首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AimsTo investigate the effect of vanillin, a dietary component, on adipocyte differentiation and the mechanism involved in the process using 3T3-L1 murine preadipocytes.Main methodsThe effect of vanillin on adipocyte differentiation was detected by Oil Red O analysis. The activation of extracellular signal regulated kinase 42/44 (ERK 42/44), Akt, expression of the key regulator of adipocyte differentiation peroxisome proliferators-activated receptor (PPARγ) and its target gene glucose transporter 4 (GLUT4) were detected by western blotting. Glucose uptake assay was used to determine the insulin sensitivity of adipocytes differentiated by vanillin treatment. To confirm the role of ERK 42/44 and Akt, Oil Red O analysis was performed with cells differentiated in the presence or absence of ERK inhibitor U0126 or Akt kinase 1/2 inhibitor.Key findingsVanillin induced adipocyte differentiation in 3T3-L1 cells in a dose dependent manner and also increased the expression levels of PPARγ and its target gene GLUT4. The adipocytes differentiated by vanillin exhibited insulin sensitivity as demonstrated by a significant increase in glucose uptake. Vanillin treatment activated the phosphorylation of ERK 42/44 during the initial phase of adipocyte differentiation but there was no significant change in the Akt phosphorylation status.SignificanceThe data show that vanillin induces adipocyte differentiation in 3T3-L1 cells by activating ERK42/44 and these adipocytes are insulin sensitive in nature.  相似文献   

2.
3.
Differential effects of flavonoids on 3T3-L1 adipogenesis and lipolysis   总被引:6,自引:0,他引:6  
Flavonoids, polyphenolic compounds that exist widelyin plants, inhibit cell proliferation and increase cell differentiation in many cancerous and noncancerous cell lines. Because terminal differentiation of preadipocytes to adipocytes depends on proliferation of both pre- and postconfluent preadipocytes, we predicted that flavonoids would inhibit adipogenesis in the 3T3-L1 preadipocyte cellline. The flavonoids genistein and naringenin inhibited proliferation of preconfluent preadipocytes in a time- and dose-dependent manner. When added to 2-day postconfluent preadipocytes at the induction ofdifferentiation, genistein inhibited mitotic clonal expansion, triglyceride accumulation, and peroxisome proliferator-activated receptor- expression, but naringenin had no effect. Theantiadipogenic effect of genistein was not due to inhibition of insulinreceptor subtrate-1 tyrosine phosphorylation. When added 3 days afterinduction of differentiation, neither flavonoid inhibiteddifferentiation. In fully differentiated adipocytes, genisteinincreased basal and epinephrine-induced lipolysis, but naringenin hadno significant effects. These data demonstrate that genistein andnaringenin, despite structural similarity, have differential effects onadipogenesis and adipocyte lipid metabolism.

  相似文献   

4.
5.
6.
7.
8.
9.
Caveolae have been implicated in sensing of cell volume perturbations, yet evidence is still limited and findings contradictory. Here, we investigated the possible role of caveolae in cell volume regulation and volume sensitive signaling in an adipocyte system with high (3T3-L1 adipocytes); intermediate (3T3-L1 pre-adipocytes); and low (cholesterol-depleted 3T3-L1 pre-adipocytes) caveolae levels. Using large-angle light scattering, we show that compared to pre-adipocytes, differentiated adipocytes exhibit several-fold increased rates of volume restoration following osmotic cell swelling (RVD) and osmotic cell shrinkage (RVI), accompanied by increased swelling-activated taurine efflux. However, caveolin-1 distribution was not detectably altered after osmotic swelling or shrinkage, and caveolae integrity, as studied by cholesterol depletion or expression of dominant negative Cav-1, was not required for either RVD or RVI in pre-adipocytes. The insulin receptor (InsR) localizes to caveolae and its expression dramatically increases upon adipocyte differentiation. In pre-adipocytes, InsR and its effectors focal adhesion kinase (FAK) and extracellular signal regulated kinase (ERK1/2) localized to focal adhesions and were activated by a 5 min exposure to insulin (100 nM). Osmotic shrinkage transiently inhibited InsR Y(146)-phosphorylation, followed by an increase at t=15 min; a similar pattern was seen for ERK1/2 and FAK, in a manner unaffected by cholesterol depletion. In contrast, cell swelling had no detectable effect on InsR, yet increased ERK1/2 phosphorylation. In conclusion, differentiated 3T3-L1 adipocytes exhibit greatly accelerated RVD and RVI responses and increased swelling-activated taurine efflux compared to pre-adipocytes. Furthermore, in pre-adipocytes, Cav-1/caveolae integrity is not required for volume regulation. Given the relationship between hyperosmotic stress and insulin signaling, the finding that cell volume regulation is dramatically altered upon adipocyte differentiation may be relevant for the understanding of insulin resistance and metabolic syndrome.  相似文献   

10.
BECN1, a protein essential for autophagy, is involved in adipocyte differentiation, lipolysis and insulin resistance. The discovery of new mechanisms for modifying BECN1 in adipocytes may provide novel therapeutic targets for obesity. This study aimed to investigate the impact of mutations at the acetylation sites of BECN1 on adipocyte differentiation and lipolysis. We found that Ace-BECN1 levels were increased in 3T3-L1 adipocyte differentiation and isoproterenol-/TNF-α-stimulated lipolysis and in subcutaneous and visceral adipose tissues of high-fat diet mice. K414 was identified as an acetylation site of BECN1, which affects the stability of the BECN1 protein. Mutation at K414 of BECN1 affected autophagy, differentiation and lipolysis in 3T3-L1 adipocytes. These data indicated the potential of BECN1 K414 as a key molecule and a drug target for regulating autophagy and lipid metabolism in adipocytes.  相似文献   

11.
12.
13.
14.
15.
Murine 3T3-L1 fibroblasts enter a differentiation program subsequent to prolonged maintenance in the confluent state and develop into adipocytes. The hormone sensitivity of adenylate cyclase and the physiological responsiveness to insulin were compared in 3T3-L1 preadipocytes and adipocytes. The following observations, comprising several distinct categories of hormone responsiveness, were made. (a) (2.5 micronM) isoproterenol stimulated adenylate cyclase 15-fold in adipocyte homogenates, but only 2.5-fold in preadipocyte preparations, suggesting a considerable magnification in beta-adrenergic responsiveness during development. (b) A totally new control element, adrenocorticotropic hormone responsiveness, was incorporated into the adenylate cyclase system of the adipocytes. (c) Sensitivity to prostaglandin E1 was observed in both preadipocytes and adipocytes, but no change in responsiveness could be detected in the differentiated cells. (d) Glucagon-sensitive adenylate cyclase could not be detected in either preadipocytes or adipocytes. (e) Both preadipocytes and adipocytes possess considerable insulin binding activity, but near physiological levels of insulin stimulate the conversion of glucose to CO2 and lipid only in the differentiated cells.  相似文献   

16.
Interleukin-15 (IL-15) is a cytokine which is highly expressed in skeletal muscle tissue, and which has anabolic effects on skeletal muscle protein dynamics both in vivo and in vitro. Additionally, administration of IL-15 to rats and mice inhibits white adipose tissue deposition. To determine if the action of IL-15 on adipose tissue is direct, the capacity of cultured murine 3T3-L1 preadipocytes and adipocytes to respond to IL-15 was examined. IL-15 administration inhibited lipid accumulation in differentiating 3T3-L1 preadipocytes, and stimulated secretion of the adipocyte-specific hormone adiponectin by differentiated 3T3-L1 adipocytes. The latter observation constitutes the first report of a cytokine or growth factor which stimulates adiponectin production. IL-15 mRNA expression by cultured 3T3-L1 adipogenic cells and C2C12 murine skeletal myogenic cells was also examined. Quantitative real-time PCR indicated IL-15 mRNA was expressed by C2C12 skeletal myogenic cells, and was upregulated more than 10-fold in differentiated skeletal myotubes compared to undifferentiated myoblasts. In contrast, 3T3-L1 cells expressed little or no IL-15 mRNA at either the undifferentiated preadipocyte or differentiated adipocyte stages. These findings provide support for the hypothesis that IL-15 functions in a muscle-to-fat endocrine axis which modulates fat:lean body composition and insulin sensitivity.  相似文献   

17.
Obesity is a serious health problem and a major risk factor for the onset of several diseases such as heart disease, diabetes, stroke and cancer. The conversion of white adipocytes to brown-like adipocytes, also called beige or brite adipocytes, by pharmacological and dietary compounds has gained attention as an effective treatment for obesity. Cyanidin-3-glucoside (Cy3G), a polyphenolic compound contained in black soybean, blueberry and grape, has several antiobesity effects. However, there are no reports on the role of Cy3G in the induction of differentiation of preadipocytes to beige adipocytes and corresponding phenotypes. Here, the formation of beige adipocyte phenotypes following treatment with Cy3G was evaluated using 3T3-L1 adipocytes. Cy3G induced phenotypic changes to white adipocytes, such as increased multilocular lipid droplets and mitochondrial content. Additionally, the expression of mitochondrial genes (TFAM, SOD2, UCP-1 and UCP-2), UCP-1 protein and beige adipocyte markers (CITED1 and TBX1) in 3T3-L1 adipocytes was increased by Cy3G. Furthermore, Cy3G promoted preadipocyte differentiation by up-regulating of C/EBPβ through the elevation of the intracellular cAMP levels. These results indicated that Cy3G elevates the intracellular cAMP levels, which induces beige adipocyte phenotypes. This is the first report on the effect of Cy3G on induction of differentiation of preadipocytes into beige adipocyte phenotypes.  相似文献   

18.
19.
Progression of 3T3-L1 preadipocyte differentiation is divided into early (days 0–2, D0–D2), intermediate (days 2–4, D2–D4), and late stages (day 4 onwards, D4-). In this study, we investigated the effects of fucoxanthin, isolated from the edible brown seaweed Petalonia binghamiae, on adipogenesis during the three differentiation stages of 3T3-L1 preadipocytes. When fucoxanthin was applied during the early stage of differentiation (D0–D2), it promoted 3T3-L1 adipocyte differentiation, as evidenced by increased triglyceride accumulation. At the molecular level, fucoxanthin increased protein expression of peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), sterol regulatory element-binding protein 1c (SREBP1c), and aP2, and adiponectin mRNA expression, in a dose-dependent manner. However, it reduced the expression of PPARγ, C/EBPα, and SREBP1c during the intermediate (D2–D4) and late stages (D4–D7) of differentiation. It also inhibited the uptake of glucose in mature 3T3-L1 adipocytes by reducing the phosphorylation of insulin receptor substrate 1 (IRS-1). These results suggest that fucoxanthin exerts differing effects on 3T3-L1 cells of different differentiation stages and inhibits glucose uptake in mature adipocytes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号