首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The grass sharpshooter, Draeculacephala minerva Ball (Hemiptera: Cicadellidae), is a very common and often abundant grass-feeding leafhopper in California. Its population dynamics and ability to transmit Xylella fastidiosa were monitored over a 2-yr period in California's San Joaquin Valley. Collections of individuals from natural populations in irrigated pastures and alfalfa, Medicago savita L. fields adjacent to X. fastidiosa-infected almond (Prunus spp.) orchards indicated the occurrence of three discrete generations per year that peaked during the summer. Population densities varied significantly among experimental field survey sites. Insects captured on intercepting mesh traps, yellow sticky cards, and UV-light traps indicated local movement of these insects into and surrounding X. fastidiosa-infected, almond orchards. Local movement and seasonal transmission of X. fastidiosa from infected almonds to Catharanthus roseus (L.) G. Don indicated that this insect may be partly responsible for the slow spread of almond leaf scorch now recently observed in California's San Joaquin Valley.  相似文献   

2.
The specificity of pathogen–vector–host interactions is an important element of disease epidemiology. For generalist pathogens, different pathogen strains, vector species, or host species may all contribute to variability in disease incidence. One such pathogen is Xylella fastidiosa Wells et al., a xylem-limited bacterium that infects dozens of crop, ornamental, and native plants in the USA. This pathogen also has a diverse vector complex and multiple biologically distinct strains. We studied the implications of diversity in this pathogen–vector–host system, by quantifying variability in transmission efficiency of different X. fastidiosa strains (isolates from almond and grape genetic groups) for different host plants (grape, almond, and alfalfa) by two of the most important vectors in California: glassy-winged sharpshooter [ Homalodisca vitripennis (Germar)] and green sharpshooter ( Draeculacephala minerva Ball) (both Hemiptera: Cicadellidae). Transmission of isolates of the almond strain by H. vitripennis did not differ significantly, whereas transmission varied significantly among isolates from the grape strain (15–90%). Host plant species did not affect H. vitripennis transmission. Conversely, D. minerva efficiency was mediated by both host plant species and pathogen strain. No acquisition of an almond isolate occurred regardless of plant type (0/122), whereas acquisition of a grape isolate from alfalfa was 10-fold higher than from grape or almond plants. These results suggest that pathogen, vector, and host diversity impose contingencies on the transmission ecology of this complex disease system. Studies aimed at the development of management strategies for X. fastidiosa diseases should consider the complexity of these interactions as they relate to disease spread.  相似文献   

3.
Almond leaf scorch disease (ALSD) caused by Xylella fastidiosa is potentially a serious threat to the almond industry in San Joaquin Valley of California. Knowledge of X. fastidiosa behaviour in the plant host under field conditions is important for disease control and this issue is being addressed in this project. Occurrence of ALSD is strongly influenced by environmental factors. In 2006, the earliest leaf scorching symptoms were observed in June, whereas in 2007, the earliest occurrence of leaf scorching symptoms was in July, a delay of 1 month. In both years, PCR detected X. fastidiosa 1 month before of symptom expression. PCR was slightly more sensitive than cultivation method for early bacterial detection. However, uneven bacterial distribution and random sampling errors may have contributed to the differences among the assays. Correlation between cultivation and PCR detection was greater than 90%. During the processing of a large number of samples, we noticed occasional failures in PCR amplifications of some samples, interfering result interpretation. We developed an array-PCR protocol using primers from seven housekeeping genes to correct the deficiency.  相似文献   

4.
Xylella fastidiosa, the causal agent of almond leaf scorch disease (ALSD), is currently re-emerging as a serious concern in California. Efficient pathogen detection is critical for ALSD epidemiological studies, particularly when a large sample size is involved. We here report a PCR procedure to detect X. fastidiosa directly from infected almond tissue without the laborious DNA extraction. Plant samples were prepared by freeze-drying and pulverized. Appropriate dilutions of the pulverized freeze-dried tissue (PFT) were determined to minimize the effect of enzyme inhibitors from plant tissue and retain PCR detection of X. fastdiosa cells at a single digit number level. This PFT-PCR procedure was evaluated by comparing to the in vitro cultivation method using 102 symptomatic samples and resulted in a predictive value of 90.8%. PFT-PCR was further applied to monitor the seasonal occurrence of X. fastidiosa from four selected almond trees in two orchards in 2005. The results matched with those of the cultivation method at 92.3%. Considering the simplicity and reliability, we conclude that PFT-PCR is a valuable option for high throughput rapid detection of X. fastidiosa.  相似文献   

5.
Xylella fastidiosa Wells is a bacterial pathogen that causes a variety of plant diseases, including Pierce's disease (PD) of grapevine, almond leaf scorch, alfalfa dwarf, citrus variegated chlorosis, and oleander leaf scorch (OLS). Numerous strains of this pathogen have been genetically characterized, and several different strains occur in the United States. The dominant vector in southern California is the glassy-winged sharpshooter, Homalodisca coagulata (Say) (Hemiptera: Cicadellidae). The high mobility of this insect, and its use of large numbers of host plant species, provides this vector with ample exposure to multiple strains of X. fastidiosa during its lifetime. To learn more about the ability of this vector to acquire, retain, and transmit multiple strains of the pathogen, we developed a polymerase chain reaction (PCR)-based method to detect and differentiate strains of X. fastidiosa present in individual glassy-winged sharpshooter adults. Insects were sequentially exposed to plants infected with a PD strain in grapevine and an OLS strain in oleander. After sequential exposure, a few insects tested positive for both strains (7%); however, in most cases individuals tested positive for only one strain (29% PD, 41% OLS). In transmission studies, individual adults transmitted either the PD or OLS strain of the pathogen at a rate (39%) similar to that previously reported after exposure to a single strain, but no single individual transmitted both strains of the pathogen. PD and OLS strains of X. fastidiosa remained detectable in glassy-winged sharpshooter, even when insects were fed on a plant species that was not a host of the strain for 1 wk.  相似文献   

6.
Pest control mediated by organisms such as parasitoids is a valuable ecosystem service, particularly with regard to high costs, low effectiveness, and detrimental effects of some agrochemicals. This study examined infestation rates and abundance of pests and their natural enemies in organic and conventional almond orchards in California, differing in landscape context, understory plant cover, and plant species richness. Parasitoids of the commercially most important insect pest of almond, the Navel Orangeworm (NOW) were studied by rearing NOW in collected overwintering nuts. The indirect impact of vertebrate natural enemies of NOW were estimated by counting empty nut shells with feeding marks by wild birds and various mammals, found at the orchard floor. Mean nut infestation by NOW ranged from 0.8% to 37% per orchard and was reduced by parasitism rates, ranging from 0% to 22%, and vertebrate nut damage, ranging from 2% to 96% per orchard. The parasitoids were facilitated by a high proportion of natural habitat surrounding the orchards and high proportion of understory ground cover with vegetation. The vertebrate natural enemies were facilitated by a high proportion of natural habitat surrounding the orchards and plant species richness in the orchard understory. In conclusion, this study shows that pest control mediated by vertebrates and invertebrates promoted by near natural habitats can lower pest pressure by NOW larvae in overwintering almond. In case of the vertebrate nut damage this service might only be temporal and turn into a dis-service during and after harvest because the vertebrates continue to feed on the nuts and may also cause injuries to the trees.  相似文献   

7.
Purpose

California’s Central Valley produces more than 75% of global commercial almond supply, making the life cycle performance of almond production in California of global interest. This article describes the life cycle assessment of California almond production using a Scalable, Process-based, Agronomically Responsive Cropping System Life Cycle Assessment (SPARCS-LCA) model that includes crop responses to orchard management and modeling of California’s water supply and biomass energy infrastructure.

Methods

A spatially and temporally resolved LCA model was developed to reflect the regional climate, resource, and agronomic conditions across California’s Central Valley by hydrologic subregion (San Joaquin Valley, Sacramento Valley, and Tulare Lake regions). The model couples a LCA framework with region-specific data, including water supply infrastructure and economics, crop productivity response models, and dynamic co-product markets, to characterize the environmental performance of California almonds. Previous LCAs of California almond found that irrigation and management of co-products were most influential in determining life cycle CO2eq emissions and energy intensity of California almond production, and both have experienced extensive changes since previous studies due to drought and changing regulatory conditions, making them a focus of sensitivity and scenario analysis.

Results and discussion

Results using economic allocation show that 1 kg of hulled, brown-skin almond kernel at post-harvest facility gate causes 1.92 kg CO2eq (GWP100), 50.9 MJ energy use, and 4820 L freshwater use, with regional ranges of 2.0–2.69 kg CO2eq, 42.7–59.4 MJ, and 4540–5150 L, respectively. With a substitution approach for co-product allocation, 1 kg almond kernel results in 1.23 kg CO2eq, 18.05 MJ energy use, and 4804 L freshwater use, with regional ranges of 0.51–1.95 kg CO2eq, 3.68–36.5 MJ, and 4521–5140 L, respectively. Almond freshwater use is comparable with other nut crops in California and globally. Results showed significant variability across subregions. While the San Joaquin Valley performed best in most impact categories, the Tulare Lake region produced the lowest eutrophication impacts.

Conclusion

While CO2eq and energy intensity of almond production increased over previous estimates, so too did credits to the system for displacement of dairy feed. These changes result from a more comprehensive model scope and improved assumptions, as well as drought-related increases in groundwater depth and associated energy demand, and decreased utilization of biomass residues for energy recovery due to closure of bioenergy plants in California. The variation among different impact categories between subregions and over time highlight the need for spatially and temporally resolved agricultural LCA.

  相似文献   

8.
Xylella fastidiosa Wells et al., a gram-negative and xylem limited bacterium, causes significative economic on several crops, such as the leaf scorch in coffee. It is transmitted by xylem feeding insects and four sharpshooters species have been reported as vectors of X. fastidiosa in coffee. The objective of this study was to determine the natural infectivity of X. fastidiosa in five species of sharpshooters from coffee trees: Acrogonia citrina Marucci & Cavichioli, Bucephalogonia xanthophis (Berg), Dilobopterus costalimai Young, Oncometopia facialis (Signoret) and Sonesimia grossa (Signoret). Samples were collected from coffee plantations in five counties of the North and Northwest regions of the State of Parana, Brazil, from October 1998 through November 2001. A total of 806 samples containing three to five insects were examined for the presence of X. fastidiosa by using PCR and nested PCR tests. X. fastidiosa was present in samples of all five species of sharpshooters collected in the two coffee regions. The average level of natural infectivity potential was 30.4%. However, this natural infectivity ranged from 2.2% for O. facialis to 68.8% for A. citrina. Sharpshooters collected in the spring tended to have lower natural infectivity of X. fastidiosa as compared to those collected in other seasons. The results obtained showed the high potential of dissemination of X. fastidiosa by different insect vectors in coffee trees in Parana.  相似文献   

9.
《Biological Control》2010,52(3):388-394
Pest control mediated by organisms such as parasitoids is a valuable ecosystem service, particularly with regard to high costs, low effectiveness, and detrimental effects of some agrochemicals. This study examined infestation rates and abundance of pests and their natural enemies in organic and conventional almond orchards in California, differing in landscape context, understory plant cover, and plant species richness. Parasitoids of the commercially most important insect pest of almond, the Navel Orangeworm (NOW) were studied by rearing NOW in collected overwintering nuts. The indirect impact of vertebrate natural enemies of NOW were estimated by counting empty nut shells with feeding marks by wild birds and various mammals, found at the orchard floor. Mean nut infestation by NOW ranged from 0.8% to 37% per orchard and was reduced by parasitism rates, ranging from 0% to 22%, and vertebrate nut damage, ranging from 2% to 96% per orchard. The parasitoids were facilitated by a high proportion of natural habitat surrounding the orchards and high proportion of understory ground cover with vegetation. The vertebrate natural enemies were facilitated by a high proportion of natural habitat surrounding the orchards and plant species richness in the orchard understory. In conclusion, this study shows that pest control mediated by vertebrates and invertebrates promoted by near natural habitats can lower pest pressure by NOW larvae in overwintering almond. In case of the vertebrate nut damage this service might only be temporal and turn into a dis-service during and after harvest because the vertebrates continue to feed on the nuts and may also cause injuries to the trees.  相似文献   

10.
Apple proliferation is a phytoplasma-associated disease transmitted by insects causing serious damage and economic losses to apple orchards. Investigations were carried out in 1999 and 2000 in northwestern Italy to identify the vector of apple proliferation and to study its population dynamics. Yellow sticky traps and beat tray samples revealed the presence of the psyllid Cacopsylla melanoneura (Forster) in eight apple orchards in the Aosta Valley. The species completes one generation per year; the overwintered psyllids colonized apple trees beginning in late January, whereas the springtime generation was observed beginning in early May. The offspring adults remained in apple orchards until the end of June, when they began to move onto other hosts. During 1999 and 2000, all apple trees present in the investigated orchards were visually checked to assess the fluctuation of disease symptoms. Polymerase chain reaction and restriction fragment-length polymorphism confirmed the presence of the apple proliferation phytoplasmas in both overwintering and offspring insects as well as in symptomatic apple plants. The ability of C. melanoneura to vector the disease was assessed by preliminary transmission trials. Overwintered psyllids, collected in the most affected orchards, caged on healthy apple test plants transmitted apple proliferation phytoplasmas.  相似文献   

11.
White muscle disease and other selenium deficiency syndromes, once extremely common in young calves and lambs in Oregon, especially in the areas of volcanic origin east of the Cascade mountain range, prompted extensive investigations in the Oregon Agricultural Experiment Station that resulted in the implementation of large-scale selenium supplementation programs. Although selenium deficiency in livestock is consequently now rare in Oregon, selenium-deficient soils and attendant selenium deficiency conditions have been reported near the Kesterson Wildlife Refuge in the Northern part of the San Joaquin Valley, California, where, paradoxically, selenium toxicity in wildfowl, nesting near evaporation ponds, occurred and attracted wide attention. This review cites studies which explain why there is no evidence of selenium toxicity in livestock, but some selenium deficiency on the east side of the San Joaquin Valley. They also show that there is no threat to the food supply owing to excessive selenium in this area and that the consumption of meat and milk from the herds would not exceed the safe range of selenium for humans.  相似文献   

12.
A survey of xylem fluid-feeding insects (Hemiptera) exhibiting potential for transmission of Xylella fastidiosa, the bacterium causing Pierce's disease of grapevine, was conducted from 2004 to 2006 in the Hill Country grape growing region of central Texas. Nineteen insect species were collected from yellow sticky traps. Among these, two leafhoppers and one spittlebug comprised 94.57% of the xylem specialists caught in this region. Homalodisca vitripennis (Germar), Graphocephala versuta (Say), and Clastoptera xanthocephala Germar trap catches varied significantly over time, with greatest counts usually recorded between May or June and August and among localities. A comparison of insect counts from traps placed inside and outside vineyards indicated that G. versuta is always more likely captured on the vegetation adjacent to the vineyard. C. xanthocephala was caught inside the vineyard during the summer. Between October and December, the natural habitat offers more suitable host plants, and insects were absent from the vineyards after the first freezes. H. vitripennis was caught in higher numbers inside the vineyards throughout the grape vegetative season. However, insects were also caught in the habitat near the affected crop throughout the year, and residual populations overwintering near vineyards were also recorded. This study shed new light on the fauna of xylem fluid-feeding insects of Texas. These results also provide critical information to vineyard managers for timely applications of insecticides before insect feeding and vectoring to susceptible grapevines.  相似文献   

13.
Portions of two commercial citrus orchards were treated for two consecutive years with buprofezin or three consecutive years with pyriproxyfen in a replicated plot design to determine the long-term impact of these insect growth regulators (IGRs) on the San Joaquin Valley California integrated pest management program. Pyriproxyfen reduced the target pest, California red scale, Aonidiella aurantii Maskell, to nondetectable levels on leaf samples approximately 4 mo after treatment. Pyriproxyfen treatments reduced the California red scale parasitoid Aphytis melinus DeBach to a greater extent than the parasitoid Comperiella bifasciata Howard collected on sticky cards. Treatments of lemons Citrus limon (L.) Burm. f. infested with scale parasitized by A. melinus showed only 33% direct mortality of the parasitoid, suggesting the population reduction observed on sticky cards was due to low host density. Three years of pyriproxyfen treatments did not maintain citricola scale, Coccus pseudomagnoliarum (Kuwana), below the treatment threshold and cottony cushion scale, Icerya purchasi Maskell, was slowly but incompletely controlled. Buprofezin reduced California red scale to very low but detectable levels approximately 5 mo after treatment. Buprofezin treatments resulted in similar levels of reduction of the two parasitoids A. melinus and C. bifasciata collected on sticky cards. Treatments of lemons infested with scale parasitized by A. melinus showed only 7% mortality of the parasitoids, suggesting the population reduction observed on sticky cards was due to low host density. Citricola scale was not present in this orchard, and cottony cushion scale was slowly and incompletely controlled by buprofezin. These field plots demonstrated that IGRs can act as organophosphate insecticide replacements for California red scale control; however, their narrower spectrum of activity and disruption of coccinellid beetles can allow other scale species to attain primary pest status.  相似文献   

14.
Book Reviews     
Book reviewed in this article:
The Epidemic of 1830–1833 in California and Oregon . S. F. C ook
The Aboriginal Population of the San Joaquin Valley, California . S. F. C ook  相似文献   

15.
The phenology of citricola scale, Coccus pseudomagnoliarum (Kuwana), and its associated parasitoid complex were studied on citrus in the San Joaquin Valley of central California over the period April 1995–March 1997. A total of 10,237 parasitoid specimens of 10 species were collected. Two of these species, Marietta mexicana (Howard) and Encyrtus lecaniorum (Mayr), each recovered from individually isolated scales, represent new parasitoid records for citricola scale. A third species, Encarsia citrinus citrinus (Craw), may represent a new parasitoid record, but this requires further confirmation because a single (male) specimen was recovered from individually isolated scales. The three most dominant parasitoid species, Coccophagus lycimnia (Walker), Metaphycus helvolus (Compere), and Metaphycus luteolus (Timberlake), accounted for the majority (>97%) of the specimens recovered. In contrast to the situation on citrus in southern California, where citricola scale is under effective biological control and is very rarely seen, citricola scale on citrus in the San Joaquin Valley is reemerging as a major pest, especially in groves employing integrated pest management with minimal use of broad-spectrum insecticides. Possible reasons uncovered in this study for the lack of effective biological control of citricola scale in the San Joaquin Valley include: (i) reduced presence of Metaphycus spp. because of hyperparasitism by the heteronomous hyperparasitoid C. lycimnia; (ii) absence of alternate hosts for those species of Metaphycus present; and (iii) absence of hosts of suitable size for Metaphycus at critical times of the year. Recommendations for improving the level of biological control in the San Joaquin Valley are discussed.  相似文献   

16.
Eighty-seven populations of California red scale, Aonidiella aurantii (Maskell), from the San Joaquin Valley of California were tested for insecticide resistance by using chlorpyrifos, methidathion, and/or carbaryl in a standard fruit-dip bioassay as well as for general esterase activity by using alpha-naphthyl acetate as a substrate in a colorimetric test. The percentage of individuals that survived a discriminating concentration of methidathion, chlorpyrifos, or carbaryl was significantly correlated with the percentage of individuals showing > 0.4 nmol of esterase activity per minute per microgram of protein in the colorimetric test. Scale survival of the organophosphates showed a higher correlation with esterase activity than survival of carbaryl. These results suggest that the colorimetric test of esterase activity is useful as an indicator of the frequency of organophosphate-resistant and, to a lesser extent, carbamate-resistant individuals in California red scale populations. The results of tests for activity and inhibition of acetylcholinesterase activity suggest that California red scale is using increased amounts of esterase enzymes, including acetylcholinesterase, to sequester organophosphate and carbamate insecticides, rather than modified acetylcholinesterase. Third instars collected from twigs, leaves, and fruit showed similar levels of esterase activity. The colorimetric test of esterase activity is a useful tool to detect organophosphate and carbamate resistance in San Joaquin Valley California red scale because of its speed of testing over a wide range of months, allowing for within-season decision making by citrus growers.  相似文献   

17.
Young almond (Prunus dulcis, cvs Carmel, Peerless and Price) orchards established on the plum rootstock Marianna 2624 (P. cerasifera×P. munsoniana) contained trees that exhibited poor terminal shoot growth and wilted, chlorotic leaves. The scion/rootstock graft union showed an external splitting of the bark and an internal line of necrotic bark tissues that extended into the woody cylinder of the union, which was deeply pitted. Affected trees declined. The disease was named almond brown line and decline (ABLD). Incidence of ABLD ranged up to 55% per cultivar in some orchards. Numerous attempts to graft-transmit orchard collections of ABLD to healthy almond/Marianna 2624 indicators failed. Also, ABLD does not appear to be soil-borne. However, ABLD was serendipitiously determined to be bud-perpetuated when infected scion buds from an apparently healthy appearing Peerless almond/peach tree located in a foundation orchard were grafted onto healthy rooted cuttings of Marianna 2624 to produce yearling trees. Also, graft-inoculations on the almond scion portion of healthy trees, but not the plum rootstock portion, with the peach yellow leafroll mycoplasma-like organism (PYLR-MLO) caused symptoms resembling ABLD. Laboratory and glasshouse assays of several symptomatic trees did not detect tomato ringspot virus and two ilarviruses. These results suggest that an MLO, possibly PYLR-MLO, may be the causal agent of ABLD and that Marianna 2624 is probably resistant to the PYLR-MLO.  相似文献   

18.
We used radiocarbon measurements of dissolved organic carbon (DOC) to resolve sources of riverine carbon within agriculturally dominated landscapes in California. During 2003 and 2004, average Δ14C for DOC was ?254‰ in agricultural drains in the Sacramento–San Joaquin Delta, ?218‰ in the San Joaquin River, ?175‰ in the California State Water Project and ?152‰ in the Sacramento River. The age of bulk DOC transiting the rivers of California’s Central Valley is the oldest reported for large rivers and suggests wide-spread loss of soil organic matter caused by agriculture and urbanization. Using DAX 8 adsorbent, we isolated and measured 14C concentrations in hydrophobic acid fractions (HPOA); river samples showed evidence of bomb-pulse carbon with average Δ14C of 91 and 76‰ for the San Joaquin and Sacramento Rivers, respectively, with older HPOA, ?204‰, observed in agricultural drains. An operationally defined non-HPOA fraction of DOC was observed in the San Joaquin River with seasonally computed Δ14C values of between ?275 and ?687‰; the source of this aged material was hypothesized to be physically protected organic-matter in high clay-content soils and agrochemicals (i.e., radiocarbon-dead material) applied to farmlands. Mixing models suggest that the Sacramento River contributes about 50% of the DOC load in the California State Water Project, and agricultural drains contribute approximately one-third of the load. In contrast to studies showing stabilization of soil carbon pools within one or two decades following land conversion, sustained loss of soil organic matter, occurring many decades after the initial agricultural-land conversion, was observed in California’s Central Valley.  相似文献   

19.
Three capture-recapture experiments were performed on natural populations of Drosophila from orchards in California. Two of the experiments investigated choice between known breeding substrates: oranges v. grapefruits and figs v. peaches. The third involved choice between citrus baits in a citrus orchard and both banana and citrus baits in an adjacent almond orchard. Drosophila pseudoobscura showed no fidelity to the bait or area of initial capture. However, a statistically significant but low level of resource fidelity was displayed by D. melanogaster/D. simulans. An index of differential choice is used to compare our results to those of previous studies. Possible biological bases of choice behaviour are discussed.  相似文献   

20.
Pierce's disease (PD) of grapevines is caused by a xylem-limited bacterium Xylella fastidiosa (Wells, Raju, Hung, Weisburg, Mandelco-Paul, and Brenner) that is transmitted to plants by xylem sap-feeding insects. The introduction of the sharpshooter leafhopper Homalodisca coagulata (Say) into California has initiated new PD epidemics in southern California. In laboratory experiments, the major characteristics of H. coagulata's transmission of X. fastidiosa to grapevines were the same as reported for other vectors: short or absent latent period; nymphs transmitted but lost infectivity after molting and regained infectivity after feeding on infected plants; and infectivity persisted in adults. Adult H. coagulata acquired and inoculated X. fastidiosa in <1 h of access time on a plant. Inoculation rates increased with access time, but acquisition efficiency (20% per individual) did not increase significantly beyond 6-h access. Estimated inoculation efficiency per individual per day was 19.6, 17.9, and 10.3% for experiments where plant access was 1, 2, and 4 d, respectively. Freshly molted adults and nymphs acquired and transmitted X. fastidiosa more efficiently than did older, field-collected insects. H. coagulata transmitted X. fastidiosa to 2-yr-old woody tissues of grapevines as efficiently as to green shoots. H. coagulata transmitted X. fastidiosa 3.5 mo after acquisition, demonstrating persistence of infectivity in adults. About half (14/29) of the H. coagulata from which we failed to culture X. fostidiosa from homogenized heads (with a detection threshold of 265 CFU/head) transmitted the pathogen to grape, and 17 of 24 from which we cultured X. fastidiosa transmitted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号