首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
No-choice tests were conducted to determine whether fruit of southern highbush blueberry, Vaccinium corymbosum L., hybrids are hosts for three invasive tephritid fruit flies in Hawaii. Fruit of various blueberry cultivars was exposed to gravid female flies of Bactrocera dorsalis Hendel (oriental fruit fly), Ceratitis capitata (Wiedemann) (Mediterranean fruit fly), or Bactrocera cucurbitae Coquillet (melon fly) in screen cages outdoors for 6 h and then held on sand in the laboratory for 2 wk for pupal development and adult emergence. Each of the 15 blueberry cultivars tested were infested by oriental fruit fly and Mediterranean fruit fly, confirming that these fruit flies will oviposit on blueberry fruit and that blueberry is a suitable host for fly development. However, there was significant cultivar variation in susceptibility to fruit fly infestation. For oriental fruit fly, 'Sapphire' fruit produced an average of 1.42 puparia per g, twice as high as that of the next most susceptible cultivar 'Emerald' (0.70 puparia per g). 'Legacy', 'Biloxi', and 'Spring High' were least susceptible to infestation, producing only 0.20-0.25 oriental fruit fly puparia per g of fruit. For Mediterranean fruit fly, 'Blue Crisp' produced 0.50 puparia per g of fruit, whereas 'Sharpblue' produced only 0.03 puparia per g of fruit. Blueberry was a marginal host for melon fly. This information will aid in development of pest management recommendations for blueberry cultivars as planting of low-chill cultivars expands to areas with subtropical and tropical fruit flies. Planting of fruit fly resistant cultivars may result in lower infestation levels and less crop loss.  相似文献   

2.
Culled bananas (dwarf 'Brazilian', 'Grand Nain', 'Valery', and 'Williams') sampled from packing houses on the islands of Hawaii, Kauai, Maui, Molokai, and Oahu identified specific "faults" that were at risk from oriental fruit fly, Bactrocera dorsalis (Hendel), infestation. Faults at risk included bunches with precociously ripened bananas, or bananas with tip rot, fused fingers, or damage that compromised skin integrity to permit fruit fly oviposition into fruit flesh. No Mediterranean fruit fly, Ceratitis capitata (Wiedemann), or melon fly, B. cucurbitae (Coquillett), infestations were found in culled banana samples. Field infestation tests indicated that mature green bananas were not susceptible to fruit fly infestation for up to 1 wk past the scheduled harvest date when attached to the plant or within 24 h after harvest. Recommendations for exporting mature green bananas from Hawaii without risk of fruit fly infestation are provided. The research reported herein resulted in a USDA-APHIS protocol for exporting mature green bananas from Hawaii.  相似文献   

3.
A novel, visually-attractive bait station was developed in Hawaii for application of insecticidal baits against oriental fruit fly, Bactrocera dorsalis (Hendel), melon fly, Bactrocera cucurbitae (Coquillett), and Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (all Diptera: Tephritidae). The bait station developed represents a supernormal visual stimulus of papaya foliage and takes advantage of the flies' strong response to the high light-reflecting properties of yellow color and of their need for shelter, while fully protecting the bait against rainfall. Field studies revealed that the behavioral response of female fruit flies, in particular C. capitata and B. cucurbitae , to yellow-painted bait stations sprayed with GF-120 NF Naturalyte Fruit Fly Bait was significantly enhanced compared with similarly sprayed bait stations that mimicked the green color of fully grown papaya leaves. Field studies conducted with B. cucurbitae indicated that the period of bait attractiveness can be extended for at least 1 week after bait application due to the rain-fastness properties of the bait stations and the use of a visually-attractive color. Our studies provide the behavioral basis for the development of improved attract-and-kill bait stations for fruit flies in Hawaii. These devices also provide a standardized way of evaluating bait spray formulations, thus allowing for proper comparisons over time, across species, and among geographical areas.  相似文献   

4.
Ammonia-releasing substances are known to play an important role in fruit fly (Diptera: Tephritidae) attraction to food sources, and this information has been exploited for the development of effective synthetic food-based lures and insecticidal baits. In field studies conducted in Hawaii, we examined the behavioural response of wild female oriental fruit fly (Bactrocera dorsalis (Hendel)), melon fly (B. cucurbitae (Coquillett)), and Mediterranean fruit fly (Ceratitis capitata (Wiedemann)) to spinosad-based GF-120 NF Naturalyte Fruit Fly Bait(?) formulated to contain either 0, 1 or 2% ammonium acetate. Use of visually-attractive yellow bait stations for bait application in the field allowed for proper comparisons among bait formulations. Field cage tests were also conducted to investigate, using a comparative behavioural approach, the effects of female age and protein starvation on the subsequent response of F1 generation B. cucurbitae and B. dorsalis to the same three bait formulations that were evaluated in the field. Our field results indicate a significant positive effect of the presence, regardless of amount, of AA in GF-120 for B. dorsalis and B. cucurbitae. For C. capitata, there was a significant positive linear relationship between the relative amounts of AA in bait and female response. GF-120 with no AA was significantly more attractive to female C. capitata, but not to female B. dorsalis or B. cucurbitae, than the control treatment. Our field cage results indicate that the effects of varying amounts of AA present in GF-120 can be modulated by the physiological stage of the female flies and that the response of female B. cucurbitae to GF-120 was consistently greater than that of B. dorsalis over the various ages and levels of protein starvation regimes evaluated. Results are discussed in light of their applications for effective fruit fly suppression.  相似文献   

5.
应用种特异性PCR技术快速鉴定辣椒实蝇   总被引:2,自引:0,他引:2  
黄振  陈韶萍  谢婧  郭琼霞 《昆虫学报》2015,58(4):460-466
【目的】辣椒实蝇 Bactrocera latifrons (Hendel)为我国重要的检疫性有害生物,其寄主范围广泛,危害严重。由于传统鉴定方法受到饲养周期、饲养条件、虫态等因素的限制,使得果蔬进出口贸易通关速度、疫情快速鉴定受到较大的影响,因此迫切需要开发关于实蝇的快速鉴定识别的技术。【方法】本研究基于mtDNA COI序列设计了一对能够准确鉴定辣椒实蝇的种特异性引物FL680和RL1057,选用辣椒实蝇作为阳性对照,选用番石榴实蝇B. correcta (Bezzi)、桔小实蝇 B. dorsalis (Hendel)和颜带实蝇 B. cilifer (Hendel)等20种实蝇作为阴性对照,进行PCR扩增并将PCR产物进行电泳检测。【结果】仅目标种辣椒实蝇能够扩增出清晰且单一的约378 bp的条带,其余实蝇种类均未出现条带。将本实验建立的种特异性PCR(SS-PCR)鉴定方法应用于实际检疫工作中并得到了验证,表明该方法具有强的种特异性。【结论】本文提出辣椒实蝇快速鉴定识别技术可应用于实蝇的疫情监测和口岸的检疫检测工作。  相似文献   

6.
Spinosad and phloxine B are two more environmentally friendly alternative toxicants to malathion for use in bait sprays for tephritid fruit fly suppression or eradication programs. Laboratory tests were conducted to assess the relative toxicity of these two toxicants for melon fly, Bactrocera cucurbitae Coquillett; oriental fruit fly, Bactrocera dorsalis Hendel; and Mediterranean fruit fly, Ceratitis capitata (Wiedemann) females. Field tests also were conducted with all three species to compare these toxicants outdoors under higher light and temperature conditions. In laboratory tests, spinosad was effective at much lower concentrations with LC50 values at 5 h of 9.16, 9.03, and 4.30 compared with 250.0, 562.1, and 658.9 for phloxine B (27, 62, and 153 times higher) for these three species, respectively. At 16 ppm spinosad, LT50 values were lower for all three species (significantly lower for C. capitata and B. dorsalis) than 630 ppm phloxine B LT50 values. At 6.3 ppm spinosad, the LT50 value for C. capitata (3.94) was still significantly less than the 630 ppm phloxine B LT50 value (6.33). For all species, the 100 ppm spinosad concentrations gave LT50 values of < 2 h. In comparison among species, C. capitata was significantly more sensitive to spinosad than were B. cucurbitae or B. dorsalis, whereas B. cucurbitae was significantly more sensitive to phloxine B than were C. capitata or B. dorsalis. LC50 values were reduced for both toxicants in outdoor tests, with greater reductions for phloxine B than for spinosad for B. dorsalis and B. cucurbitae. Fly behavior, though, is likely to keep flies from being exposed to maximum possible outdoor light intensities. Comparable levels of population suppression for any of the three species tested here will require a much higher concentration of phloxine B than spinosad in the bait.  相似文献   

7.
Bactrocera latifrons (Hendel) (Diptera: Tephritidae) is a quarantine pest of several solanaceous crops and tropical fruits that are treated using irradiation before export from Hawaii to the U.S. mainland. A dose of 150 Gy is approved as a generic irradiation treatment for tephritid fruit flies, but no confirmation of efficacy has been reported for B. latifrons. Dose response of B. latifrons was used to determine the most tolerant life stage and identify a dose that prevents adult emergence. Data indicated doses (plus 95% confidence limits) required to prevent adult emergence of 13.4 (10.0-29.6), 17.5 (14.4-24.8), and 88.1 (68.0-133.8) Gy for eggs, first instars and third instars, respectively. In large-scale confirmatory tests of the most radiotolerant life stage, a radiation dose of 150 Gy applied to B. latifrons late third instars in bell peppers (Capsicum annuum L.) resulted in no survival to the adult stage of 157,112 individuals, a treatment efficacy consistent with Probit 9-level mortality. The relative radiotolerance of melon fly Bactrocera cucurbitae Coquillet, and B. latifrons also was tested using a diagnostic radiation dose of 30 Gy. In diet, a mean of 6.9% of irradiated B. cucurbitae third instars developed to the adult stage, whereas no B. latifrons third instars developed to adults. In papaya, Carica papaya L., fruit, a mean of 3.3% of irradiated B. cucurbitae third instars developed to the adult stage, whereas 0.5% B. latifrons third instars developed to adults. This report supports the use of a generic radiation dose of 150 Gy in quarantine scenarios to control tephritid fruit flies on fresh commodities.  相似文献   

8.
Methyl eugenol (4-allyl-1,2-dimethoxybenzene-carboxylate) and cue-lure [4-(p-acetoxyphenyl)-2-butanone] are highly attractive kairomone lures to oriental fruit fly, Bactrocera dorsalis (Hendel), and melon fly, B. cucurbitae (Coquillett), respectively. Plastic bucket traps were evaluated as dispensers for methyl eugenol and cue-lure for suppression of the 2 fruit flies in Hawaii. Methyl eugenol and cue-lure mixtures were compared with pure methyl eugenol or cue-lure over 4 seasons. B. dorsalis captures differed significantly with treatment and season. B. dorsalis captures with 100% methyl-eugenol were significantly greater than all other treatments (25, 50, and 75%). B. cucurbitae captures also differed significantly with treatment but not with season. Captures with 100, 75, and 50% cue-lure were not significantly different. Bucket traps baited with cue-lure (+ malathion) and weathered under Hawaiian climatic conditions were attractive to B. cucurbitae up to 8 wk. Two methyl eugenol dispensers (canec disks and Min-U-Gel) were compared with bucket traps. Dispensers (methyl eugenol + malathion) were weathered for 2-16 wk under Hawaiian climatic conditions and bioassayed during summer and winter. Initially, captures of B. dorsalis were not significantly different for the 3 dispensers. Bucket traps and canec disks were most resistant to weather, remaining attractive to B. dorsalis flies up to 16 wk. Min-U-Gel was least resistant, losing attractiveness to B. dorsalis flies within 2 wk. On the basis of performance, bucket traps and canec disks were equally long-lived up to 14 wk; thereafter, bucket traps were slightly more attractive during winter. Canec disks were cheapest, but on the basis of possible environmental concerns, bucket traps may be the best all-around choice for areawide suppression of fruit flies.  相似文献   

9.
More than 47,000 mature fruits of nine different varieties of rambutan (Nephelium lappaceum L.) were harvested from orchards in Hawaii to assess natural levels of infestation by tephritid fruit flies and other internal feeding pests. Additionally, harvested, mature fruits of seven different rambutan varieties were artificially infested with eggs or first-instars of Mediterranean fruit fly, Ceratitis capitata (Wiedemann), or oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) to assess host suitability. When all varieties were combined over two field seasons of sampling, fruit infestation rates were 0.021% for oriental fruit fly, 0.097% for Cryptophlebia spp. (Lepidoptera: Tortricidae), and 0.85% for pyralids (Lepidoptera). Species of Cryptophlebia included both C. illepida (Butler), the native Hawaiian species, and C. ombrodelta (Lower), an introduced species from Australia. Cryptophlebia spp. had not previously been known to attack rambutan. The pyralid infestation was mainly attributable to Cryptoblabes gnidiella (Milliere), a species also not previously recorded on rambutan in Hawaii. Overall infestation rate for other moths in the families Blastobasidae, Gracillariidae, Tineidae, and Tortricidae was 0.061%. In artificially infested fruits, both species of fruit fly showed moderately high survivorship for all varieties tested. Because rambutan has such low rates of infestation by oriental fruit fly and Cryptophlebia spp., the two primary internal-feeding regulatory pests of rambutan in Hawaii, it may be amenable to the alternative treatment efficacy approach to postharvest quarantine treatment.  相似文献   

10.
Invasive fruit flies (Diptera: Tephritidae) pose a global threat to agriculture through direct damage to food crops and the accompanying trade restrictions that often result. Early detection is vital to controlling fruit flies, because it increases the probability of limiting the growth and spread of the invasive population and thus may greatly reduce the monetary costs required for eradication or suppression. Male-specific lures are an important component of fruit fly detection, and three such lures are used widely: trimedlure (TML), cue lure (CL), and methyl eugenol (ME), attractive to Mediterranean fruit fly, Ceratitis capitata (Wiedemann); melon fly, Bactrocera cucurbitae (Coquillett); and oriental fruit fly, Bactrocera dorsalis (Hendel), respectively. In California, Florida, and Texas, the two Bactrocera lures are applied to separate species-specific traps as liquids (with a small amount of the insecticide naled added), whereas TML is delivered as a solid plug in another set of traps. Thus, the detection protocol involves considerable handling time as well as potential contact with a pesticide. The purpose of this study was to compare trap capture between liquid male lures and "trilure" wafers that contain TML, ME, raspberry ketone (RK, the hydroxy equivalent of CL), and the toxicant DDVP embedded within a solid matrix. Field studies were conducted in a Hawaiian coffee (Coffea arabica L.) field where the three aforementioned species co-occur, showed that the wafer captured at least as many flies as the liquid baits for all three species. This same result was obtained in comparisons using both fresh and aged (6-wk) baits. Moreover, the wafers performed as well as the single-lure traps in an ancillary experiment in which TML plugs were substituted for liquid TML. Additional experiments demonstrated explicitly that the presence of ME and RK had no effect on captures of C. capitata males and similarly that the presence of TML had no effect on the capture of B. cucurbitae or B. dorsalis males.  相似文献   

11.
The feeding toxicity of the natural insecticide spinosad in Provesta protein bait was evaluated for three economically important fruit fly species, the Mediterranean fruit fly, Ceratitis capitata (Wiedemann); the melon fly, Bactrocera cucurbitae Coquillett; and the oriental fruit fly, Bactrocera dorsalis Hendel. Both females and males were evaluated. Spinosad was remarkably similar in toxicity to all three fruit fly species. Male C. capitata (24 h LC50 values and 95% fiducial limits = 2.8 [2.60-3.0] mg/liter spinosad) were significantly, although only slightly more susceptible to spinosadthan females (4.2 [3.8-4.6] mg/liter). Male (5.5 [4.7-6.6] mg/liter) andfemale (4.3 [3.7-4.9] mg/liter) B. cucurbitae were equally susceptible to spinosad. Female (3.3 [3.1-3.6] mg/liter) and male (3.1 [2.9-3.3] mg/liter) B. dorsalis also were equally susceptible to spinosad. Provesta bait containing spinosad also was evaluated against two parasitoids of tephritid fruit flies, Fopius arisanus (Sonan) and Pysttalia fletcheri (Silvestri). These parasitoids did not feed on the bait, so a contact toxicity test was conducted. Significant amounts of mortality were found only after exposure of parasitoids to spinosad-coated glass vials with concentrations > or =500 mg/liter spinosad. Parasitoids were less susceptible than fruit flies to such a degree that use of spinosad in bait spray should be compatible with these parasitoid species. Because the fruit flies tested in this study were so susceptible to spinosad, this product seems to be promising as a bait spray additive and a replacement for malathion for control of these species.  相似文献   

12.
Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), was discovered on Tahiti Island in July 1996. Eradication programs were conducted from 1997 to 2001, but failed. From 1998 to 2006, B. dorsalis was recovered from 29 different host fruit from the five Society Islands: Tahiti, Moorea, Raiatea, Tahaa, and Huahine. Analysis of coinfestation patterns by B. dorsalis, Bactrocera tryoni (Froggatt), and Bactrocera kirki (Froggatt) suggested B. dorsalis had displaced these two species and become the most abundant fruit fly in coastal areas. To suppress B. dorsalis populations, a classical biological control program was initiated to introduce the natural enemy Fopius arisanus (Sonan) (Hymenoptera: Braconidae) into French Polynesia from Hawaii. Wasps were released and established on Tahiti, Moorea, Raiatea, Tahaa, and Huahine Islands. In guava, Psidium guajava L., collections for Tahiti, F. arisanus parasitism of fruit flies was 2.1, 31.8, 37.5, and 51.9% for fruit collected for 2003, 2004, 2005 and 2006, respectively. Based on guava collections in 2002 (before releases) and 2006 (after releases), there was a subsequent decrease in numbers of B. dorsalis, B. tryoni, and B. kirki fruit flies emerging (per kilogram of fruit) by 75.6, 79.3, and 97.9%, respectively. These increases in F. arisanus parasitism and decreases in infestation were similar for other host fruit. Establishment of F. arisanus is the most successful example of classical biological control of fruit flies in the Pacific area outside of Hawaii and serves as a model for introduction into South America, Africa, and China where species of the B. dorsalis complex are established.  相似文献   

13.
Immersion of litchi fruit in 49 degrees C water for 20 min followed by hydrocooling in ambient (24 +/- 4 degrees C) temperature water for 20 min was tested as a quarantine treatment against potential infestations of Mediterranean fruit fly, Ceratitis capitata (Wiedemann); and oriental fruit fly, Bactrocera dorsalis Hendel, eggs or larvae in Hawaiian litchi, Litchi chinensis Sonnerat. The 49 degrees C hot-water immersion of litchi provided probit 9 (99.9968% mortality with >95% confidence) quarantine security against eggs and first instars. There were no survivors from 15,000 each feeding and nonfeeding Mediterranean fruit fly or oriental fruit fly third instars immersed in a computer-controlled water bath that simulated the litchi seed-surface temperature profile during the 49 degrees C hot-water immersion treatment. Litchi served as the model for longan, Dimocarpus longan Lour., a closely related fruit that is smaller and also has commercial potential for Hawaii. Modified fruit infestation and holding techniques used to obtain adequate estimated treated populations from poor host fruit, such as litchi and longan, are described. Data from these experiments were used to obtain approval of a hot-water immersion quarantine treatment against fruit flies for litchi and longan exported from Hawaii to the U.S. mainland.  相似文献   

14.
Currently approved irradiation quarantine treatment doses for Bactrocera cucurbitae (Coquillet), melon fly; Ceratitis capitata (Wiedemann), Mediterranean fruit fly; and Bactrocera dorsalis (Hendel), oriental fruit fly, infesting fruits and vegetables for export from Hawaii to the continental United States are 210, 225, and 250 Gy, respectively. Irradiation studies were initiated to determine whether these doses could be reduced to lower treatment costs, minimize any adverse effects on quality, and support a proposed generic irradiation dose of 150 Gy for fruit flies. Dose-response tests were conducted with late third instars of wild and laboratory strains of the three fruit fly species, both in diet and in fruit. After x-ray irradiation treatment, data were taken on adult emergence, and adult female fecundity and fertility. Melon fly was the most tolerant of the three species to irradiation, and oriental fruit fly was more tolerant than Mediterranean fruit fly. Laboratory and wild strains of each species were equally tolerant of irradiation, and larvae were more tolerant when irradiated in fruit compared with artificial diet. An irradiation dose of 150 Gy applied to 93,666 melon fly late third instars in papayas resulted in no survival to the adult stage, indicating that this dose is sufficient to provide quarantine security. Irradiation doses of 100 and 125 Gy applied to 31,920 Mediterranean fruit fly and 55,743 oriental fruit fly late third instars, respectively, also resulted in no survival to the adult stage. Results support a proposed generic irradiation quarantine treatment dose of 150 Gy for all tephritid fruit flies.  相似文献   

15.
Spinosad was evaluated in Hawaii as a replacement for organophosphate insecticides (naled, dichlorvos [DDVP], and malathion) in methyl eugenol and cue-lure bucket traps to attract and kill oriental fruit fly, Bactrocera dorsalis Hendel, and melon fly, B. cucurbitae Coquillett, respectively. In the first and second methyl eugenol trials with B. dorsalis, naled was in the highest rated group for all evaluation periods (at 5, 10, 15, and 20 wk). Spinosad was equal to naled at 5 and 10 wk during both trials 1 and 2, and compared favorably with malathion during trial 2. During the first cue-lure trial with B. cucurbitae, naled and malathion were in the top rated group at 5, 10, 15, and 20 wk. Spinosad was equal to naled at 5 wk. During the second cue-lure trial, spinosad and naled were both in the top rated group at 10, 15, and 20 wk. Use of male lure traps with methyl eugenol or cue-lure had no effect on attraction of females into test areas. Our results suggest that spinosad, although not as persistent as naled or malathion, is safer to handle and a more environmentally friendly substitute for organophosphate insecticides in methyl eugenol and cue-lure traps for use in B. dorsalis and B. cucurbitae areawide integrated pest management programs in Hawaii.  相似文献   

16.
Attraction and feeding responses of oriental fruit fly, Bactrocera dorsalis (Hendel), and melon fly, Bactrocera cucurbitae (Coquillett), were determined for different protein baits. In separate choice attraction assays for each species, significantly more flies arrived at stations with bait than water, but no differences existed among baits of GF-120 Fruit Fly Bait, GF-120 NF Naturalyte Fruit Fly Bait, Provesta 621 autolyzed yeast extract, and Mazoferm E802. In comparison with B. dorsalis, B. cucurbitae had 2.8 times more responders and a 4.8 times better discrimination between baits and water. In a second attraction assay with only B. dorsalis, volume of bait was negatively correlated to numbers of flies alighting on the bait. Feeding assays for both species demonstrated that time spent feeding and duration on a leaf were both significantly affected by bait type. B. dorsalis fed the longest on Provesta 621, with significantly less feeding on the other baits, and with all baits resulting in more feeding than water. The longest feeding times for B. cucurbitae resulted with Mazoferm E802 and Provesta 621, and all baits except GF-120 NF resulted in eliciting a significantly longer feeding duration than water. In separate toxicology assays for each species, significantly higher mortality resulted from bait formulations containing spinosad compared with blank baits, but no differences existed between GF-120 and GF-120 NF formulations. The differences are discussed between the two Bactrocera species primarily in regard to bait preference, extent of response, and previous work on laboratory flies.  相似文献   

17.
Metabolic stress disinfection and disinfestation (MSDD) is a postharvest treatment designed to control pathogens and arthropod pests on commodities that combines short cycles of low pressure/vacuum and high CO2 with ethanol vapor. Experiments were conducted to evaluate the effect of MSDD treatment on various life stages of Ceratitis capitata (Wiedemann), Mediterranean fruit fly; Bactrocera dorsalis Hendel, oriental fruit fly; and Bactrocera cucurbitae Coquillett, melon fly, in petri dishes and in papaya, Carica papaya L., fruit. In some experiments, the ethanol vapor phase was withheld to separate the effects of the physical (low pressure/ambient pressure cycles) and chemical (ethanol vapor plus low pressure) phases of treatment. In the experiments with tephritid fruit fly larvae and adults in petri dishes, mortality was generally high when insects were exposed to ethanol and low when ethanol was withheld during MSDD treatment, suggesting that ethanol vapor is highly lethal but that fruit flies are quite tolerant of short periods of low pressure treatment alone. When papaya fruit infested with fruit fly eggs or larvae were treated by MSDD, they produced fewer pupae than untreated control fruit, but a substantial number of individuals developed nonetheless. This suggests that internally feeding insects in fruit may be partially protected from the toxic effects of the ethanol because the vapor does not easily penetrate the fruit pericarp and pulp. MSDD treatment using the atmospheric conditions tested has limited potential as a disinfestation treatment for internal-feeding quarantine pests such as fruit flies infesting perishable commodities.  相似文献   

18.
Abstract:  The solanum fruit fly, Bactrocera latifrons (Hendel), is a major agricultural pest in Asia and Hawaii, and it is important to prevent its widespread invasion in plant quarantine. In this study we introduced a real-time polymerase chain reaction (PCR) essay, using SYBR Green I dye, to rapidly identify B. latifrons on an ABI PRISM 7700 sequence detection system. A latifron-specific PCR primer set was obtained based on mtDNA COI gene of B. latifrons . Nine Bactrocera fruit flies, B. latifrons , Bactrocera dorsalis , Bactrocera papayae , Bactrocera carambolae , Bactrocera philippinensis , Bactrocera occipitalis , Bactrocera correcta , Bactrocera cucurbitae and Bactrocera tau , were used to determine the specificity of primers lati1 and lati2. A series of genomic DNA dilutions of B. latifrons (0.01, 0.1, 1, 10, 20, 40 and 100 ng) were used to assess the sensitivity of the SYBR Green PCR. Template DNA concentration was one of the sources of variability in cycle threshold values (CT) and the optimum DNA concentration was between 1 and 20 ng. Genomic DNA isolated from larvae, pupae and adult specimens of B. latifrons were used to assess the specificity of the SYBR Green PCR. Melting curve analysis and agarose gel electrophoresis was employed to check the specificity of PCR products. Similar amplification plots were obtained using DNA from the three different stages of B. latifrons with primer set lati1/lati2. The melting temperature ( T m) of PCR products was 77.5 ± 0.1°C, and the length of the amplified fragment 366 bp. Given the specificity and sensitivity of the assay, combined with high speed, low cost and the possibility of automating, SYBR Green PCR can be used as a rapid and specific technique for pest species identification in plant quarantine.  相似文献   

19.
Male lures are known for many tephritid fruit fly species and are often preferred over food bait based traps for detection trapping because of their high specificity and ability to attract flies over a wide area. Alpha-ionol has been identified as a male lure for the tephritid fruit fly Bactrocera latifrons (Hendel). The attraction of this compound to male B. latifrons individuals, however, is not as strong as is the attraction of other tephritid fruit fly species to their respective male lures. Cade oil, an essential oil produced by destructive distillation of juniper (Juniperus oxycedrus L.) twigs, synergizes the attraction of alpha-ionol to male B. latifrons. Catches of male B. latifrons at traps baited with a mixture of alpha-ionol and cade oil were more than three times greater than at traps baited with alpha-ionol alone. Substitution of alpha-ionol + cade oil for alpha-ionol alone in detection programs could considerably improve the chance of detecting invading or incipient populations of B. latifrons. However, detection programs should not rely solely on this lure but also make use of protein baited traps as well as fruit collections. Further work with fractions of cade oil may help to identify the active ingredient(s), which could help to further improve this male lure for B. latifrons.  相似文献   

20.
Amulet C-L (cue-lure) and Amulet ME (methyl eugenol) molded paper fiber "attract-and-kill" dispensers containing fipronil were tested under Hawaiian weather conditions against Bactrocera cucurbitae (Coquillett) (melon fly) and Bactrocera dorsalis (Hendel) (oriental fruit fly), respectively. In paired tests (fresh versus weathered), C-L dispensers were effective for at least 77 d, whereas ME dispensers were effective for at least 21 d. Thus, C-L dispensers exceeded, whereas ME dispensers did not meet the label interval replacement recommendation of 60 d. Addition of 4 ml of ME to 56-d-old ME dispensers restored attraction and kill for an additional 21 d. This result suggested the fipronil added at manufacture was still effective. By enclosing and weathering ME dispensers inside small plastic bucket traps, longevity of ME dispensers was extended up to 56 d. Fipronil ME and C-L dispensers also were compared, inside bucket traps, to other toxicants: spinosad, naled, DDVP, malathion, and permethrin. Against B. dorsalis, fipronil ME dispensers compared favorably only up to 3 wk. Against B. cucurbitae, fipronil C-L dispensers compared favorably for at least 15 wk. Our results suggest that fipronil C-L dispensers can potentially be used in Hawaii; however, fipronil ME dispensers need to be modified or protected from the effects of weathering to extend longevity and meet label specifications. Nonetheless, Amulet C-L and ME dispensers are novel prepackaged formulations containing C-L or ME and fipronil that are more convenient and safer to handle than current liquid insecticide formulations used for areawide suppression of B. dorsalis and B. cucurbitae in Hawaii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号