首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Samuels NM  Klinman JP 《Biochemistry》2005,44(43):14308-14317
Copper amine oxidase (CAO) is a dual-functioning enzyme that catalyzes the biosynthesis of a self-derived coenzyme and subsequent oxidative deamination of primary amines. The organic cofactor, 2,4,5-trihydroxyphenylalanine quinone (TPQ), is generated from the post-translational modification of an active site tyrosine (Y405) in a reaction shown to be dependent on both molecular oxygen and a mononuclear copper center. Previous investigations of Cu(II)-dependent cofactor formation in the Hansenula polymorpha amine oxidase (HPAO) provided evidence for the coordination of the precursor tyrosine in forming a ligand-to-metal charge transfer complex as a means of activating the tyrosyl ring for direct attack by triplet-state dioxygen. To further delineate the role of the metal in facilitating this complex series of reactions, apo-HPAO was reconstituted with alternate metals of varying reduction potentials and Lewis acidities [Ni(II), Co(II), Mn(II), Fe(II), and Fe(III)] and the consequence of each substitution on TPQ biogenesis examined. Ni(II) was found to support the transformation of the precursor tyrosine to the quinone cofactor to yield a mature enzyme competent for methylamine oxidation. Detailed kinetic analysis of the mechanism of TPQ biogenesis for the Ni(II)-substituted enzyme has led to the proposal of a direct electron transfer from the metal-coordinated tyrosinate to dioxygen as the dominant rate-limiting step.  相似文献   

2.
In an effort to structurally probe the metal binding site in VanX, electronic absorption, EPR, and extended x-ray absorption fine structure (EXAFS) spectroscopic studies were conducted on Co(II)-substituted VanX. Electronic spectroscopy revealed the presence of Co(II) ligand field transitions that had molar absorptivities of approximately 100 m(-1) cm(-1), which suggests that Co(II) is five-coordinate in Co(II)-substituted VanX. Low temperature EPR spectra of Co(II)-substituted VanX were simulated using spin Hamiltonian parameters of M(S) = |+/-1/2), E/D = 0.14, g(real(x,y)) = 2.37, and g(real(z)) = 2.03. These parameters lead to the prediction that Co(II) in the enzyme is five-coordinate and that there may be at least one solvent-derived ligand. Single scattering fits of EXAFS data indicate that the metal ions in both native Zn(II)-containing and Co(II)-substituted VanX have the same coordination number and that the metal ions are coordinated by 5 nitrogen/oxygen ligands at approximately 2.0 angstroms. These data demonstrate that Co(II) (and Zn(II) from EXAFS studies) is five-coordinate in VanX in contrast to previous crystallographic studies (Bussiere, D. E., Pratt, S. D., Katz, L., Severin, J. M., Holzman, T., and Park, C. H. (1998) Mol. Cell 2, 75-84). These spectroscopic studies also demonstrate that the metal ion in Co(II)-substituted VanX when complexed with a phosphinate analog of substrate D-Ala-D-Ala is also five-coordinate.  相似文献   

3.
Resonance Raman (RR) spectroscopy is used to examine porphyrin substrate, product, and inhibitor interactions with the active site of murine ferrochelatase (EC 4.99.1.1), the terminal enzyme in the biosynthesis of heme. The enzyme catalyzes in vivo Fe(2+) chelation into protoporphyrin IX to give heme. The RR spectra of native ferrochelatase show that the protein, as isolated, contains varying amounts of endogenously bound high- or low-spin ferric heme, always at much less than 1 equiv. RR data on the binding of free-base protoporphyrin IX and its metalated complexes (Fe(III), Fe(II), and Ni(II)) to active wild-type protein were obtained at varying ratios of porphyrin to protein. The binding of ferric heme, a known inhibitor of the enzyme, leads to the formation of a low-spin six-coordinate adduct. Ferrous heme, the enzyme's natural product, binds in the ferrous high-spin five-coordinate state. Ni(II) protoporphyrin, a metalloporphyrin that has a low tendency toward axial ligation, becomes distorted when bound to ferrochelatase. Similarly for free-base protoporphyrin, the natural substrate of ferrochelatase, the RR spectra of porphyrin-protein complexes reveal a saddling distortion of the porphyrin. These results corroborate and extend our previous findings that porphyrin distortion, a crucial step of the catalytic mechanism, occurs even in the absence of bound metal substrate. Moreover, RR data reveal the presence of an amino acid residue in the active site of ferrochelatase which is capable of specific axial ligation to metals.  相似文献   

4.
TfdA is a non-heme iron enzyme which catalyzes the first step in the oxidative degradation of the widely used herbicide (2, 4-dichlorophenoxy)acetate (2,4-D). Like other alpha-keto acid-dependent enzymes, TfdA utilizes a mononuclear Fe(II) center to activate O(2) and oxidize substrate concomitant with the oxidative decarboxylation of alpha-ketoglutarate (alpha-KG). Spectroscopic analyses of various Cu(II)-substituted and Fe(II)-reconstituted TfdA complexes via electron paramagnetic resonance (EPR), electron spin-echo envelope modulation (ESEEM), and UV-vis spectroscopies have greatly expanded our knowledge of the enzyme's active site. The metal center is coordinated to two histidine residues as indicated by the presence of a five-line pattern in the Cu(II) EPR signal, for which superhyperfine splitting is attributed to two equivalent nitrogen donor atoms from two imidazoles. Furthermore, a comparison of the ESEEM spectra obtained in H(2)O and D(2)O demonstrates that the metal maintains several solvent-accessible sites, a conclusion corroborated by the increase in multiplicity in the EPR superhyperfine splitting observed in the presence of imidazole. Addition of alpha-KG to the Cu-containing enzyme leads to displacement of an equatorial water on copper, as determined by ESEEM analysis. Subsequent addition of 2,4-D leads to the loss of a second water molecule, with retention of a third, axially bound water. In contrast to these results, in Fe(II)-reconstituted TfdA, the cosubstrate alpha-KG chelates to the metal via a C-1 carboxylate oxygen and the alpha-keto oxygen as revealed by characteristic absorption features in the optical spectrum of Fe-TfdA. This binding mode is maintained in the presence of substrate, although the addition of 2,4-D does alter the metal coordination environment, perhaps by creating an O(2)-binding site via solvent displacement. Indeed, loss of solvent to generate an open binding site upon the addition of substrate has also been suggested for the alpha-keto acid-dependent enzyme clavaminate synthase 2 [Zhou et al. (1998) J. Am. Chem. Soc. 120, 13539-13540]. Nitrosyl adducts of various Fe-TfdA complexes have also been investigated by optical and EPR spectroscopy. Of special interest is the tightly bound NO complex of Fe-TfdA.(alpha-KG).(2,4-D), which may represent an accurate model of the initial oxygen-bound species.  相似文献   

5.
Complexes of Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), and Pt(II) with 3- and 5-substituted salicylaldehyde 2-pyridinylhydrazones (XSPH, X = H, 3-NO2, 3-CH3O, 5-Br, 5-Cl, 5-CH3, or 5-NO2) have been prepared and characterized by elemental analysis, conductance measurements, magnetic moments (300-78 K), and spectral studies. On the basis of these studies a monomeric, high-spin, distorted octahedral structure for Mn(XSPH)2 and Fe(XSPH)2, a dimeric, high-spin, five-coordinate structure for Co(XSBH)Cl, a dimeric, low-spin, five-coordinate structure for Ni(XSPH)Cl and Zn(XSPH)(OAc), and a square-planar structure for M(XSPH)Cl.H2O (M = Cu(II) or Pt(II] complexes are suggested. The polycrystalline ESR spectra of Cu(II) complexes are isotropic and suggest dx2-y2 ground state in square-planar stereochemistry. M?ssbauer spectral results indicate distorted octahedral structure for iron(II) complexes. All the metal(II) complexes have been screened for their antitumor activity against P388 lymphocytic leukemia test system in mice and have been found to possess no significant activity at the dosages used.  相似文献   

6.
This study elucidates the role of the protein structure in the catalysis of β-diketone cleavage at the three-histidine metal center of diketone cleaving enzyme (Dke1) by computational methods in correlation with kinetic and mutational analyses. Molecular dynamics simulations, using quantum mechanically deduced parameters for the nonheme Fe(II) cofactor, were performed and showed a distinct organization of the hydrophilic triad in the free and substrate-ligated wild-type enzyme. It is shown that in the free species, the Fe(II) center is coordinated to three histidines and one glutamate, whereas the substrate-ligated, catalytically competent enzyme-substrate complex has an Fe(II) center with three-histidine coordination, with a small fraction of three-histidine, one-glutamate coordination. The substrate binding modes and channels for the traffic of water and ligands (2,4-pentandionyl anion, methylglyoxal, and acetate) were identified. To characterize the impact of the hydrophobic protein environment around the metal center on catalysis, a set of hydrophobic residues close to the active site were targeted. The variations resulted in an up to tenfold decrease of the O(2) reduction rates for the mutants. Molecular dynamics studies revealed an impact of the hydrophobic residues on the substrate stabilization in the active site as well as on the orientations of Glu98 and Arg80, which have previously been shown to be crucial for catalysis. Consequently, the Glu98-His104 interaction in the variants is weaker than in the wild-type complex. The role of protein structure in stabilizing the primary O(2) reduction step in Dke1 is discussed on the basis of our results.  相似文献   

7.
Huo L  Fielding AJ  Chen Y  Li T  Iwaki H  Hosler JP  Chen L  Hasegawa Y  Que L  Liu A 《Biochemistry》2012,51(29):5811-5821
The previously reported crystal structures of α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD) show a five-coordinate Zn(II)(His)(3)(Asp)(OH(2)) active site. The water ligand is H-bonded to a conserved His228 residue adjacent to the metal center in ACMSD from Pseudomonas fluorescens (PfACMSD). Site-directed mutagenesis of His228 to tyrosine and glycine in this study results in a complete or significant loss of activity. Metal analysis shows that H228Y and H228G contain iron rather than zinc, indicating that this residue plays a role in the metal selectivity of the protein. As-isolated H228Y displays a blue color, which is not seen in wild-type ACMSD. Quinone staining and resonance Raman analyses indicate that the blue color originates from Fe(III)-tyrosinate ligand-to-metal charge transfer. Co(II)-substituted H228Y ACMSD is brown in color and exhibits an electron paramagnetic resonance spectrum showing a high-spin Co(II) center with a well-resolved (59)Co (I = 7/2) eight-line hyperfine splitting pattern. The X-ray crystal structures of as-isolated Fe-H228Y (2.8 ?) and Co-substituted (2.4 ?) and Zn-substituted H228Y (2.0 ? resolution) support the spectroscopic assignment of metal ligation of the Tyr228 residue. The crystal structure of Zn-H228G (2.6 ?) was also determined. These four structures show that the water ligand present in WT Zn-ACMSD is either missing (Fe-H228Y, Co-H228Y, and Zn-H228G) or disrupted (Zn-H228Y) in response to the His228 mutation. Together, these results highlight the importance of His228 for PfACMSD's metal specificity as well as maintaining a water molecule as a ligand of the metal center. His228 is thus proposed to play a role in activating the metal-bound water ligand for subsequent nucleophilic attack on the substrate.  相似文献   

8.
Complexes of Mn(II), Fe(III), Fe(II), Co(II), Ni(II), Cu(II), Zn(II) and Pt(II) with 3- and 5-substituted salicylaldehyde o-hydroxybenzoylhydrazones (XSBH, X = H, 3-NO2, 3-CH3O, 5-Cl, 5-Br, 5-CH3 or 5-NO2) have been prepared and characterized by elemental analysis, conductance measurements, magnetic susceptibilities (from room temperature down to liquid nitrogen temperature) and spectral studies. These studies indicate the following structures: monomeric, high-spin, distorted octahedral for Mn(XSBH)2; monomeric, high-spin, five-coordinate for Fe(XSBH)SO4·H2O; dimeric, high-spin phenoxide bridged, five-coordinate for Fe(XSBH)Cl; dimeric, high-spin five-coordinate for Co(XSBH)Cl·2H2O; dimeric low-spin, five-coordinate for Ni(XSBH)Cl·2H2O; dimeric, four-coordinate for Zn(XSBH); and a square-planar structure for M(XSBH)Cl·H2O (M = Cu(II) or Pt(II).Intermolecular antiferromagnetic exchange interactions are present in Fe(III) complexes, where the exchange parameter (J) is ca. −8.0 cm−1 for these complexes. The Fe(III) complexes exhibit asymmetric quadrupole split doublets in their 57Fe Mössbauer spectra. The asymmetry is found to be temperature dependent with relatively symmetrical doublets seen at low temperature. The polycrystalline ESR spectra of Cu(II) complexes are isotropic and indicate a dx2−y2 ground state in square-planar stereo-chemistry. All these metal complexes have been screened for their antitumor activity against the P 388 lymphocytic leukaemia test system in mice and enhanced antitumor activity relative to the free ligand was found but no significant activity at the dosages used.  相似文献   

9.
2-Oxoquinoline 8-monooxygenase is a Rieske non-heme iron oxygenase that catalyzes the NADH-dependent oxidation of the N-heterocyclic aromatic compound 2-oxoquinoline to 8-hydroxy-2-oxoquinoline in the soil bacterium Pseudomonas putida 86. The crystal structure of the oxygenase component of 2-oxoquinoline 8-monooxygenase shows a ring-shaped, C3-symmetric arrangement in which the mononuclear Fe(II) ion active site of one monomer is at a distance of 13 A from the Rieske-[2Fe-2S] center of a second monomer. Structural analyses of oxidized, reduced, and substrate bound states reveal the molecular bases for a new function of Fe-S clusters. Reduction of the Rieske center modulates the mononuclear Fe through a chain of conformational changes across the subunit interface, resulting in the displacement of Fe and its histidine ligand away from the substrate binding site. This creates an additional coordination site at the mononuclear Fe(II) ion and can open a pathway for dioxygen to bind in the substrate-containing active site.  相似文献   

10.
W Kadima 《Biochemistry》1999,38(41):13443-13452
The role of metal ions in the T- to R-allosteric transition is ascertained from the investigation of the T- to R-allosteric transition of transition metal ions substituted-insulin hexamers, as well as from the kinetics of their dissociation. These studies establish that ligand field stabilization energy (LFSE), coordination geometry preference, and the Lewis acidity of the metal ion in the zinc sites modulate the T- to R-state transition. (1)H NMR, (113)Cd NMR, and UV-vis measurements demonstrate that, under suitable conditions, Fe2+/3+, Ni2+, and Cd2+ bind insulin to form stable hexamers, which are allosteric species. (1)H NMR R-state signatures are elicited by addition of phenol alone in the case of Ni(II)- and Cd(II)-substituted insulin hexamers. The Fe(II)-substituted insulin hexamer is converted to the ferric analogue upon addition of phenol. For the Fe(III)-substituted insulin hexamer, appearance of (1)H NMR R-state signatures requires, additionally to phenol, ligands containing a nitrogen that can donate a lone pair of electrons. This is consistent with stabilization of the R-state by heterotropic interactions between the phenol-binding pocket and ligand binding to Fe(III) in the zinc site. UV-vis measurements indicate that the (1)H NMR detected changes in the conformation of the Fe(III)-insulin hexamer are accompanied by a change in the electronic structure of the iron site. Kinetic measurements of the dissociation of the hexamers provide evidence for the modulation of the stability of the hexamer by ligand field stabilization effects. These kinetic studies also demonstrate that the T- to R-state transition in the insulin hexamer is governed by coordination geometry preference of the metal ion in the zinc site and the compatibility between Lewis acidity of the metal ion in the zinc site and the Lewis basicity of the exogenous ligands. Evidence for the alteration of the calcium site has been obtained from (113)Cd NMR measurements. This finding adds to the number of known conformational changes that occur during the T- to R-transition and is an important consideration in the formulation of allosteric mechanisms of the insulin hexamer.  相似文献   

11.
 The first step in the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) by Ralstonia eutropha JMP134 is catalyzed by the α-ketoglutarate (α-KG)-dependent dioxygenase TfdA. Previously, EPR and ESEEM studies on inactive Cu(II)-substituted TfdA suggested a mixture of nitrogen/oxygen coordination with two imidazole-like ligands. Differences between the spectra for Cu TfdA and α-KG- and 2,4-D-treated samples were interpreted as a rearrangement of the g–tensor principal axis system. Herein, we report the use of X-ray absorption spectroscopy (XAS) to further characterize the metal coordination environment of Cu TfdA as well as that in the active, wild-type Fe(II) enzyme. The EXAFS data are interpreted in terms of four N/O ligands (two imidazole-like) in the Cu TfdA sample and six N/O ligands (one or two imidazole-like) in the Fe TfdA sample. Addition of α-KG results in no significant structural change in coordination for Cu or Fe TfdA. However, addition of 2,4-D results in a decrease in the number of imidazole ligands in both Cu and Fe TfdA. Since this change is seen both in the Fe and Cu EXAFS, loss of one histidine ligand upon 2,4-D addition best describes the phenomenon. These XAS data clearly demonstrate that changes occur in the atomic environment of the metallocenter upon substrate binding. Received: 3 July 1998 / Accepted: 13 October 1998  相似文献   

12.
The organophosphate-degrading enzyme from Agrobacterium radiobacter (OpdA) is a highly efficient catalyst for the degradation of pesticides and some nerve agents such as sarin. OpdA requires two metal ions for catalytic activity, and hydrolysis is initiated by a nucleophilic hydroxide that is bound to one of these metal ions. The precise location of this nucleophile has been contentious, with both a terminal and a metal-ion-bridging hydroxide as likely candidates. Here, we employed magnetic circular dichroism to probe the electronic and geometric structures of the Co(II)-reconstituted dinuclear metal center in OpdA. In the resting state the metal ion in the more secluded α site is five-coordinate, whereas the Co(II) in the solvent-exposed β site is predominantly six-coordinate with two terminal water ligands. Addition of the slow substrate diethyl 4-methoxyphenyl phosphate does not affect the α site greatly but lowers the coordination number of the β site to five. A reduction in the exchange coupling constant indicates that substrate binding also triggers a shift of the μ-hydroxide into a pseudoterminal position in the coordination sphere of either the α or the β metal ion. Mechanistic implications of these observations are discussed.  相似文献   

13.
The factor inhibiting HIF (FIH) is a proximate oxygen sensor for human cells, hydroxylating Asn(803) within the α-subunit of the hypoxia inducible factor (HIF). FIH is an α-ketoglutatrate (αKG)-dependent, non-heme Fe(II) dioxygenase, in which Fe(II) is coordinated by a (His(2)Asp) facial triad, αKG, and H(2)O. Hydrogen bonding among the facial triad, the HIF-Asn(803) side chain, and various second-sphere residues suggests a functional role for the second coordination sphere in tuning the chemistry of the Fe(II) center. Point mutants of FIH were prepared to test the functional role of the αKG-centered (Asn(205) and Asn(294)) or HIF-Asn(803)-centered (Arg(238) and Gln(239)) second-sphere residues. The second sphere was tested for local effects on priming Fe(II) to react with O(2), oxidative decarboxylation, and substrate positioning. Steady-sate kinetics were used to test for overall catalytic effects; autohydroxylation rates were used to test for priming and positioning, and electronic spectroscopy was used to assess the primary coordination sphere and the electrophilicity of αKG. Asn(205) → Ala and Asn(294) → Ala mutants exhibited diminished rates of steady-state turnover, while minimally affecting autohydroxylation, consistent with impaired oxidative decarboxylation. Blue-shifted metal to ligand charge transfer transitions for (Fe+αKG)FIH indicated that these point mutations destabilized the π* orbitals of αKG, further supporting a slowed rate of oxidative decarboxylation. The Arg(238) → Met mutant exhibited steady-state rates too low to measure and diminished product yields, suggesting impaired substrate positioning or priming; the Arg(238) → Met mutant was capable of O(2) activation for the autohydroxylation reaction. The Gln(239) → Asn mutant exhibited significantly slowed steady-state kinetics and diminished product yields, suggesting impaired substrate positioning or priming. As HIF binding to the Gln(239) → Asn mutant stimulated autohydroxylation, it is more likely that this point mutant simply mispositions the HIF-Asn(803) side chain. This work combines kinetics and spectroscopy to show that these second-sphere hydrogen bonds play roles in promoting oxidative decarboxylation, priming Fe(II) to bind O(2), and positioning HIF-Asn(803).  相似文献   

14.
Fe(II)/α-ketoglutarate (αKG)-dependent hydroxylases catalyze an amazing diversity of reactions that result in protein side-chain modifications, repair of alkylated DNA/RNA, biosynthesis of antibiotics and plant products, metabolism related to lipids, and biodegradation of a variety of compounds. These enzymes possess a β-strand “jellyroll” structural fold that contains three metal-binding ligands found in a His1-X-Asp/Glu-Xn-His2 motif. The cosubstrate, αKG, chelates Fe(II) using its C-2 keto group (binding opposite the Asp/Glu residue) and C-1 carboxylate (coordinating opposite either His1 or His2). Oxidative decomposition of αKG forms CO2 plus succinate and leads to the generation of an Fe(IV)-oxo or other activated oxygen species that hydroxylate the primary substrate. The reactive oxygen species displays alternate reactivity in related enzymes that catalyze desaturations, ring expansions, or ring closures. Other enzymes resemble the Fe(II)/αKG-dependent hydroxylases in terms of protein structure or chemical mechanism but do not utilize αKG as a substrate. This review describes the reactions catalyzed by this superfamily of enzymes, highlights key active site features revealed by structural studies, and summarizes results from spectroscopic and other approaches that provide insights into the chemical mechanisms.  相似文献   

15.
Trypanosoma brucei encodes a protein (denoted TbABH) that is homologous to AlkB of Escherichia coli and AlkB homolog (ABH) proteins in other organisms, raising the possibility that trypanosomes catalyze oxidative repair of alkylation-damaged DNA. TbABH was cloned and expressed in E. coli, and the recombinant protein was purified and characterized. Incubation of anaerobic TbABH with Fe(II) and α-ketoglutarate (αKG) produces a characteristic metal-to-ligand charge-transfer chromophore, confirming its membership in the Fe(II)/αKG dioxygenase superfamily. The protein binds to DNA, with a clear preference for alkylated oligonucleotides according to results derived by electrophoretic mobility shift assays. Finally, the protozoan gene was shown to partially complement E. coli alkB cells when stressed with methylmethanesulfonate; thus confirming assignment of TbABH as a functional AlkB protein in T. brucei.  相似文献   

16.
Previous studies of ferrous wild-type phenylalanine hydroxylase, [Fe(2+)]PAH(T)[], have shown the active site to be a six-coordinate distorted octahedral site. After the substrate and cofactor bind to the enzyme ([Fe(2+)]PAH(R)[L-Phe,5-deaza-6-MPH(4)]), the active site converts to a five-coordinate square pyramidal structure in which the identity of the missing ligand had not been previously determined. X-ray absorption spectroscopy (XAS) at the Fe K-edge further supports this coordination number change with the binding of both cosubstrates to the enzyme, and determines this to be due to the loss of a water ligand.  相似文献   

17.
The osmolyte dimethylsulfoniopropionate (DMSP) is a key nutrient in marine environments and its catabolism by bacteria through enzymes known as DMSP lyases generates dimethylsulfide (DMS), a gas of importance in climate regulation, the sulfur cycle, and signaling to higher organisms. Despite the environmental significance of DMSP lyases, little is known about how they function at the mechanistic level. In this study we biochemically characterize DddW, a DMSP lyase from the model roseobacter Ruegeria pomeroyi DSS-3. DddW is a 16.9 kDa enzyme that contains a C-terminal cupin domain and liberates acrylate, a proton, and DMS from the DMSP substrate. Our studies show that as-purified DddW is a metalloenzyme, like the DddQ and DddP DMSP lyases, but contains an iron cofactor. The metal cofactor is essential for DddW DMSP lyase activity since addition of the metal chelator EDTA abolishes its enzymatic activity, as do substitution mutations of key metal-binding residues in the cupin motif (His81, His83, Glu87, and His121). Measurements of metal binding affinity and catalytic activity indicate that Fe(II) is most likely the preferred catalytic metal ion with a nanomolar binding affinity. Stoichiometry studies suggest DddW requires one Fe(II) per monomer. Electronic absorption and electron paramagnetic resonance (EPR) studies show an interaction between NO and Fe(II)-DddW, with NO binding to the EPR silent Fe(II) site giving rise to an EPR active species (g = 4.29, 3.95, 2.00). The change in the rhombicity of the EPR signal is observed in the presence of DMSP, indicating that substrate binds to the iron site without displacing bound NO. This work provides insight into the mechanism of DMSP cleavage catalyzed by DddW.  相似文献   

18.
Purple acid phosphatases (PAPs) are a group of heterovalent binuclear metalloenzymes that catalyze the hydrolysis of phosphomonoesters at acidic to neutral pH. While the metal ions are essential for catalysis, their precise roles are not fully understood. Here, the Fe(III)Ni(II) derivative of pig PAP (uteroferrin) was generated and its properties were compared with those of the native Fe(III)Fe(II) enzyme. The k cat of the Fe(III)Ni(II) derivative (approximately 60 s−1) is approximately 20% of that of native uteroferrin, and the Ni(II) uptake is considerably faster than the reconstitution of full enzymatic activity, suggesting a slow conformational change is required to attain optimal reactivity. An analysis of the pH dependence of the catalytic properties of Fe(III)Ni(II) uteroferrin indicates that the μ-hydroxide is the likely nucleophile. Thus, the Ni(II) derivative employs a mechanism similar to that proposed for the Ga(III)Zn(II) derivative of uteroferrin, but different from that of the native enzyme, which uses a terminal Fe(III)-bound nucleophile to initiate catalysis. Binuclear Fe(III)Ni(II) biomimetics with coordination environments similar to the coordination environment of uteroferrin were generated to provide both experimental benchmarks (structural and spectroscopic) and further insight into the catalytic mechanism of hydrolysis. The data are consistent with a reaction mechanism employing an Fe(III)-bound terminal hydroxide as a nucleophile, similar to that proposed for native uteroferrin and various related isostructural biomimetics. Thus, only in the uteroferrin-catalyzed reaction are the precise details of the catalytic mechanism sensitive to the metal ion composition, illustrating the significance of the dynamic ligand environment in the protein active site for the optimization of the catalytic efficiency. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
The Fe(II)- and alpha-ketoglutarate(alphaKG)-dependent dioxygenases have roles in synthesis of collagen and sensing of oxygen in mammals, in acquisition of nutrients and synthesis of antibiotics in microbes, and in repair of alkylated DNA in both. A consensus mechanism for these enzymes, involving (i) addition of O(2) to a five-coordinate, (His)(2)(Asp)-facially coordinated Fe(II) center to which alphaKG is also bound via its C-1 carboxylate and ketone oxygen; (ii) attack of the uncoordinated oxygen of the bound O(2) on the ketone carbonyl of alphaKG to form a bicyclic Fe(IV)-peroxyhemiketal complex; (iii) decarboxylation of this complex concomitantly with formation of an oxo-ferryl (Fe(IV)=O(2)(-)) intermediate; and (iv) hydroxylation of the substrate by the Fe(IV)=O(2)(-) complex via a substrate radical intermediate, has repeatedly been proposed, but none of the postulated intermediates occurring after addition of O(2) has ever been detected. In this work, an oxidized Fe intermediate in the reaction of one of these enzymes, taurine/alpha-ketoglutarate dioxygenase (TauD) from Escherichia coli, has been directly demonstrated by rapid kinetic and spectroscopic methods. Characterization of the intermediate and its one-electron-reduced form (obtained by low-temperature gamma-radiolysis of the trapped intermediate) by M?ssbauer and electron paramagnetic resonance spectroscopies establishes that it is a high-spin, formally Fe(IV) complex. Its M?ssbauer isomer shift is, however, significantly greater than those of other known Fe(IV) complexes, suggesting that the iron ligands in the TauD intermediate confer significant Fe(III) character to the high-valent site by strong electron donation. The properties of the complex and previous results on related alphaKG-dependent dioxygenases and other non-heme-Fe(II)-dependent, O(2)-activating enzymes suggest that the TauD intermediate is most probably either the Fe(IV)-peroxyhemiketal complex or the taurine-hydroxylating Fe(IV)=O(2)(-) species. The detection of this intermediate sets the stage for a more detailed dissection of the TauD reaction mechanism than has previously been reported for any other member of this important enzyme family.  相似文献   

20.
Binuclear non-heme iron enzymes activate O2 to perform diverse chemistries. Three different structural mechanisms of O2 binding to a coupled binuclear iron site have been identified utilizing variable-temperature, variable-field magnetic circular dichroism spectroscopy (VTVH MCD). For the μ-OH-bridged Fe(II)2 site in hemerythrin, O2 binds terminally to a five-coordinate Fe(II) center as hydroperoxide with the proton deriving from the μ-OH bridge and the second electron transferring through the resulting μ-oxo superexchange pathway from the second coordinatively saturated Fe(II) center in a proton-coupled electron transfer process. For carboxylate-only-bridged Fe(II)2 sites, O2 binding as a bridged peroxide requires both Fe(II) centers to be coordinatively unsaturated and has good frontier orbital overlap with the two orthogonal O2 π* orbitals to form peroxo-bridged Fe(III)2 intermediates. Alternatively, carboxylate-only-bridged Fe(II)2 sites with only a single open coordination position on an Fe(II) enable the one-electron formation of Fe(III)–O2 ? or Fe(III)–NO? species. Finally, for the peroxo-bridged Fe(III)2 intermediates, further activation is necessary for their reactivities in one-electron reduction and electrophilic aromatic substitution, and a strategy consistent with existing spectral data is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号