metal spatula and resheared at 20 dynes/cm(2) or left static. Time-lapse imaging was performed during the first 3 hr after imposition of these conditions. Immunocytochemistry or Western blot analyses for VE-cadherin expression were performed on all wounded monolayers. Deconvolution microscopy, three-dimensional cell-cell junctional reconstruction images, and histogram analyses of interendothelial junction signal intensities were performed on cells at the wound edge of a monolayer. Under shear, HCAEC demonstrated increased VE-cadherin immunofluorescence and protein expression despite an enhancement in wound closure compared with static conditions. In separate experiments, application with anti-cadherin-5 antibody or treatment with EGTA attenuated VE-cadherin expression and further enhanced wound closure compared with control shear and all static conditions. In addition, the pattern of VE-cadherin localization with these treatments became more intracellular and nuclear in appearance. These findings of changes in this junctional adhesion protein expression and localization may further our understanding of laminar shear stress-induced endothelial repair in the coronary circulation.  相似文献   

6.
We examined the hypothesis that certain actin binding proteins might be upregulated by laminar shear stress (LSS) and could contribute to endothelial wound healing. Analysis of mRNA expression profiles of human umbilical vein endothelial cells under static and LSS-exposed conditions provided a list of LSS-induced actin binding proteins including synaptopodin (SYNPO) whose endothelial expression has not been previously reported. Additional studies demonstrated that SYNPO is a key mediator of endothelial wound healing because small interfering RNA-mediated suppression of SYNPO attenuated wound closure under LSS whereas overexpression of exogenous SYNPO enhanced endothelial wound closure in the absence of LSS. This study suggests that LSS-induced actin binding proteins including SYNPO may play a critical role in the endothelial wound healing stimulated by LSS.  相似文献   

7.
The vascular endothelium lining the luminal surface of all blood vessels is constantly exposed to shear stress exerted by the flowing blood. Blood flow with high laminar shear stress confers protection by activation of antiatherogenic, antithrombotic and anti-inflammatory proteins, whereas low or oscillatory shear stress may promote endothelial dysfunction, thereby contributing to cardiovascular disease. Despite the usefulness of proteomic techniques in medical research, however, there are relatively few reports on proteome analysis of cultured vascular endothelial cells employing conditions that mimic in vivo shear stress attributes. This review focuses on the proteome studies that have utilized cultured endothelial cells to identify molecular mediators of shear stress and the roles they play in the regulation of endothelial function, and their ensuing effect on vascular function in general. It provides an overview on current strategies in shear stress-related proteomics and the key proteins mediating its effects which have been characterized so far.  相似文献   

8.
Shear stress is one of mechanical constraints which are exerted by blood flow on endothelial cells (ECs). To adapt to shear stress, ECs align in the direction of flow through adherens junction (AJ) remodeling. However, mechanisms regulating ECs alignment under shear stress are poorly understood. The scaffold protein IQ domain GTPase activating protein 1 (IQGAP1) is a scaffold protein which couples cell signaling to the actin and microtubule cytoskeletons and is involved in cell migration and adhesion. IQGAP1 also plays a role in AJ organization in epithelial cells. In this study, we investigated the potential IQGAP1 involvement in the endothelial cells alignment under shear stress. Progenitor-derived endothelial cells (PDECs), transfected (or not) with IQGAP1 small interfering RNA, were exposed to a laminar shear stress (1.2 N/m2) and AJ proteins (VE-cadherin and β-catenin) and IQGAP1 were labeled by immunofluorescence. We show that IQGAP1 is essential for ECs alignment under shear stress. We studied the role of IQGAP1 in AJs remodeling of PDECs exposed to shear stress by studying cell localization and IQGAP1 interactions with VE-cadherin and β-catenin by immunofluorescence and Proximity Ligation Assays. In static conditions, IQGAP1 interacts with VE-cadherin but not with β-catenin at the cell membrane. Under shear stress, IQGAP1 lost its interaction from VE-cadherin to β-catenin. This “switch” was concomitant with the loss of β-catenin/VE-cadherin interaction at the cell membrane. This work shows that IQGAP1 is essential to ECs alignment under shear stress and that AJ remodeling represents one of the mechanisms involved. These results provide a new approach to understand ECs alignment under to shear stress.  相似文献   

9.
10.
A new cell culture system has been developed that reflects the vascular microenvironment. By means of this system the cultured cells are exposed not only to shear stress by the circulating culture medium, but also to an oxygen concentration gradient and certain critical blood components such as low-density lipoprotein (LDL) and monocytes. DNA microarray analysis was performed for human umbilical vein endothelial cells cultured in this system in the absence and presence of laminar flow at a low shear stress, 0.2 dyn/cm(2). In addition to shear stress, either an oxygen concentration gradient, or LDL (1 mg/ml), or both were applied. Many Nrf-2-regulating genes, such as heme oxygenase 1, NAD(P)H quinone oxidoreductase 1, solute carrier family 7 No. 11, and glutamate-cysteine ligase modifier subunit, were induced by laminar flow at very low shear stress regardless of the additional conditions. Certain genes were specifically affected by exposure to the oxygen gradient and/or LDL under shear stress, but the degree was very low. These results suggest that shear stress is the most critical factor affecting gene expression in endothelial cells and that Nrf-2-regulating proteins may contribute to protecting endothelial cells against other vascular stress. This system should provide highly relevant and useful information about both vascular physiology and pathology, in the latter on such urgent matters as the specific steps involved in atherogenesis.  相似文献   

11.
The luminal surface of rat lung microvascular endothelial cells in situ is sensitive to changing hemodynamic parameters. Acute mechanosignaling events initiated in response to flow changes in perfused lung microvessels are localized within specialized invaginated microdomains called caveolae. Here we report that chronic exposure to shear stress alters caveolin expression and distribution, increases caveolae density, and leads to enhanced mechanosensitivity to subsequent changes in hemodynamic forces within cultured endothelial cells. Flow-preconditioned cells expressed a fivefold increase in caveolin (and other caveolar-residing proteins) at the luminal surface compared with no-flow controls. The density of morphologically identifiable caveolae was enhanced sixfold at the luminal cell surface of flow-conditioned cells. Laminar shear stress applied to static endothelial cultures (flow step of 5 dyn/cm2), enhanced the tyrosine phosphorylation of luminal surface proteins by 1.7-fold, including caveolin-1 by 1.3-fold, increased Ser1179 phosphorylation of endothelial nitric oxide synthase (eNOS) by 2.6-fold, and induced a 1.4-fold activation of mitogen-activated protein kinases (ERK1/2) over no-flow controls. The same shear step applied to endothelial cells preconditioned under 10 dyn/cm2 of laminar shear stress for 6 h and induced a sevenfold increase of total phosphotyrosine signal at the luminal endothelial cell surface enhanced caveolin-1 tyrosine phosphorylation 5.8-fold and eNOS phosphorylation by 3.3-fold over static control values. In addition, phosphorylated caveolin-1 and eNOS proteins were preferentially localized to caveolar microdomains. In contrast, ERK1/2 activation was not detected in conditioned cells after acute shear challenge. These data suggest that cultured endothelial cells respond to a sustained flow environment by directing caveolae to the cell surface where they serve to mediate, at least in part, mechanotransduction responses.  相似文献   

12.
Adipose tissue is an endocrine organ involved in storage and release of energy but also in regulation of energy metabolism in other organs via secretion of peptide and protein hormones (adipokines). Especially visceral adipose tissue has been implicated in the development of metabolic syndrome and type 2 diabetes. Factors secreted by the stromal-vascular fraction contribute to the secretome and modulate adipokine secretion by adipocytes. Therefore, we aimed at the characterization of the adipose tissue secretome rather than the adipocyte cell secretome. The presence of serum proteins and intracellular proteins from damaged cells, released during culture, may dramatically influence the dynamic range of the sample and thereby identification of secreted proteins. Part of the study was therefore dedicated to the influence of the culture setup on the quality of the final sample. Visceral adipose tissue was cultured in five experimental setups, and the quality of resulting samples was evaluated in terms of protein concentration and protein composition. The best setup involved one wash after the 1st h in culture followed by two or three additional washes within an 8-h period, starting after overnight culture. Thereafter tissue was maintained in culture for an additional 48-114 h to obtain the final sample. For the secretome experiment, explants were cultured in media containing L-[(13)C(6),(15)N(2)]lysine to validate the origin of the identified proteins (adipose tissue- or serum-derived). In total, 259 proteins were identified with > or =99% confidence. 108 proteins contained a secretion signal peptide of which 70 incorporated the label and were considered secreted by adipose tissue. These proteins were classified into five categories according to function. This is the first study on the (human) adipose tissue secretome. The results of this study contribute to a better understanding of the role of adipose tissue in whole body energy metabolism and related diseases.  相似文献   

13.
Hemodynamic forces play an active role in vascular pathologies, particularly in relation to the localization of atherosclerotic lesions. It has been established that low shear stress combined with cyclic reversal of flow direction (oscillatory shear stress) affects the endothelial cells and may lead to an initiation of plaque development. The aim of the study was to analyze the effect of hemodynamic conditions in arterial segments perfused in vitro in the absence of other stimuli. Left common porcine carotid segments were mounted into an ex vivo arterial support system and perfused for 3 days under unidirectional high and low shear stress (6 +/- 3 and 0.3 +/- 0.1 dyn/cm(2)) and oscillatory shear stress (0.3 +/- 3 dyn/cm(2)). Bradykinin-induced vasorelaxation was drastically decreased in arteries exposed to oscillatory shear stress compared with unidirectional shear stress. Impaired nitric oxide-mediated vasodilation was correlated to changes in both endothelial nitric oxide synthase (eNOS) gene expression and activation in response to bradykinin treatment. This study determined the flow-mediated effects on native tissue perfused with physiologically relevant flows and supports the hypothesis that oscillatory shear stress is a determinant factor in early stages of atherosclerosis. Indeed, oscillatory shear stress induces an endothelial dysfunction, whereas unidirectional shear stress preserves the function of endothelial cells. Endothelial dysfunction is directly mediated by a downregulation of eNOS gene expression and activation; consequently, a decrease of nitric oxide production and/or bioavailability occurs.  相似文献   

14.
15.
Nasal epithelial cells secret mucins and are exposed in vivo to airflow-induced mechanophysical stresses, including wall shear stress (WSS), temperature, and humidity. In this work, human nasal epithelial cells cultured under air-liquid interface conditions were subjected to fields of airflow-induced oscillatory WSS at different temperature and humidity conditions. Changes in mucin secretion due to WSS were measured and the role of the cytoskeleton in mucin secretion was explored. Mucin secretion significantly increased in response to WSS in a magnitude-dependent manner with respect to static cultures and independently of the airflow temperature and humidity. In static cultures, mucin secretion decreased at high humidity with or without elevation of the temperature with respect to cultures at a comfortable climate. In cultures exposed to WSS, mucin secretion increased at high temperature with respect to cultures at comfortable climate conditions. The polymerization of actin microfilaments was shown to increase mucin secretion under WSS, whereas the dynamics of microtubule polymerization did not affect secretion. In conclusion, the data in this study show that mucin secretion is sensitive to oscillatory WSS as well as high temperature and humidity conditions.  相似文献   

16.
Endothelial cells respond to fluid shear stress through mechanotransduction responses that affect their cytoskeleton and cell-cell contacts. Here, endothelial cells were grown as monolayers on arrays of microposts and exposed to laminar or disturbed flow to examine the relationship among traction forces, intercellular forces, and cell-cell junctions. Cells under laminar flow had traction forces that were higher than those under static conditions, whereas cells under disturbed flow had lower traction forces. The response in adhesion junction assembly matched closely with changes in traction forces since adherens junctions were larger in size for laminar flow and smaller for disturbed flow. Treating the cells with calyculin-A to increase myosin phosphorylation and traction forces caused an increase in adherens junction size, whereas Y-27362 cause a decrease in their size. Since tugging forces across cell-cell junctions can promote junctional assembly, we developed a novel approach to measure intercellular forces and found that these forces were higher for laminar flow than for static or disturbed flow. The size of adherens junctions and tight junctions matched closely with intercellular forces for these flow conditions. These results indicate that laminar flow can increase cytoskeletal tension while disturbed flow decreases cytoskeletal tension. Consequently, we found that changes in cytoskeletal tension in response to shear flow conditions can affect intercellular tension, which in turn regulates the assembly of cell-cell junctions.  相似文献   

17.
We previously demonstrated that physiologic levels of shear stress enhance endothelial repair. Cell spreading and migration, but not proliferation, were the major mechanisms accounting for the increases in wound closure rate (Albuquerque et al., 2000, Am. J. Physiol. Heart Circ. Physiol. 279, H293-H302). However, the patterns and movements of beta-actin filaments responsible for cell motility and translocation in human coronary artery endothelial cells (HCAECs) have not been previously investigated under physiologic flow. HCAECs transfected with beta-actin-GFP were cultured on type I collagen-coated coverslips. Confluent cell monolayers were subjected to laminar shear stress of 12 dynes/cm(2) for 18 h in a parallel-plate flow chamber to attain cellular alignment and then wounded by scraping with a metal spatula and subsequently exposed to a laminar shear stress of 20 dynes/cm(2) (S-W-sH) or static (S-W-sT) conditions. Time-lapse imaging and deconvolution microscopy was performed during the first 3 h after imposition of S-W-sH or S-W-sT conditions. The spatial and temporal dynamics of beta-actin-GFP motility and translocation during wound closure in HCAEC monolayers were analyzed under both conditions. Compared with HCAEC under S-W-sT conditions, our data show that HCAEC under S-W-sH conditions demonstrated greater beta-actin-GFP motility, filament and clumping patterns, and filament arcs used during cellular attachment and detachment. These findings demonstrate intriguing patterns of beta-actin organization and movement during wound closure in HCAEC exposed to physiological flow.  相似文献   

18.
The migration of endothelial cells (ECs) plays an important role in vascular remodeling and regeneration. ECs are constantly subjected to shear stress resulting from blood flow and are able to convert mechanical stimuli into intracellular signals that affect cellular behaviors and functions. The aim of this study is to elucidate the effects of Rac1, which is the member of small G protein family, on EC migration under different laminar shear stress (5.56, 10.02, and 15.27 dyn/cm2). The cell migration distance under laminar shear stress increased significantly than that under the static culture condition. Especially, under relative high shear stress (15.27 dyn/cm2) there was a higher difference at 8 h (P < 0.01) and 2 h (P < 0.05) compared with static controls. RT-PCR results further showed increasing mRNA expression of Rac1 in ECs exposed to laminar shear stress than that exposed to static culture. Using plasmids encoding the wild-type (WT), an activated mutant (Q61L), and a dominant-negative mutant (T17N), plasmids encoding Rac1 were transfected into EA.hy 926 cells. The average net migration distance of Rac1Q61L group increased significantly, while Rac1T17N group decreased significantly in comparison with the static controls. These results indicated that Rac1 mediated shear stress-induced EC migration. Our findings conduce to elucidate the molecular mechanisms of EC migration induced by shear stress, which is expected to understand the pathophysiological basis of wound healing in health and diseases.  相似文献   

19.
Vascular endothelial cells are continuously exposed to hemodynamic shear stress. Intensity and type of shear stress are highly relevant to vascular physiology and pathology. Here, we modeled shear stress distribution in a tissue culture well (R = 17.5 mm, fill volume 2 ml) under orbital translation using computational fluid dynamics with the finite element method. Free surface distribution, wall shear stress, inclination angle, drag force, and oscillatory index on the bottom surface were modeled. Obtained results predict nonuniform shear stress distribution during cycle, with higher oscillatory shear index, higher drag force values, higher circular component, and larger inclination angle of the shear stress at the periphery of the well compared with the center of the well. The oscillatory index, inclination angle, and drag force are new quantitative parameters modeled in this system, which provide a better understanding of the hydrodynamic conditions experienced and reflect the pulsatile character of blood flow in vivo. Validation experiments revealed that endothelial cells at the well periphery aligned under flow and increased Kruppel-like Factor 4 (KLF-4), cyclooxygenase-2 (COX-2) expression and endothelial nitric oxide synthase (eNOS) phosphorylation. In contrast, endothelial cells at the center of the well did not show clear directional alignment, did not induce the expression of KLF-4 and COX-2 nor increased eNOS phosphorylation. In conclusion, this improved computational modeling predicts that the orbital shaker model generates different hydrodynamic conditions at the periphery versus the center of the well eliciting divergent endothelial cell responses. The possibility of generating different hydrodynamic conditions in the same well makes this model highly attractive to study responses of distinct regions of the same endothelial monolayer to different types of shear stresses thereby better reflecting in vivo conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号