首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytosolic Ca2+ concentration ([Ca2+]i) is reduced in cultured neurons undergoing neuronal death caused by inhibitors of the ubiquitin proteasome system. Activation of calcium entry via voltage‐gated Ca2+ channels restores cytosolic Ca2+ levels and reduces this neuronal death ( Snider et al. 2002 ). We now show that this reduction in [Ca2+]i is transient and occurs early in the cell death process, before activation of caspase 3. Agents that increase Ca2+ influx such as activation of voltage‐gated Ca2+ channels or stimulation of Ca2+ entry via the plasma membrane Na–Ca exchanger attenuate neuronal death only if applied early in the cell death process. Cultures treated with proteasome inhibitors had reduced current density for voltage‐gated Ca2+ channels and a less robust increase in [Ca2+]i after depolarization. Levels of endoplasmic reticulum Ca2+ were reduced and capacitative Ca2+ entry was impaired early in the cell death process. Mitochondrial Ca2+ was slightly increased. Preventing the transfer of Ca2+ from mitochondria to cytosol increased neuronal vulnerability to this death while blockade of mitochondrial Ca2+ uptake via the uniporter had no effect. Programmed cell death induced by proteasome inhibition may be caused in part by an early reduction in cytosolic and endoplasmic reticulum Ca2+, possibly mediated by dysfunction of voltage‐gated Ca2+ channels. These findings may have implications for the treatment of disorders associated with protein misfolding in which proteasome impairment and programmed cell death may occur.  相似文献   

2.
The tumor suppressor activity of PTEN (phosphatase and tensin homolog deleted on chromosome 10) is thought to be largely attributable to its lipid phosphatase activity. PTEN dephosphorylates the lipid second messenger phosphatidylinositol 3,4,5-trisphosphate to directly antagonize the phosphoinositide 3-kinase-Akt pathway and prevent the activating phosphorylation of Akt. PTEN has also other proposed mechanisms of action, including a poorly characterized protein phosphatase activity, protein–protein interactions, as well as emerging functions in different compartment of the cells such as nucleus and mitochondria. We show here that a fraction of PTEN protein localizes to the endoplasmic reticulum (ER) and mitochondria-associated membranes (MAMs), signaling domains involved in calcium (2+) transfer from the ER to mitochondria and apoptosis induction. We demonstrate that PTEN silencing impairs ER Ca2+ release, lowers cytosolic and mitochondrial Ca2+ transients and decreases cellular sensitivity to Ca2+-mediated apoptotic stimulation. Specific targeting of PTEN to the ER is sufficient to enhance ER-to-mitochondria Ca2+ transfer and sensitivity to apoptosis. PTEN localization at the ER is further increased during Ca2+-dependent apoptosis induction. Importantly, PTEN interacts with the inositol 1,4,5-trisphosphate receptors (IP3Rs) and this correlates with the reduction in their phosphorylation and increased Ca2+ release. We propose that ER-localized PTEN regulates Ca2+ release from the ER in a protein phosphatase-dependent manner that counteracts Akt-mediated reduction in Ca2+ release via IP3Rs. These findings provide new insights into the mechanisms and the extent of PTEN tumor-suppressive functions, highlighting new potential strategies for therapeutic intervention.  相似文献   

3.
New insights in the role of Bcl-2 Bcl-2 and the endoplasmic reticulum   总被引:4,自引:0,他引:4  
The oncogenic protein Bcl-2 which is expressed in membranes of different subcellular organelles protects cells from apoptosis induced by endogenic stimuli. Most of the results published so far emphasise the importance of Bcl-2 at the mitochondria. Several recent observations suggest a role of Bcl-2 at the endoplasmic reticulum (ER). Bcl-2 located at the ER was shown to interfere with apoptosis induction by Bax, ceramides, ionising radiation, serum withdrawal and c-myc expression. Although the detailed functions of Bcl-2 at the ER remain elusive, several speculative mechanisms may be supposed. For instance, Bcl-2 at the ER may regulate calcium fluxes between the ER and the mitochondria. In addition, Bcl-2 is able to interact with the endoplasmic protein Bap31 thus avoiding caspase activation at the ER. Bcl-2 may also abrogate the function of ER located pro-apoptotic Bcl-2 like proteins by heterodimerization. Current data on the function of Bcl-2 at the ER, its role for the modulation of calcium fluxes and its influence on caspase activation at the ER are reviewed.  相似文献   

4.
5.
A current paradigm proposes that mitochondrial damage is a critical determinant of NLRP3 inflammasome activation. Here, we genetically assess whether mitochondrial signalling represents a unified mechanism to explain how NLRP3 is activated by divergent stimuli. Neither co‐deletion of the essential executioners of mitochondrial apoptosis BAK and BAX, nor removal of the mitochondrial permeability transition pore component cyclophilin D, nor loss of the mitophagy regulator Parkin, nor deficiency in MAVS affects NLRP3 inflammasome function. In contrast, caspase‐8, a caspase essential for death‐receptor‐mediated apoptosis, is required for efficient Toll‐like‐receptor‐induced inflammasome priming and cytokine production. Collectively, these results demonstrate that mitochondrial apoptosis is not required for NLRP3 activation, and highlight an important non‐apoptotic role for caspase‐8 in regulating inflammasome activation and pro‐inflammatory cytokine levels.  相似文献   

6.
Lukyanets  I. A.  Yavorskaya  E. N.  Tokar'  S. L.  Lukyanetz  E. A. 《Neurophysiology》2002,34(2-3):177-179
Steroid hormones participate in various metabolic processes, and dysfunction of the adrenocortical system leads to numerous pathologies in humans. One of the factors that can influence the secretory properties of adrenocorticocytes is changes in the cell volume observed during osmotic shock. In our study, we tested the hypothesis that osmotic stress modifies intracellular Ca2+ signalling and in such a way can influence the secretion of steroids by adrenocorticocytes. The effects of hyperosmotic stress on the cytosolic Ca2+ concentration ([Ca] i ) in cultured adrenocortical cells from the zona fasciculata of the rat adrenals were investigated using the indicator fura-2 technique. Our experiments have shown that exposure of the cells to a hyperosmotic solution caused a decrease in the cell volume, as well as a reversible rise in the [Ca] i . Calcium-free media partly eliminated [Ca] i responses. Pretreatment of the cells with thapsigargin or CCCP (blockers of internal calcium stores) significantly decreased the magnitude of responses induced by osmotic stress. These findings indicate that osmotic shock causes an increase in the [Ca] i in adrenocortical cells, mostly due to depletion of the intracellular stores, and may in such a way stimulate steroidogenesis.  相似文献   

7.
Bak and Bax are critical apoptotic mediators that naturally localize to both mitochondria and the endoplasmic reticulum (ER). Although it is generally accepted that mitochondrial expression of Bak or Bax suffices for apoptosis initiated by BH3‐only homologues, it is currently unclear whether their reticular counterparts may have a similar potential. In this study, we show that cells exclusively expressing Bak in endoplasmic membranes undergo cytochrome c mobilization and mitochondrial apoptosis in response to BimEL and Puma, even when these BH3‐only molecules are also targeted to the ER. Surprisingly, calcium was necessary but not sufficient to drive the pathway, despite normal ER calcium levels. We provide evidence that calcium functions coordinately with the ER‐stress surveillance machinery IRE1α/TRAF2 to transmit apoptotic signals from the reticulum to mitochondria. These results indicate that BH3‐only mediators can rely on reticular Bak to activate an ER‐to‐mitochondria signalling route able to induce cytochrome c release and apoptosis independently of the canonical Bak,Bax‐dependent mitochondrial gateway, thus revealing a new layer of complexity in apoptotic regulation.  相似文献   

8.
Endoplasmic reticulum (ER) stress-induced cell death is normally associated with activation of the mitochondrial apoptotic pathway, which is characterized by CYCS (cytochrome c, somatic) release, apoptosome formation, and caspase activation, resulting in cell death. In this study, we demonstrate that under conditions of ER stress cells devoid of CASP9/caspase-9 or BAX and BAK1, and therefore defective in the mitochondrial apoptotic pathway, still undergo a delayed form of cell death associated with the activation of caspases, therefore revealing the existence of an alternative stress-induced caspase activation pathway. We identified CASP8/caspase-8 as the apical protease in this caspase cascade, and found that knockdown of either of the key autophagic genes, ATG5 or ATG7, impacted on CASP8 activation and cell death induction, highlighting the crucial role of autophagy in the activation of this novel ER stress-induced death pathway. In line with this, we identified a protein complex composed of ATG5, FADD, and pro-CASP8 whose assembly coincides with caspase activation and cell death induction. Together, our results reveal the toxic potential of autophagy in cells undergoing ER stress that are defective in the mitochondrial apoptotic pathway, and suggest a model in which the autophagosome functions as a platform facilitating pro-CASP8 activation. Chemoresistance, a common problem in the treatment of cancer, is frequently caused by the downregulation of key mitochondrial death effector proteins. Alternate stress-induced apoptotic pathways, such as the one described here, may become of particular relevance for tackling the problem of chemoresistance in cancer cells.  相似文献   

9.
《Autophagy》2013,9(11):1921-1936
Endoplasmic reticulum (ER) stress-induced cell death is normally associated with activation of the mitochondrial apoptotic pathway, which is characterized by CYCS (cytochrome c, somatic) release, apoptosome formation, and caspase activation, resulting in cell death. In this study, we demonstrate that under conditions of ER stress cells devoid of CASP9/caspase-9 or BAX and BAK1, and therefore defective in the mitochondrial apoptotic pathway, still undergo a delayed form of cell death associated with the activation of caspases, therefore revealing the existence of an alternative stress-induced caspase activation pathway. We identified CASP8/caspase-8 as the apical protease in this caspase cascade, and found that knockdown of either of the key autophagic genes, ATG5 or ATG7, impacted on CASP8 activation and cell death induction, highlighting the crucial role of autophagy in the activation of this novel ER stress-induced death pathway. In line with this, we identified a protein complex composed of ATG5, FADD, and pro-CASP8 whose assembly coincides with caspase activation and cell death induction. Together, our results reveal the toxic potential of autophagy in cells undergoing ER stress that are defective in the mitochondrial apoptotic pathway, and suggest a model in which the autophagosome functions as a platform facilitating pro-CASP8 activation. Chemoresistance, a common problem in the treatment of cancer, is frequently caused by the downregulation of key mitochondrial death effector proteins. Alternate stress-induced apoptotic pathways, such as the one described here, may become of particular relevance for tackling the problem of chemoresistance in cancer cells.  相似文献   

10.
The mitochondria-associated membrane (MAM) is a domain of the endoplasmic reticulum (ER) that mediates the exchange of ions, lipids and metabolites between the ER and mitochondria. ER chaperones and oxidoreductases are critical components of the MAM. However, the localization motifs and mechanisms for most MAM proteins have remained elusive. Using two highly related ER oxidoreductases as a model system, we now show that palmitoylation enriches ER-localized proteins on the MAM. We demonstrate that palmitoylation of cysteine residue(s) adjacent to the membrane-spanning domain promotes MAM enrichment of the transmembrane thioredoxin family protein TMX. In addition to TMX, our results also show that calnexin shuttles between the rough ER and the MAM depending on its palmitoylation status. Mutation of the TMX and calnexin palmitoylation sites and chemical interference with palmitoylation disrupt their MAM enrichment. Since ER-localized heme oxygenase-1, but not cytosolic GRP75 require palmitoylation to reside on the MAM, our findings identify palmitoylation as key for MAM enrichment of ER membrane proteins.  相似文献   

11.
12.
Caspases: potential targets for regulating cell death   总被引:12,自引:0,他引:12  
While in multicellular organisms all cells inexorably die, there are several different ways provided for the realization of cell death. One of them, apoptosis, represents a universal energy-dependent and tightly regulated physiologic process of cell death in both normal and pathologic tissues. The execution of apoptosis appears to be uniformly mediated through consecutive activation of the members of a caspase family. This review briefly summarizes current knowledge on the molecular mechanisms of caspase activation and the inhibitory components of caspase cascades. The suitability of caspases as a new potential therapeutic target is discussed next. Particular attention is focused on two broad categories of caspase-directed compounds: highly specific caspase inhibitors that distinctly block the progress of apoptosis and caspase activators that selectively induce cell death in a variety of in vitro and in vivo systems. These agents promise to be useful clinically, either alone or in combination with more conventional therapeutics.  相似文献   

13.
Mitochondrial, endoplasmic reticular and plasma membrane fractions were isolated by a new method from control male Fischer 344 rats and rats given CCl4 by gavage. After 1 h of CCl4 treatment, rats were in glucose and pancreatic hormone balance but plasma levels of T3 and T4 were decreased 29 and 22%, respectively. After 24 hours of CCl4 treatment, rats were: hypoglycaemic and insulin and glucagon levels were increased 33- and 35-fold, respectively; total T4 levels were decreased 62%; while total T3 levels were normalized. In liver fractions from CCl4-treated rats, 1 h after CCl4 administration: (i) calcium binding was decreased 65% in the mitochondrial fraction, 66% in the endoplasmic reticular fraction and 46% in the plasma membrane fraction; (ii) calcium uptake was decreased 59% in the mitochondrial fraction, 46% in the endoplasmic reticular fraction and 37% in the plasma membrane fraction. After 24 h of CCl4 administration: (i) calcium binding was decreased 57% in the mitochondrial fraction, 50% in the endoplasmic reticular fraction and 71% in the plasma membrane fraction; (ii). calcium uptake was decreased 55% in the mitochondrial fraction, 17% in the endoplasmic reticular fraction and 53% in the plasma membrane fraction. In vitro studies indicated the plasma membrane calcium transport system to be rapidly (within a minute) and strongly (>90%) inhibited by CCl4. We conclude that CCl4 produces a differential inhibitory effect on the hepatocyte calcium pumps that are implicated with hepatocellular damage.  相似文献   

14.
Continuous intra- and extracellular stresses induce disorder of Ca2+ homeostasis and accumulation of unfolded protein in the endoplasmic reticulum (ER), which results in ER stress. Severe long-term ER stress triggers apoptosis signaling pathways, resulting in cell death. Neural epidermal growth factor-like like protein 2 (NELL2) has been reported to be important in protection of cells from cell death-inducing environments. In this study, we investigated the cytoprotective effect of NELL2 in the context of ER stress induced by thapsigargin, a strong ER stress inducer, in Cos7 cells. Overexpression of NELL2 prevented ER stress-mediated apoptosis by decreasing expression of ER stress-induced C/EBP homologous protein (CHOP) and increasing ER chaperones. In this context, expression of anti-apoptotic Bcl-xL was increased by NELL2, whereas NELL2 decreased expression of pro-apoptotic proteins, such as cleaved caspases 3 and 7. This anti-apoptotic effect of NELL2 is likely mediated by extracellular signal-regulated kinase (ERK) signaling, because its inhibitor, U0126, inhibited effects of NELL2 on the expression of anti- and pro-apoptotic proteins and on the protection from ER stress-induced cell death.  相似文献   

15.
STIM1 is an endoplasmic reticulum (ER) membrane Ca(2+) sensor responsible for activation of store-operated Ca(2+) influx. We discovered that STIM1 oligomerization and store-operated Ca(2+) entry (SOC) are modulated by the ER oxidoreductase ERp57. ERp57 interacts with the ER luminal domain of STIM1, with this interaction involving two conserved cysteine residues, C(49) and C(56). SOC is accelerated in the absence of ERp57 and inhibited in C(49) and C(56) mutants of STIM1. We show that ERp57, by ER luminal interaction with STIM1, has a modulatory role in capacitative Ca(2+) entry. This is the first demonstration of a protein involved in ER intraluminal regulation of STIM1.  相似文献   

16.
Signal transduction and the regulation of apoptosis: roles of ceramide   总被引:3,自引:0,他引:3  
Knowledge about the molecular regulators of apoptosis is rapidly expanding. Cell death signals emanating from death receptors or internal cell injury detectors launch a number of signaling pathways which converge on several key families of proteins including specialized proteases and endonucleases which play a critical role in the execution of the death order. In this review, we summarize recent discoveries relating to the signaling pathways involved, the death receptors, the caspase family of apoptotic proteases, Bcl-2 family members, the sphingolipid ceramide, and the tumor suppressor p53. In particular, we focus on the role played by ceramide as a coordinator of the stress response and as a candidate biostat in the detection of cell injury.  相似文献   

17.
Mitochondria receive phosphatidylserine (PS) from the endoplasmic reticulum (ER), but how PS is moved from the ER to mitochondria is unclear. Current models postulate a physical link between the organelles, but no involvement of cytosolic proteins. Here, we have reconstituted PS transport from the ER to mitochondria in vitro using Xenopus egg components. Transport is independent of ER proteins, but is dependent on a cytosolic factor that has a preferential affinity for PS. Crosslinking with a photoactivatable PS analog identified VAT‐1 as a candidate for a cytosolic PS transport protein. Recombinant, purified VAT‐1 stimulated PS transport into mitochondria and depletion of VAT‐1 from Xenopus cytosol with specific antibodies led to a reduction of transport. Our results suggest that cytosolic factors have a role in PS transport from the ER to mitochondria, implicate VAT‐1 in the transport process, and indicate that physical contact between the organelles is not essential.   相似文献   

18.
The endoplasmic reticulum (ER) stress response is a defense system for dealing with the accumulation of unfolded proteins in the ER lumen. Old astrocyte specifically induced substance (OASIS) is known to be expressed in astrocytes and involved in the ER stress response; however the function of OASIS in the injured brain has remained unclear. In this study, we examined the roles of OASIS in neuronal degeneration in the hippocampi of mice intraperitoneally injected with kainic acid (KA). OASIS mRNA was strongly induced in response to KA injection, with a similar time course to the induction of ER molecular chaperone immunoglobulin heavy chain binding protein mRNA. In situ hybridization showed that KA injection causes induction of immunoglobulin heavy chain binding protein mRNA in glial fibrillary acidic protein-positive astrocytes as well as in pyramidal neurons, although up-regulation of OASIS mRNA was only detected in glial fibrillary acidic protein-positive astrocytes. Primary cultured astrocytes, but not the neurons of OASIS −/− mice, revealed reduced vulnerability to ER stress. Furthermore, pyramidal neurons in the hippocampi of OASIS −/− mice were more susceptible to the toxicity induced by KA than those of wild-type mice. Taken together, these data suggest that OASIS expressed in astrocytes plays important roles in protection against the neuronal damage induced by KA.  相似文献   

19.
Skeletal muscle cells are exposed to mechanical stretch during embryogenesis. Increased stretch may contribute to cell death, and the molecular regulation by stretch remains incompletely understood. The aim of this study was to investigate the effects of cyclic stretch on cell death and apoptosis in myoblast using a Flexercell Strain Unit. Apoptosis was studied by annexin V binding and PI staining, DNA size analysis, electron microphotograph, and caspase assays. Fas/FasL expression was determined by Western blot. When myoblasts were cultured on a flexible membrane and subjected to cyclic strain stress, apoptosis was observed in a time‐dependent manner. We also determined that stretch induced cleavage of caspase‐3 and increased caspase‐3 activity. Caspase‐3 inhibition reduced stretch‐induced apoptosis. Protein levels of Fas and FasL remained unchanged. Our findings implicated that stretch‐induced cell death is an apoptotic event, and that the activation of caspase cascades is required in stretch‐induced cell apoptosis. Furthermore, we had provided evidence that caspase‐3 mediated cyclic stretch‐induced myoblast apoptosis. Mechanical forces induced activation of caspase‐3 via signaling pathways independent of Fas/FasL system. J. Cell. Biochem. 107: 834–844, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
How Bcl-2 and its pro-survival relatives prevent activation of the caspases that mediate apoptosis is unknown, but they appear to act through the caspase activator apoptosis protease-activating factor 1 (Apaf-1). According to the apoptosome model, the Bcl-2-like proteins preclude Apaf-1 activity by sequestering the protein. To explore Apaf-1 function and to test this model, we generated monoclonal antibodies to Apaf-1 and used them to determine its localization within diverse cells by subcellular fractionation and confocal laser scanning microscopy. Whereas Bcl-2 and Bcl-x(L) were prominent on organelle membranes, endogenous Apaf-1 was cytosolic and did not colocalize with them, even when these pro-survival proteins were overexpressed or after apoptosis was induced. Immunogold electron microscopy confirmed that Apaf-1 was dispersed in the cytoplasm and not on mitochondria or other organelles. After the death stimuli, Bcl-2 and Bcl-x(L) precluded the release of the Apaf-1 cofactor cytochrome c from mitochondria and the formation of larger Apaf-1 complexes, which are steps that presage apoptosis. However, neither Bcl-2 nor Bcl-x(L) could prevent the in vitro activation of Apaf-1 induced by the addition of exogenous cytochrome c. Hence, rather than sequestering Apaf-1 as proposed by the apoptosome model, Bcl-2-like proteins probably regulate Apaf-1 indirectly by controlling upstream events critical for its activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号